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Abstract

Online tracking of maneuvering targets is a highly nonlinear and challenging problem that involves, at every time instant, the
estimation not only of the unknown state in the dynamic model describing the evolution of the target, but also the underlying
model accounting for the regime of movement. In this paper we review and compare several sequential estimation procedures,
that use appropriate strategies for coping with various models that account for the different modes of operation. We focus on
the application of the recently proposed cost-reference particle filtering (CRPF) methodology, which aims at the estimation of
the system state without using probability distributions. The resulting method has a more robust performance when compared to
standard particle filtering (SPF) algorithms or the interactive multiple model (IMM) algorithm based on the use of the well known
extended Kalman filter (EKF). Advantages and disadvantages of the considered algorithms are illustrated and discussed through
computer simulations.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In recent years the problem of target tracking has attracted significant attention in the signal processing community
[1–7]. Most of the standard algorithms for target tracking have been focused on targets that do not change their regimes
of movement while they are tracked. If the targets have several regimes of movement, i.e., different movement models,
they can maneuver, which implies that tracking cannot be successful if it is done with one model. By the inclusion of
several models, coping with maneuvering becomes possible, but the overall tracking is then much more challenging
[8,9]. From a theoretical point of view this is a very interesting nonlinear problem, which includes the estimation
of the underlying model at every time instant as well as its unknown states and parameters [9,10]. In this paper, we
review, analyze, and compare the application of different techniques to the problem of tracking a single maneuvering
target.

Maneuvering target tracking has often been addressed by the interactive multiple model (IMM) algorithm [11–13]
and combined with different techniques like the probabilistic data association (PDA) [14] or the various versions of
the Kalman filter [11,15]. These methods have become almost the standard approach to maneuvering target tracking
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[16,17]. However, they have some major limitations due to the fact that their performance depends on the elemental
filters they are based on. If the underlying filters do not fit the considered problem well, the performance of the
algorithms gets severely degraded.

Maneuvering target tracking has also been tackled by particle filtering schemes [8,9,15,18–21]. The primary reason
to use these methods is their flexibility and accuracy in resolving very difficult nonlinear problems where the under-
lying models are represented by dynamic state-space equations. Existing standard particle filtering (SPF) methods
require a mathematical representation of the dynamics of the system evolution that includes assumptions of proba-
bilistic models.

Cost-reference particle filtering (CRPF), unlike SPF, aims at the estimation of the system state from the available
observations without a priori knowledge of any distribution function [22]. The reference derived from the assumed
probability distributions is substituted by a user-defined cost function that measures the quality of the state signal
estimates according to the available observations. The resulting techniques present a more robust performance than
the one achieved by SPF methods whose theory is based on probabilistic assumptions. The basic CRPF method and
its variants have already been successfully applied to the problem of tracking maneuvering targets [10,20,23].

In this paper, we review the CRPF method which uses a deterministic approach for model proposals, a problem
that is inherent to maneuvering target tracking [23]. The algorithm is compared with the multiple model auxiliary
SPF which uses the same strategy for coping with the multiple models in the system [20]. We consider two different
formulations of the CRPF, one of which has been proven to be equivalent to that of the auxiliary SPF [24]. For
performance comparison, we also include the IMM algorithm based on the extended Kalman filter (EKF).

The remaining of this paper is organized as follows. Section 2 introduces the dynamic system that describes the
problem of tracking of maneuvering targets moving along a two-dimensional space. The fundamentals of the CRPF
family and its application to the considered problem are described in Section 3. We discuss other algorithms, the IMM-
EKF and the multiple model auxiliary SPF, which are used for comparison with the CRPF in Section 4. Computer
simulation results that illustrate the performance of the different algorithms are presented in Section 5. Finally, brief
concluding remarks are included in Section 6.

2. A dynamic system describing a maneuvering target

A maneuvering target trajectory is characterized by a constant velocity regime with short periods of turning that
correspond to maneuvers. The dynamics of this type of objects can be described by a Markovian switching structure
of the form [8]

x̃t = A(ωt−1)x̃t−1 + But ,

where x̃t = [x1,t x2,t ẋ1,t ẋ2,t ]� ∈ �4 contains the Cartesian coordinates of the target position (m) and velocity (m/s)
in the xy-plane. The state transition matrices are given by

A(ωt ) =

⎛
⎜⎜⎝

1 0 sin(ωt Ts)
ωt

− 1−cos(ωtTs )
ωt

0 1 − 1−cos(ωt Ts)
ωt

sin(ωtTs )
ωt

0 0 cos(ωtTs) − sin(ωtTs)

0 0 sin(ωtTs) cos(ωtTs)

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

T 2
s

2 0

0 T 2
s

2
Ts 0
0 Ts

⎞
⎟⎟⎠ ,

where Ts is the sampling period (s) and ωt is a turn rate variable. The maneuver behavior depends on the velocity and
is modeled as

ωt = at√
ẋ2

1,t−1 + ẋ2
2,t−1

+ uω,t ,

where at represents the typical maneuvering acceleration at time instant t , which randomly switches among three
possible values, A = {a(1), a(2), a(3)}, and defines the nature of the movement, i.e., straight motion, right turn or left
turn. Therefore, we have three different system models, and we use mt ∈ {1,2,3} to denote the system model at time
instant t (e.g., mt = 1 corresponds to at = a(1)). Switching the movement regime occurs according to the transition
probability matrix,

H =
[

h11 h12 h13
h21 h22 h23

]
,

h31 h32 h33
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where hij = p(mt = j |mt−1 = i) is the probability of the system to switch from model i at time instant t −1 to model
j at time instant t , i, j = 1,2,3, and the initial model probabilities are set to guarantee that

∑3
i=1 p(mt = i) = 1. The

overall state vector is given by

xt = [x̃t ωt ]�, (1)

with state noises ut ∈ �2 and uω,t ∈ �.
The observation equation is defined as

yt = h(xt ) + vt , (2)

where vt is the observation noise with independent components vj,t , j = 1,2, and the function h(·) has two compo-
nents. An emitter on the moving target transmits a signal with power P0 through a fading channel with attenuation
coefficient α. The received signal power and the relative angle between the target and a reference point with fixed
location r = [rx ry]� are measured, i.e.,

h1(xt ) = 10 log10

(
P0

‖r − pt‖α

)
, h2(xt ) = � (pt − r),

where pt = [x1,t x2,t ]� ∈ �2 denotes the position of the target and ‖z‖ = √
z�z is the norm of the vector z.

The objective is the sequential estimation of the target state, x0:t , given the sequence of measurements, y1:t .

3. The CRPF method

The CRPF methodology allows for recursive estimation of unobserved states of dynamic systems without assump-
tions about the probability distributions of the noises in the state and observation equations [22]. The main feature
of these filters is that the statistical reference provided by the a posteriori state probability density function (pdf),
p(x0:t |y1:t ), is substituted by a user-defined cost function that measures the quality of the state signal estimates ac-
cording to the available observations. The cost-reference particle filter at time t is described by a set of M state
samples or particles, which represent the state, xt , and associated costs up to that time instant. To account for the mul-
tiple regimes existing in the maneuvering target tracking problem, the filter also includes the maneuvering model, mt .
The cost-reference particle filter at time instant t is given by the measure [10]

Ξt = {
x(i)
t ,C(i)

t ,m
(i)
t

}M

i=1.

The particles x(i)
t , i = 1, . . . ,M , are generated using a selected propagation density, which is constructed under a set

of mild conditions [22]. In general, the cost function is formulated by means of a recursive additive structure,

C(i)
t = C

(
x(i)

0:t |y1:t , λ
) = λC

(
x(i)

0:t−1|y1:t−1, λ
) + �C

(
x(i)
t |yt

)
, (3)

where the term on the right-hand side of the expression represents the cost up to time t − 1 weighted by a forgetting
factor, λ, plus a cost increment, �C(x(i)

t |yt ), obtained from the state and observation vectors at time t . Different func-
tions for the cost function as well as for the cost increment can be proposed under some defined design conditions [22].
In this paper, we use as cost increment

�C
(
x(i)
t |yt

) = ∥∥yt − h
(
x(i)
t

)∥∥q
, (4)

where q is either 1 or 2.
The measure, Ξt , is randomly propagated when yt+1 is observed and an updated measure, Ξt+1, is built. The

multiple model CRPF method for the stated maneuvering target tracking problem consists of the following steps:

(1) Selection or resampling: Given M particles at time t , 3M predictions or risks are evaluated at time t + 1 (one
for each model and each particle). These predictions are calculated using the particles from the previous time
instant, {x(i)

t }Mi=1 and the current observation, yt+1. They represent anticipated costs of the propagated particles.
A possible expression for the risks is [22]

R(i,mt+1) = λC(i)
t + �C

(
x(i)
t |yt+1,mt+1

)
, mt+1 = 1,2,3,
t+1
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where �C(x(i)
t |yt+1,mt+1) is obtained by first predicting a new state according to the model mt+1, and then

applying the incremental cost function given by Eq. (4) [20]. Once predictions are generated, we replicate particles
with low risks while high-risk particles are discarded. To perform this selection, we construct a probability mass
function (pmf) from the risk Rt+1, i.e.,

π̂
(i,mt+1)

t+1 ∝ μ
(
R(i,mt+1)

t+1

)
,

where μ(·) : � → [0,+∞) is a monotonically decreasing function. As shown in [22], the choice of μ(·) has a
direct impact on the performance of the algorithm. In this paper we chose μ(·) as

μ
(
R(i,mt+1)

t+1

) = 1

(R(i,mt+1)

t+1 − mini{R(i,mt+1)

t+1 } + δ)β
,

where δ = 1
10

√
var{R(i,mt+1)

t+1 }3M
i=1 with var(·) denoting variance, and β = 2. Other methods for performing particle

selection have also been explored [22,24].
It is important to remark that only M trajectories survive the resampling step. Specifically, we select x̂(i)

t = x(k)
t

with probability π̂
(k,mt+1)

t+1 , and build an intermediate particle filter,

Ξ̂t+1 = {
x̂(i)
t , Ĉ(i)

t ,m
(i)
t+1

}M

i=1,

where Ĉ(i)
t = C(k)

t if, and only if, x̂(i)
t = x(k)

t .
(2) Particle propagation: Using a selected propagation density [22], new particles are generated by

x(i)
t+1 ∼ pt+1

(
xt+1|x̂(i)

t ,m
(i)
t+1

)
,

and the associated costs are updated according to

C(i)
t+1 = λĈ(i)

t + �C
(
x(i)
t+1|yt+1

)
.

As a result, we obtain the updated representation of the particle filter,

Ξt+1 = {
x(i)
t+1,C

(i)
t+1,m

(i)
t+1

}M

i=1.

(3) Estimation: One possibility to obtain an estimate of the state is by assigning a pmf π
(i)
t+1, i = 1,2, . . . ,M , to the

particles in Ξt+1. This pmf can be constructed analogously as π̂
(i)
t+1 in step (1), substituting the risks by costs.

Using this pmf, useful estimates of the state based on the mean value can be calculated according to

xmean
t+1 =

M∑
i=1

π
(i)
t+1x(i)

t+1. (5)

Other alternatives for estimation include obtaining estimates based on the model that has maximum “posterior
probability,” assigning estimates based on each of the three models together with the posterior probabilities of the
models, or applying methods that do not require pmf calculation [22,24].

The multiple model CRPF algorithm is outlined in Table 1. The initialization and update of distribution parameters
for particle generation have been previously addressed in [22].

4. Review of the IMM-EKF and the multiple model SPF methods

For comparison and benchmarking purposes, we have also considered the IMM algorithm based on the use of the
well known EKF and the algorithm known as auxiliary SPF [8]. The latter has an algorithmic structure (resampling,
importance sampling and state estimation) very similar to the CRPF family.
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Table 1
The multiple model CRPF algorithm

Initialization
For i = 1, . . . ,M , initialize:

The particle x(i)
0 ∼ U(Ix0 )

The cost C(i)
0 = 0

The parameters for the proposal function, pt+1(·)
Recursive update
For t = 1 to T

(1) Selection or resampling (for i = 1, . . . ,M)
Compute:

R(i,mt+1)

t+1 = λC(i)
t + ∥∥yt+1 − h

(
x̄
(i,mt+1)

t+1

)∥∥q
, mt+1 = 1,2,3,

where x̄
(i,mt+1)

t+1 is a predicted state based on the model mt+1

π̂
(i,mt+1)

t+1 ∝ μ
(
R(i,mt+1)

t+1

) = 1

(R(i,mt+1)

t+1 −mini {R
(i,mt+1)

t+1 }+δ)β

Resample to obtain Ξ̂t+1 = {
x̂(i)
t , Ĉ(i)

t ,m
(i)
t+1

}M
i=1

(2) Particle propagation (for i = 1, . . . ,M)

Draw x(i)
t+1 ∼ pt+1

(
xt+1|x̂(i)

t ,m
(i)
t+1

)
If t > 10, update parameters for the proposal function, pt+1(·)
Calculate C(i)

t+1 = λĈ(i)
t + ∥∥yt+1 − h

(
x(i)
t+1

)∥∥q

(3) Estimation
Compute:

π̃
(i)
t = μ

(
C(i)
t

) = 1
(C(i)

t −mini {C(i)
t }+δ)β

(for i = 1, . . . ,M)

π
(i)
t = π̃

(i)
t∑M

j=1 π̃
(j)
t

(for i = 1, . . . ,M)

xmean
t+1 = ∑M

i=1 π
(i)
t+1x(i)

t+1

4.1. The IMM-EKF method

The EKF is a suboptimal estimation method suitable for systems with nonlinearities [1]. It proceeds by continually
updating a linearization around the previous state estimate and by approximating the state densities by Gaussian
densities. For the maneuvering target tracking problem described in Section 2, the EKF is combined with the IMM
scheme in order to deal with several models in the system [25]. Therefore, three EKFs, one per model, are implemented
in parallel. As a result, a mixture density is obtained and approximated by a single Gaussian which matches the first
and second moments.

The IMM algorithm is summarized in Table 2 and each of its cycles consists of the following steps [1]:

(1) Calculation of mixing probabilities: Given that model j is in effect at time instant t and conditioned on the
observations up to time instant t − 1, y1:t−1, the probability μi|j (t − 1|t − 1), i = 1,2,3, that the ith model was
in effect at time instant t − 1 is calculated.

(2) Combination of mixing probabilities: Given the outputs of the EKFs at time instant t − 1, x̂i
t−1|t−1, i = 1,2,3, the

mixed initial condition for the filter match to model j , x̂0j

t−1|t−1, and the corresponding covariance, P0j

t−1|t−1, are
obtained.

(3) Model-matched filtering: The estimates in step (2) are used as inputs to the filter matched to model j , which
calculates the output x̂j

t |t and updates the covariance matrix Pj
t |t using the observation yt .

(4) Update of model probabilities: The j th model probability at time t , μj (t), is updated using the likelihood of the
j th filter.

(5) Estimation: The model-conditioned estimates, x̂j
t |t , j = 1,2,3, are combined to get a state estimate.
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Table 2
The IMM-EKF algorithm

Initialization
For j = 1,2,3 (each model), initialize:

The estimate x̂j
0|0 = E

[
x0

]
The covariance matrix Pj

0|0 = E
[
(x0 − E[x0])(x0 − E[x0])H ]

The model probability μ1(0) = p(1), μ2(0) = p(2), μ3(0) = p(3)

Recursive update
For t = 1 to T

(1) Calculation of mixing probabilities (for i, j = 1,2,3)
Compute μi|j (t − 1|t − 1) = 1

c̄j
hijμi(t − 1), with c̄j = ∑3

i=1 hij μi(t − 1)

(2) Combination of mixing probabilities (for j = 1,2,3)
Calculate:

x̂0j
t−1|t−1 = ∑3

i=1 x̂i
t−1|t−1μi|j (t − 1|t − 1)

ε
ij
t−1|t−1 = x̂i

t−1|t−1 − x̂0j
t−1|t−1

P0j
t−1|t−1 = ∑3

i=1 μi|j (t − 1|t − 1) × (
Pi

t−1|t−1 + ε
ij
t−1|t−1ε

ij,�
t−1|t−1

)
(3) Model-matched filtering (for j = 1,2,3)

Use x̂0j
t−1|t−1 and P0j

t−1|t−1 as input to EKFj

Estimate x̂j
t |t and Pj

t |t
Obtain the likelihood Λj (t) = p

(
yt |j, x̂0j

t−1|t−1,P0j
t−1|t−1

)
(4) Update of model probabilities (for j = 1,2,3)

Compute μj (t) = 1
c Λj (t)c̄j , with c = ∑3

j=1 Λj (t)c̄j

(5) Estimation

Obtain x̂t |t = ∑3
j=1 x̂j

t |t μj (t)

4.2. The multiple model auxiliary SPF method

The SPF uses samples and associated weights to approximate the posterior distribution of the estimated states.
Unlike the CRPF, samples/weights are generated/updated based on the available probabilistic knowledge of the system
of interest. For the multiple model case, the particle set is given by [9]

Υt = {
x(i)
t ,w

(i)
t ,m

(i)
t

}M

i=1,

where w
(i)
t denotes the ith weight. We focus on the auxiliary SPF [26, Chapter 23], which has an analogous basic

structure as the original CRPF [22]. Although several strategies can be applied to cope with the multiple models in
the maneuvering target tracking problem [9,20], we adopt the same scheme as the one described for the CRPF in
Section 3. The resulting multiple model auxiliary SPF implementation is an extension of the auxiliary SPF algorithm,
which uses the prior density as the proposal function and proceeds, at time instant t + 1, as follows:

(1) Resampling: Using the particles from the previous time instant, {x(i)
t }Mi=1, and the three possible models, 3M

particles are proposed. Resampling is carried using a multinomial distribution obtained from the weights

w̃
(i,mt+1)

t+1 = w
(i)
t p

(
mt+1|m(i)

t

)
p
(
yt+1|x̄(i,mt+1)

t+1

)
, mt+1 = 1,2,3,

where p(yt |x̄(i,mt+1)

t+1 ) is obtained by first predicting a new state according to the model mt+1, x̄(i,mt+1)

t+1 , and then
obtaining the likelihood. M new particles are sampled out of the 3M proposed particles to obtain the transitional
filter

Υ̂t+1 = {
x̂(i)
t , ŵ

(i)
t ,m

(i)
t+1

}M

i=1.

(2) Particle propagation: It is carried out using the state transition distribution and the model sample, i.e.,

x(i) ∼ p
(
xt+1|x̂(i)

t ,m
(i) )

.
t+1 t+1
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Table 3
Multiple model auxiliary SPF algorithm

Initialization
For i = 1, . . . ,M , initialize:

The model m
(i)
0 ∼ p(m0)

The particle x(i)
0 ∼ p(x0)

The weight w
(i)
0 = 1

M

Recursive update
For t = 1 to T , for i = 1, . . . ,M

(1) Resampling (for i = 1, . . . ,M)

Calculate w̃
(i,mt+1)

t+1 = w
(i)
t p

(
mt+1|m(i)

t

)
p
(
yt+1|x̄(i,mt+1)

t+1

)
, mt+1 = 1,2,3,

where x̄
(i,mt+1)

t+1 is a prediction of the state based on the model

Resample to obtain Υ̂t+1 = {
x̂(i)
t , ŵ

(i)
t ,m

(i)
t+1

}M
i=1

(2) Particle propagation (for i = 1, . . . ,M)
Obtain:

x(i)
t+1 ∼ p

(
xt+1|x̂(i)

t ,m
(i)
t+1

)
w̃

(i)
t+1 ∝ p(yt+1|x(i)

t+1)

p(yt+1|x̂(i)
t )

w
(i)
t+1 = w̃

(i)
t+1∑M

j=1 w̃
(j)
t+1

(3) Estimation

Compute xmean
t+1 = ∑M

i=1 w
(i)
t+1x(i)

t+1

The number of particles must be large enough to ensure an adequate representation of the posterior density. Once
the particles are propagated, weights are calculated and normalized [21].

(3) Estimation: The procedure is completely analogous as that of the CRPF. The mean square estimate of the state,
xmean
t+1 , is calculated using the particles and their weights.

A summary of this algorithm is provided in Table 3.
It is well known that particle filtering is a computationally expensive methodology. The SPF and CRPF algorithms

have approximately the same computational complexity whereas the Kalman filtering based methods are much less
demanding. Also, the more particles we use for tracking with particle filtering, the slower the processing of the data is.
However, particle filtering can be implemented in parallel and savings in computing times of the order of magnitude
can be achieved [27].

5. Computer simulations

In this section, we present computer simulations that illustrate the performance of the various tracking algorithms
described in the previous sections. We compared the following methods:

(1) the IMM-EKF (labeled in the figures as IMM-EKF);
(2) the multiple model auxiliary SPF with correct knowledge of noise distributions (labeled MM-SPF);
(3) the multiple model auxiliary SPF with mismatched information about the observation noise distribution (labeled

MM-SPFM);
(4) the CRPF with parameters q = 1 and λ = 0.95 (labeled CRPF);
(5) the CRPF with parameters q = 1 and λ = 0 (labeled CRPF0);
(6) the CRPF with parameters q = 2 and λ = 0.95 (labeled CRPF2);
(7) the CRPF with parameters q = 2 and λ = 0 (labeled CRPF20).

For all the particle filters, the number of particles was initially set to M = 500. The CRPF with λ = 0 is of special
interest since it has been proven to be equivalent to the multiple model auxiliary SPF [20,24].
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5.1. Fixed trajectory

In the first experiment we studied the performance of the algorithms over a single fixed trajectory. We considered a
scenario where the target started from an initial position close to (0,0), and with an initial constant velocity of 55 m/s.
It moved for 5 min and measurements were made with a sampling time of Ts = 5 s. The magnitude of the velocity
was constrained within the interval (50,60) m/s for the whole motion course. The maneuvering model variable, at ,
switched among three discrete values {0,5,−5}. The model, mt , was changing according to the Markovian transition
probability matrix,

H =
(0.70 0.15 0.15

0.20 0.70 0.10
0.20 0.10 0.70

)
,

and the state noises were modeled as zero-mean white Gaussian processes,

ut ∼ N
(
0, σ 2

u I2
)
, uω,t ∼ N

(
0, σ 2

uω

)
,

where σ 2
u = 10−2 and σ 2

uω
= 10−4 were the respective variances and I2 represents the 2 × 2 identity matrix [7,

Chapter 6].
Measurements were collected at the reference point, following Eq. (2) with P0 = 1. The observation noise was

modeled as a mixture Gaussian distribution,

vt ∼ 0.7N (0,4 · I2) + 0.3N (0,25 · I2).

The selected target trajectory and the reference point are shown in Fig. 1.
Figure 2 shows the system trajectory in a single run and the estimates corresponding to the algorithms. For clar-

ity in the presentation, we plotted the results of the four CRPF methods on the left, and the results for one of the
CRPF algorithms and the rest of the algorithms on the right. It can be seen that all the CRPF algorithms and the
multiple model auxiliary SPF method with perfect knowledge of the distributions of the noises performed similarly
and remained locked to the true trajectory of the target during the whole tracking interval. However, the IMM-EKF,
which had to use a Gaussian assumption for the observation noise and considered vt ∼ N (0, I2), and the multiple
model auxiliary SPF, which also used that same wrong Gaussian assumption, were not able to track properly. Note
that the CRPF algorithms were assuming the same distribution as the IMM-EKF for propagation of particles and this
choice did not affect their performance. Therefore the CRPF algorithms, which do not rely on any prior probabilistic
information, showed a more robust performance.

We also compared the algorithms by means of the root-mean-square (RMS) error of the position and the percentage
of track loss. Let pt = [x1,t x2,t ]� denote the true position of the target at time instant t , and p̂t = [x̂1,t x̂2,t ]� be the

Fig. 1. Target trajectory and the reference location.
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Fig. 2. Trajectory estimates. Left: Different CRPF algorithms. Right: Comparison of the CRPF method with the rest of the methods.

Fig. 3. Left: RMS error of the position. Right: Percentage of track loss for various values of γ .

corresponding estimate obtained by a particular filter. The RMS error at time instant t was calculated by averaging
over N = 500 independent simulation trials,

RMSt =
√√√√ 1

N

N∑
i=1

[
(x̂1,t,i − x1,t,i )2 + (x̂2,t,i − x2,t,i )2

]
,

where the subscript i denoted the trial number. For a particular simulation run, a track loss was confirmed when the
position error, et = √

(x̂1,t − x1,t )2 + (x̂2,t − x2,t )2, exceeded a threshold γ within at least 10 consecutive sampling
periods. The percentage was obtained by averaging over N independent runs. Figure 3 depicts the results. Again the
IMM-EKF and the multiple model auxiliary SPF with incorrect noise distributions showed much worse performance
than the other filters.

5.2. Effect of the reference point location

In the next experiment, we moved the reference point away from the trajectory area from (−2741,−2161) to
(−6000,−5000). This is equivalent to reducing the signal-to-noise ratio (SNR). To combat the low SNR, we increased
the number of particles for the particle filtering algorithms, and we set it to M = 1000. The results are shown in Fig. 4.
We can draw similar conclusions as from the previous experiment.
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Fig. 4. Effect of location of reference point. Top: Trajectory estimates. Bottom: RMS error of the position and percentage of track loss for various
values of γ .

5.3. Effect of the sampling period

We also checked the sensitivity of the algorithms to variations in the sampling period, Ts . Using the same parame-
ters as in the first experiment, we set Ts = 10 s. The results for the RMS error of the position and percentage of track
loss are shown in Fig. 5. It can be seen that the RMS error increased for all the methods. The IMM-EKF performed the
worst. A possible reason is that the maneuver onset and/or offset instant could be missed, and the statistical relation
between adjacent samples was weakened.

5.4. Effect of the incomplete information

The performance of the multiple model auxiliary SPF strongly depends on the availability of correct model in-
formation, which includes noise distributions, model switching probabilities, and model parameters. We previously
showed that the performance of this algorithm severely deteriorated when incorrect information about the noise dis-
tributions was used. In another set of experiments we tested the robustness of the considered algorithms with respect
to the model transition probabilities and the models’ parameters.

First, we considered the following model switching probability matrices:

H1 =
(0.4 0.3 0.3

0.3 0.4 0.3

)
, H2 =

(0.2 0.4 0.4
0.4 0.2 0.4

)
.

0.3 0.3 0.4 0.4 0.4 0.2
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Fig. 5. Effect of the sampling interval. Left: RMS error of the position. Right: Percentage of track loss for various values of γ .

Fig. 6. Effect of availability of switching probability matrices. Left: RMS error of the position. Right: Percentage of track loss for various values
of γ .

The trajectory was generated by using the matrix H in Section 5.1 but the algorithms assumed the previous matrices
for calculation of the likelihoods. Figure 6 shows the results. We can see that the performance of the multiple model
auxiliary SPF became worse in the absence of such information.

We next supposed that the typical maneuvering model value was unknown, and we analyzed the performance
of the algorithms by considering two sets of possible values for the acceleration variable, at ∈ A1 = {0,3,−3} and
at ∈ A2 = {0,7,−7} instead of {−5,0,5}. Figure 7 shows the results. Again, it is clear that the CRPF is more robust
when this information is not available.

5.5. Different trajectories

We applied the considered algorithms on 500 randomly generated trajectories. The results shown in Fig. 8 are
similar to the previous experiments.

6. Conclusions

In this paper, we have discussed and compared the application of different techniques to the problem of tracking
a maneuvering target in the two-dimensional space. We have focused on the cost-reference particle filtering (CRPF)
methodology, which does not use probabilistic assumptions required by standard particle filtering (SPF), leading to
a more robust performance. The multiple model problem is solved by a deterministic model proposal process that
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Fig. 7. Effect of availability of model value. Left: RMS error of the position. Right: Percentage of track loss for various values of γ .

Fig. 8. Different trajectories. Left: RMS error of the position. Right: Percentage of track loss for various values of γ .

allows for exploring the different regimes of movement in each step of the algorithm. We have compared the resulting
algorithm with the extended Kalman filter (EKF) and the multiple model auxiliary SPF method. The advantages and
disadvantages of the considered algorithms were illustrated and discussed through computer simulations.

Future work includes the study of different cost functions and their relevance to attain better performance and the
extension of the algorithms to deal with the problem of tracking of multiple targets.
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[20] M.F. Bugallo, S. Xu, P.M. Djurić, Comparison of EKF- and PF-based methods in tracking maneuvering targets, in: Proceedings of the

Aerospace Conference 2006, Big Sky, MT, 2006.
[21] A. Doucet, N. Gordon, V. Krishnamurthy, Particle filters for state estimation of jump Markov linear systems, IEEE Trans. Signal Process. 49 (3)

(2001) 613–624.
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[24] M.F. Bugallo, J. Míguez, P.M. Djurić, Positioning by cost reference particle filters: Study of various implementations, in: Proceedings of the

2005 International Conference on “Computer as a Tool” (EUROCON), Belgrade, Serbia and Montenegro, 2005.
[25] X.R. Li, Y. Bar-Shalom, Design of an interacting multiple model algorithm for air traffic control tracking, IEEE Trans. Control Syst. 1 (3)

(1993) 186–194.
[26] A. Doucet, N. de Freitas, N.J. Gordon (Eds.), Sequential Monte Carlo Methods in Practice, Springer, 2001.
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