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Abstract In this paper we propose fusion methods for
tracking a single target in a sensor network. The sensors
use sequential Monte Carlo (SMC) techniques to process the
received measurements and obtain random measures of the
unknown states. We apply standard particle filtering (SPF)
and cost-reference particle filtering (CRPF) methods. For
both types of filtering, the random measures contain parti-
cles drawn from the state space. Associated to the particles,
the SPF has weights representing probability masses, while
the CRPF has user-defined costs measuring the quality of the
particles. Summaries of the random measures are sent to the
fusion center which combines them into a global summary.
Similarly, the fusion center may send a global summary to the
individual sensors that use it for improved tracking. Through
extensive simulations and comparisons with other methods,
we study the performance of the proposed algorithms.
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1 Introduction

Multisensor data fusion refers to the processing and syner-
gistic combination of data from different sensors to provide
improved accuracy and reduced uncertainty about events of
interest [1,2]. Fusion of data from multiple sensors improves
the robustness and reliability of the system and has a wide
range of application including military, geosciences, robot-
ics, statistical sciences, manufacturing and medicine [2]. In
this paper we study the problem of target tracking by fusion
of information in a sensor network framework as shown in
Fig. 1. There each sensor applies a sequential Monte Car-
lo (SMC) method to obtain a random measure of the target
state. The obtained information is transmitted to the fusion
center (FC), which combines the received data and provides
an estimate of the target state. Clearly, a better performance
could be obtained by transmitting to the FC all the measure-
ments received by the sensors without any processing and
running the SMC method at the FC. However, the transmis-
sion of all these measurements is often not practical, and
therefore we consider local processing at the sensors. More-
over, we assume that the fusion processing occurs periodi-
cally or by request of the FC. A challenge associated to the
proposed scheme comes from the fact that the local SMC
methods produce random measures represented by large sets
of samples and weights/costs. The transmission of the com-
plete measures is therefore prohibitive. We propose solutions
that summarize the random measures and allow for reduced
overall communication load.

The problem of target tracking is usually represented by
using a discrete-time state space (DSS) model. In scenarios
where the noise processes in the DSS are linear and Gauss-
ian, the Kalman filter can be used by the sensors for obtaining
local estimates of the target state [3,4]. Linear combination
schemes have been proposed in this context to combine local
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Fig. 1 Pictorial representation of the considered sensor network
framework

sensor estimates [5,6]. When assumptions of linearity and
Gaussianity do not hold, linearization methods and exten-
sions of the Kalman filters (e.g. EKF) have to be considered.
However, these approximations lead to poor estimates, diver-
gence, and large uncertainty.

During the past decade, a class of SMC algorithms known
as particle filtering and referred to in this paper as standard
particle filtering (SPF), have been exhaustively studied [7].
SPF has shown very good performance for non-linear and
non-Gaussian DSS models. This methodology represents the
unknown states by evolving random measures which are
composed of particles that represent the possible values of
the states and weights associated to the particles that express
probability masses. In order to achieve an acceptable perfor-
mance, SPF requires knowledge about the distributions of
the noise processes.

Recently, another type of SMC methods, known as cost-
reference particle filtering (CRPF), has been proposed [8].
CRPF deals with situations where the noise distributions are
not known. These methods are also based on evolving random
measures composed of particles and associated costs.

Fusion of SPF-processed sensor data in the context of tar-
get tracking has been previously addressed, whereas fusion
of CRPF-processed data has not. In [9], the authors propose
two methods for the fusion of SPF-processed data. There
the fusion rule for obtaining the joint random measure is
obtained as a product of the individual clique’s random mea-
sures which is not an optimal fusion rule. In our paper, we
utilize optimal rules for fusion of random measures. In [10],
two distributed particle filters for fusion of random measures
are presented. The first one, closer in spirit to this paper,
is based on factorization of likelihood terms and relies on
assumptions such as sensor nodes maintaining same parti-
cles and random number seeds. We do not utilize any such
assumptions in our methods. A decentralized sensor fusion
framework with an information theoretic approach for sen-
sors to collect measurements is adopted in [11]. The sensors’

belief measure is approximated by a small subset of randomly
chosen particles for transmission to neighboring nodes. Also,
the formulated fusion expressions require the transmission of
“belief" particles of past states. These requirements can be
quite prohibitive even when the chosen subset of particles is
small. In contrast, our methods have lower communication
and power requirements. Finally, compression of the random
measures using support vector machine methods is proposed
and studied in [12].

The main contributions of this paper are:

1. Distributed algorithms with low communication and
power requirements for fusion of SPF and CRPF-
processed data are proposed. These methods are generic
and can be easily adapted to various sensor network
architectures. Previously proposed fusion methods either
have large communication requirements or are applied to
specific architectures.

2. We show the feasibility of our methods for target tracking
with and without feedback from the FC. To the best of
our knowledge previously proposed methods for fusion
of random measures do not consider any feedback.

3. We provide simulation studies of target tracking in flat
and hierarchical sensor networks with fusion of random
measures.

The organization of the paper is as follows. In Sect. 2, we
state the problem of data fusion for target tracking in a sensor
network. In Sect. 3, we briefly describe the SPF and CRPF
methods used to locally process the sensor measurements.
Sect. 4 provides the theory for fusion of information when
the complete posterior probability distributions of the sen-
sors is known at the FC. In Sect. 5, we describe our proposed
method for presenting the summaries of the random mea-
sures of the sensors to the FC. In Sect. 6 we show the validity
of our approach through computer simulations. We consider
two examples: tracking using bearings only measurements
and tracking in a hierarchical sensor network. We conclude
the paper with Sect. 7.

2 Problem statement

The DSS model describing the considered system is given
by1

xt = f (xt−1) + γ (ut ) (1)

yn
t = hn(xt ) + vn

t , (2)

where xt represents the time-varying unobservable target
state, yn

t the information sensed by the nth sensor, ut is a

1 Our methods can also handle models of the form xt =
f (xt−1, ut ), yt = h(xt , vt ).
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driving state noise process, vn
t is a measurement noise pro-

cess, f (·) is a function describing the evolution of the state,
γ (·) is a deterministic function of ut , and hn(·) is a func-
tion transforming the state to a “signal” in the measurement
space [3].

The target state is obtained using a standard model of con-
stant velocity [4] according to

xt = Fx xt−1 + �u ut (3)

where xt = [x1,t , x2,t , ẋ1,t , ẋ2,t ]� ∈ R
4 comprises the tar-

get position and velocity in the two-dimensional space, and
ut is the random noise vector. Denoting by I2 and 02 the
2 × 2 identity and zero matrices, the transition matrices are
given by

Fx =
(

I2 TsI2

02 I2

)
and �u =

(
T 2

s
2 I2

TsI2

)

with Ts being the sampling period. The sensor measurement
signals yn

t are typically non-linear functions of the target
dynamics. We denote by x0:t the target dynamics from time
instant 0 to time instant t , and by yn

1:t the data observed by
the nth sensor up to time instant t .

When the distribution of the noise processes are known,
each sensor using a SPF method approximates p(x0:t |yn

1:t )
by a random measure χn

t ={x(m),n
0:t , w

(m),n
t }M

m=1, where x(m),n
0:t

are particles of the random measure, w
(m),n
t are the weights

associated to the particles, and M denotes the number of
particles. When the distribution of the noise processes are
unknown, each sensor using CRPF methods obtains a ran-
dom measure of the state x0:t , which is represented by ζ n

t =
{x(m),n

0:t , c(m),n
t }M

m=1, where c(m),n
t denotes the costs assigned

to the particles. The objective of the proposed fusion meth-
ods is to obtain the joint random measures χt or ζt from the
individual sensor random measures χn

t or ζ n
t , n = 1, . . . , N ,

and from them obtain estimates of the unknown state xt .

3 SMC methods

In this section we describe the SMC methods that take place
at each of the sensors. For simplicity in the notation we drop
the superscript n.

3.1 Standard particle filtering (SPF)

SPF methods allow for recursive approximation of the pos-
terior density of the unknown state by p(x0:t ,|y1:t ) ≈ ∑M

m=1

δ
(

x0:t − x(m)
0:t

)
w

(m)
t , where δ(·) denotes the Dirac delta

function [7]. At time instant t , the algorithm updates the
random measure χt−1 = {x(m)

0:t−1, w
(m)
t−1}M

m=1 to χt = {x(m)
0:t ,

w
(m)
t }M

m=1 by three main steps:

1. Particle generation: New particles are drawn from a pro-
posal distribution function π(·) i.e., x(m)

t ∼ π(xt |x(m)
t−1,

y1:t ).
2. Weight update: Upon reception of the measurement yt ,

the weights are updated as

w̃
(m)
t = w

(m)
t−1

p(yt |x(m)
0:t , y1:t−1)p(x(m)

t |x(m)
t−1)

π(x(m)
t |x(m)

t−1, y1:t )

and normalized such that
∑M

m=1 w
(m)
t = 1.

3. Resampling: With progress in time all but a few parti-
cles have negligible weights which may cause the fil-
ter to degenerate and diverge. Therefore, to counteract
such situations particles with larger weights are propor-
tionately replicated. This process is called resampling
and it is a necessary step in the implementation of SPF
methods [7].

3.2 Cost-reference particle filtering (CRPF)

In SPF schemes, the generation of particles and calculation
of their weights requires the knowledge of the noise dis-
tributions in the DSS model. By contrast, the CRPF does
not require assumptions about the noise distributions in the
model; however, the first moments of the distributions are
assumed known [8]. The random measures are constructed
by applying user-defined costs. If the random measure at time

instant t −1 is ζt−1 =
{

x(m)
0:t−1, c(m)

t−1

}M

m=1
, where c(m)

t−1 are the

costs assigned to the particles x(m)
t−1, then upon the reception of

the measurement yt , ζt−1 is updated to ζt =
{

x(m)
0:t , c(m)

t

}M

m=1
following the SPF structure and the principle of survival of
the fittest. The main steps of this scheme are:

1. Selection of the most promising paths: This step resem-
bles the resampling procedure in SPF schemes. The most
promising paths are selected using risk functions defined
as r (m)

t = λc(m)
t−1 + �r(x(m)

t−1|yt ) where

�r(x(m)
t−1|yt ) =

∣∣∣∣∣∣yt − h
(

f (x(m)
t−1)

)∣∣∣∣∣∣q
, (4)

with λ being a forgetting factor to avoid attributing exces-
sive importance to the past, q > 0 and || · || denoting
norm of a vector. These risk functions measure the ade-
quacy of the particles at time instant t − 1 given the
new measurement yt [8]. For resampling, a probabil-
ity mass function (pmf), π̂

(m)
r,t , is created to allow for

assignment of weights to each particle, π̂ (m)
r,t ∝ µr (r

(m)
t ),

where µr : R → [0,+∞) is a monotonically decreasing
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function.2 A simple formulation of this pmf is given
by

µr

(
r (m)

t

)
∝ 1

r (m)
t

(5)

which is modified into a proper pmf through normal-
ization. Following resampling, a new stream ζ̂t−1 ={

x̂(m)
0:t−1, ĉ(m)

t−1

}M

m=1
is obtained.

2. Particle generation: New particles are proposed using a
proposal density, pt (xt |x̂(m)

t−1). In [8], the authors approx-

imate pt (xt |x̂(m)
t−1) as a Gaussian kernel with statistics

E(xt ) = f (x̂(m)
t−1), and Cov(xt ) = σ

2,(m)
t Id ,

where d is the dimension of the state and the variance
σ

2,(m)
t is recursively updated as

t ≤ τ0 σ
2,(m)
t = σ

2,(m)
t−1 ,

t > τ0 σ
2,(m)
t = t − 1

t
σ

2,(m)
t−1 +

∥∥∥x(m)
t − f (x̂(m)

t−1)

∥∥∥2

td
,

with τ0 being the time instant until which the filter obtains
adequate measurements for learning the statistics of the
state process.

3. Costs update: Costs measure the quality of the estimated
state and are recursively updated as

c(m)
t = λc(m)

t−1 + 	c(x(m)
t |yt ). (6)

A possible choice of the incremental cost function is

	c(xt |yt ) = ||yt − h(xt )| |q . (7)

Depending upon system requirements such as robust-
ness, other cost functions such as the Huber loss function
or the fair function can be incorporated [13].

4. State estimation: A simple estimation scheme consists
of choosing the particle with the minimum cost as the
state estimate. Alternatively, one can construct another
artificial pmf π̃

(m)
c,t ∝ µc(c

(m)
t ), m = 1, . . . , M , and

obtain estimates such as the weighted mean of the parti-
cles.

2 High risks indicate poor predictions of the state and lower risks indi-
cate good predictions of the state.

4 Fusion with and without feedback

In this section we describe the theoretical expressions for
fusion of probability distributions in two scenarios.3 In the
first, the global probability distribution (GPD) obtained by
fusion of the individual probability distributions (IPDs) from
the sensors is not reported back to the sensors, and in the sec-
ond, the FC broadcasts the GPD back to the sensors, which is
then used for improved tracking. These scenarios are depicted
in Fig. 1. The strategy with feedback is particularly advanta-
geous in situations when some of the filters start diverging.

4.1 Fusion without feedback

For the sake of simplicity let us consider fusion of densi-
ties from two sensors. The obtained result can readily be
generalized to an arbitrary number of sensors. The GPD,
p(x0:t |y1

1:t , y2
1:t ), can be written as

p(x0:t |y1
1:t , y2

1:t ) = p(x0:t |y1
t , y2

t , y1
1:t−1, y2

1:t−1)

∝ p(y1
t , y2

t |xt , x0:t−1, y1
1:t−1, y2

1:t−1)

×p(xt |x0:t−1, y1
1:t−1, y2

1:t−1)

× p(x0:t−1|y1
1:t−1, y2

1:t−1). (8)

Assuming independence among the sensor measurements
{y1

t , y2
t } conditioned on xt , we have

p(y1
t , y2

t |xt , x0:t−1, y1
1:t−1, y2

1:t−1)= p(y1
t |xt , x0:t−1, y1

1:t−1)

×p(y2
t |xt , x0:t−1, y2

1:t−1).

We know that

p(xt |yn
1:t ) = g−1(yt )p(xt |yn

1:t−1)p(yn
t |xt , x0:t−1, yn

1:t−1)

where g(yt ) represents the normalization terms not involving
xt . Therefore

p(yn
t |xt , x0:t−1, yn

1:t−1) = g(yt )
p(xt |yn

1:t )
p(xt |yn

1:t−1)
. (9)

From (8) and (9) we get

p(x0:t |y1
1:t , y2

1:t ) ∝ p(xt |y1
1:t )

p(xt |y1
1:t−1)

p(xt |y2
1:t )

p(xt |y2
1:t−1)

p(xt |xt−1)

× p(x0:t−1|y1
1:t−1, y2

1:t−1). (10)

Note that the distributions p(xt |xt−1) and p(x0:t−1|y1
1:t−1,

y2
1:t−1) are known to the FC. The former is obtained from

the state equation and the latter is the GPD at time instant
t − 1. The two sensors transmit to the FC information about
p(xt |y1

1:t ) and p(xt |y2
1:t ), whereas p(xt |yn

1:t−1), n = 1, 2, can

3 Note that this is a theoretical study. It is not possible in practice for
the sensors to transmit to the FC the required information. The theory
explained in this section will be applied to obtain practical methods
later.
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in principle be obtained from p(xt−1|yn
1:t−1) and p(xt |xt−1),

which are known at the FC.
Generalizing (10) for N sensors, we have

p(x0:t|y1:N
1:t ) ∝ p(x0:t−1|y1:N

1:t−1) p(xt|xt−1)

×
N∏

n=1

p(xt |yn
1:t )

p(xt |yn
1:t−1)

(11)

which is the optimal recursive fusion equation.

4.2 Fusion with feedback

As before, we first consider fusion of posterior distributions
from two sensors but with combined posterior feedback from
the FC. At time instant t , the FC feeds back to the sensors
the GPD p(x0:t−1|y1

1:t−1, y2
1:t−1). Then the posterior of the

first sensor is formed according to

p(x0:t |y1
1:t , y2

1:t−1) ∝ p(y1
t |xt )

×p(xt |xt−1)p(x0:t−1|y1
1:t−1, y2

1:t−1). (12)

The posterior of the second sensor is obtained analogously.
The FC receives the posteriors p(x0:t |y1

1:t , y2
1:t−1) and

p(x0:t |y1
1:t−1, y2

1:t ) and fuses them by

p(x0:t |y1
1:t , y2

1:t )∝ p(xt |y1
1:t , y2

1:t−1)

p(xt |y1
1:t−1, y2

1:t−1)

p(xt |y1
1:t−1, y2

1:t )
p(xt |y1

1:t−1, y2
1:t−1)

×p(xt |xt−1)p(x0:t−1|y1
1:t−1, y2

1:t−1).

(13)

This expression was derived along the same lines of reason-
ing as (10).

When we generalize (13) for N sensors, the fusion rule
becomes

p(x0:t |y1:N
1:t ) ∝ p(x0:t−1|y1:N

1:t−1)p(xt |xt−1)

×
N∏

n=1

p(xt |y1
1:t−1, · · · yn

1:t · · · yN
1:t−1)

p(xt |y1
1:t−1, · · · yn

1:t−1 · · · yN
1:t−1)

.

(14)

5 Fusion by using random measures

The derived fusion rules from the previous section are of little
practical value. In our case where we use random measures to
represent our knowledge about the evolving state, the situa-
tion is even worse. The transmission of the random measures
would require sending a large number of particle values and
weights/costs. This altogether would be much more demand-
ing in communication resources than the transmission of the
actual measurements to the FC and would beat the whole pur-
pose of using SMC at the sensors. We propose schemes that
alleviate the sending of complete measures and by sending

summaries of the random measures. First we describe strat-
egies for summarizing the random measures constructed by
SPF and then for those of CRPF.

5.1 Fusion of summaries of SPF random measures

In the SPF framework the random measures approximate
distributions. If these distributions are unimodal, we pro-
pose that their random measures are summarized by Gaus-
sians.4 This type of approximation has already been used in
the framework of Gaussian particle filtering [14]. There the
individual posterior and predictive distributions are approx-
imated by Gaussian distributions, i.e.,

p(xt |yn
1:t−1) 
 N (µ̃n

t , �̃
n
t )

p(xt |yn
1:t ) 
 N (µ̂

n
t , �̂

n
t )

p(xt |y1:N
1:t ) 
 N (µt ,�t ).

(15)

With these approximations and from (11) we have

p(xt |y1:N
1:t )∝

N∏
n=1

N (µ̂
n
t , �̂

n
t)

N (µ̃n
t , �̃

n
t )

p(xt |xt−1) p(x0:t−1 |y1:N
1:t−1)

∝ N (µ̂t , �̂t)

N (µ̃t , �̃t)
p(xt |xt−1)p(x0:t−1 |y1:N

1:t−1)

where

�̂
−1
t = �̂

1−1

t + �̂
2−1

t + · · · + �̂
N−1

t

µ̂t = �̂t

(
�̂

1−1

t µ̂
1
t + �̂

2−1

t µ̂
2
t + · · · + �̂

N−1

t µ̂
N
t

)

�̃
−1
t = �̃

1−1

t + �̃
2−1

t + · · · + �̃
N−1

t

µ̃t = �̃t

(
�̃

1−1

t µ̃1
t + �̃

2−1

t µ̃2
t + · · · + �̃

N−1

t µ̃N
t

)
.

(16)

The parameters of the Gaussians can readily be computed
from the SPF random measure. For example, if the approx-
imation of p(xt | yn

1:t ) is given by
∑M

m=1 w
(m),n
t δ(xt −

x(m),n
t ) ≈ N (µn

t ,�n
t ), then

µn
t =

M∑
m=1

w
(m),n
t x(m),n

t

�n
t =

M∑
m=1

w
(m),n
t (x(m),n

t − µn
t )(x(m),n

t − µn
t )�.

(17)

We define transmission length (TL), as the number of real
numbers transmitted to the FC by each sensor. Therefore
with this fusion scheme we have TL = d(d+3)

2 where d is the
dimension of the state.

4 In Appendix A, we provide conditions for the validity of the Gaussian
assumptions.
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When the posterior densities have more than one mode,
their representation by a single Gaussian density can be inac-
curate. In such situations, one possibility is to summarize the
random measure by mixture-Gaussians, i.e.,

p
(
xt |yn

1:t−1

) 

L∑

l=1

π̃t,lN
(
µ̃n

t,l , �̃
n
t,l

)

p
(
xt |yn

1:t
) 


L∑
l=1

π̂t,lN
(
µ̂

n
t,l , �̂

n
t,l

)
, (18)

where L is the number of mixands.
From (11) and (18) we have

p(xt |y1:N
1:t ) ∝

N∏
n=1

∑L
l=1 π̃t,lN (µ̃n

t,l , �̃
n
t,l)∑L

l=1 π̂t,lN (µ̂
n
t,l , �̂

n
t,l)

p(xt |xt−1)

×p(x0:t−1 |y1:N
1:t−1). (19)

Thus the FC obtains the GPD through (19). The parameters
of the mixture Gaussians can be obtained by the expectation-
maximization (EM) algorithm which is an iterative two-step
method [15]. Here, the posterior distribution is approximated
by a Gaussian mixture, therefore as above, the transmission
length, TL = L d(d+3)

2 + L − 1.

5.2 Fusion of summaries of CRPF random measures

Recall that in the CRPF framework, each sensor maintains
a random measure with costs associated to the particles. We
propose that the random measure of the nth sensor, ζ n

t , is
summarized by one of the following approaches:

1. CRPF-Pdf: summary-based on a probability distribution
2. CRPF-Par: summary-based on the best particle.

5.2.1 CRPF-Pdf: Summary based on a probability
distribution function

In this method, the sensors convert the costs of the parti-
cles into probability masses. Once the conversion is accom-
plished, the summarization is carried out in the same way
as described in the previous section. For e.g., one way of
converting the costs is to use

π
(m),n
c,t ∝ 1(

c(m),n
t − min

(
c(m),n

t

)
+ 1

M

)2 . (20)

When there is a feedback, the FC sends back to the sen-
sors the Gaussian constructed from the individual Gaussians.
The sensors use the received Gaussian to generate particles
and assign to each of them zero costs. At each sensor, the
CRPF is then implemented in the usual way until the sensors
receive the next feedback from the FC. Here, too, as in the

SPF method when the posterior is approximated by a single
Gaussian, we have TL = d(d+3)

2 .

5.2.2 CRPF-Par: Summary based on the best particle

This method is the simplest of all. Here each sensor trans-
mits to the FC the particle that has the minimal cost and
the FC computes the mean of all these samples. If the sen-
sors also transmit their minimum costs, the corresponding
“best” estimate can be a weighted estimate. When the sensors
have good estimates and the regions of uncertainty are small,
these methods of fusing single sensor estimates are efficient.
However when the sensors have large regions of uncertainty,
the resulting fused estimate may not be accurate. With this
method, we have a transmission length of TL = d + 1.

Another possibility of using the best particles and their
costs is to convert the costs to a pmf and from it construct a
Gaussian that can be sent back to the sensors as a feedback.

6 Simulations and results

6.1 Bearings only target tracking

In many radar and sonar applications, target tracking is per-
formed using only bearing measurements. Here the sensors
operate in a passive mode and measure the direction of arrival
of the signal emitted by the target. We consider the sensor net-
work shown in Fig. 2 where the three sensors are denoted by
small circles and are placed at positions (−50,−10), (75, 10)

and (80,−50). The bearing measurements of the target rel-
ative to the nth sensor location are mathematically modeled
as

yn
t = arctan

(
x2,t − ln

y

x1,t − ln
x

)
+ vn

t , (21)

where {ln
x , ln

y } are the coordinates of the sensor [16], and vn
t

is zero mean white Gaussian noise with variance σ 2
v .

The initial state x0 of the target was drawn fromN (µ0,�0)

with µ0 = [0, 0, 0.1, 0.0]� and �0 = diag(10, 10, 0.1,

0.1).5 The target’s dynamics were modeled using (3) with
the covariance matrix of the zero mean Gaussian state pro-
cess noise Cu = diag(0.05, 0.02). The target’s trajectory
was simulated for Nt = 100 time instants with a sampling
period Ts = 1 s. The standard deviation of the measurement
noise σv was set to 0.05. In computing the RMSEs of the
unknowns, we used 100 trajectory runs.

In Fig. 2a we show a target trajectory and its estimates
using the proposed SPF method (labeled as SPF-Dist, mean-
ing distributed). For comparison purposes we also included

5 The symbol diag(x) represents a diagonal matrix formed with vector
x as its diagonal elements.

123



SIViP (2007) 1:149–161 155

−60 −40 −20 0 20 40 60 80 100
−140

−120

−100

−80

−60

−40

−20

0

20

40

X Position

Y
 P

os
iti

on

Sensor
Trajectory
SPF−Dist
SPF−Cent

(a)

SPF

−60 −40 −20 0 20 40 60 80 100
−160

−140

−120

−100

−80

−60

−40

−20

0

20

40

X Position

Y
 P

os
iti

on

Sensor
Trajectory
CRPF−Pdf
CRPF−Cent

(b)

CRPF

Fig. 2 The multisensor network and estimates of the target trajectory
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Fig. 3 RMSEs (dB) of the target dynamics by the sensors and FC using SPF without feedback. -o- sensor 1, -*- sensor 2, — sensor 3, – FC
SPF-Dist, -x FC SPF-Cent

the performance of the system where the sensors sent their
measurements to the FC. The FC used the measurements
to run a SPF-based algorithm (labeled as SPF-Cent, mean-
ing centralized). In Fig. 2b, we show analogous results for
the CRPF-Pdf and the centralized CRPF (labeled as CRPF-
Cent) methods operating on the full measurements. We chose
the risk and cost functions outlined in (4) and (7) with q =
2. This method is thus analogous to a least squares fitting
approach where decision on the particles is made using the
residuals.

In Figs. 3 and 4, we plot the RMSEs obtained by the sen-
sors and the FC using SPF methods with and without feed-
back. Each of the sensors maintained a random measure with
M = 1, 000 samples. The SPF methods utilized the prior for
propagation of the particles. In both scenarios, the sensors
transmitted to the FC the summaries of their random mea-
sures at every time instant. In the feedback scenario, the FC

also transmitted to the sensors the global summary which
was used to re-initialize their filters. It can be observed that
with feedback, the RMSEs of each of the individual sensors
is smaller than in situations without any feedback. The over-
all improvement in the RMSEs of the FC estimates, however,
is small.

In Fig. 5a, we plot the RMSEs of the position when the SPF
algorithms approximated the random measure with a single
Gaussian density (GM-1) and with a Gaussian mixture with
two mixands (GM-2). We use the χ2 divergence6 measure
to compare the approximation of the posterior by a Gauss-
ian distribution using SMC and EKF methods. In Fig. 5b,
we plot the χ2 divergence measure due to approximation of
the sampled density with a Gaussian distribution at sensor 1.

6 The definition and computation of this measure are described in
Appendix B.
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Fig. 4 RMSEs of the target dynamics by the sensors and FC using SPF with feedback. -o- sensor 1, -*- sensor 2, — sensor 3, – FC SPF-Dist, -x
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0 20 40 60 80 100
2

3

4

5

6

7

8

9

Time

R
M

S
E

 in
 p

os
iti

on

GM−2
GM−1

(a)

0 20 40 60 80 100
10

−1

10
0

10
1

10
2

Time

χ2

SPF
EKF

Sensor 1

(b)

Fig. 5 (a) Comparison of RMSEs with a single Gaussian approximation and with a Gaussian mixture approximation (b) χ2-Divergence for SPF
and EKF based posterior approximations at sensor 1

Table 1 Bias (m) location estimates of the targets at different times

Time (s) Sen 1 Sen 2 Sen 3 FC

20 –2.83 –0.46 –0.23 0.19

40 –0.77 –2.18 –2.92 –0.47

60 1.61 –5.63 –5.04 –0.49

80 2.70 –8.23 –4.22 –0.07

100 5.94 –7.16 –0.12 0.81

Clearly the performance of the SPF-based approximation is
better than the Gaussian approximation with the EKF by an
order of magnitude. The plots are similar for the approxima-
tions made at other sensors. In Fig. 6, we plot the mean error
and the 3σ confidence interval depicting the spread in error
in estimating the target dynamics at the FC. We summarize
the results in Tables 1 and 2.

Table 2 Standard deviation (m) of location estimates of the targets at
different times

Time (s) Sen 1 Sen 2 Sen 3 FC

20 10.96 11.40 10.61 3.62

40 19.83 24.17 22.53 2.68

60 32.76 31.03 30.99 2.60

80 40.82 43.12 35.80 2.99

100 50.86 50.61 43.28 7.03

Clearly we can see through these plots that the spreads
in errors are similar for the SPF-based summary approach
and the SPF method with complete measurements. How-
ever the EKF exhibits divergence as can be seen from the
high spread of errors. The results in the table show that
the errors increase with time, which is due to the target
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Fig. 6 Spread of errors in estimating the state at the FC
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Fig. 7 Comparison of RMSEs with centralized and proposed SPF and CRPF methods

leaving the sensor field. We also use the cumulative distri-
bution function (cdf) of the total RMSE accumulated over
time as our metric for analyzing the performance of the

proposed and the centralized algorithms. It can be seen from
Fig. 7a that there is a small loss of performance with the
proposed method over the centralized methods. We also plot
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Fig. 8 (a) A hierarchical sensor network (b) RMSEs of the target position by using SPF and CRPF for various κ

in Fig. 7b the cdf of the RMSEs obtained using the CRPF
methods. The performance of the CRPF-Pdf method is com-
parable with that of the SPF-Dist method which makes full
assumptions of the noise processes. Moreover, the perfor-
mance of the proposed CRPF-Dist method is very similar to
the CRPF-Cent. We also simulated the case when the SPF
methods make wrong assumptions about the noise process.
In Fig. 7b, the filter associated with the SPF-False method
assumed Cu = diag(0.005, 0.002) and σv = 0.01. With a
single Gaussian approximation we have, the probability P
that the RMSE in position is less than or equal to 10m, i.e.,
P(RMSEpos ≤ 10m) = 0.96 while with a Gaussian mixture
(L = 2), P(RMSEpos ≤ 10m)) ≈ 1.0; and with CRPF-Pdf,
P(RMSEpos ≤ 10m) = 0.86. However when the probability
distributions of the noise processes are unknown, for the SPF
with incorrect noise statistics, P(RMSEpos ≤ 10m) = 0.57.
Clearly the performance of the SPF method under wrong
noise assumptions is poor, motivating the use of other meth-
ods which make less assumptions of the noise processes when
their distributions are unknown.

6.2 Target tracking in a hierarchical sensor network

An important application of data fusion is target tracking
in hierarchical sensor networks (HSN), where sensors form
clusters and transmit their measurements to a specialized
node known as a leader node (LN). This LN is a specialized
node which has greater computational and communication
capabilities than the sensors. Upon obtaining the measure-
ments from the sensors, the LNs estimate the posterior
density of the target’s dynamics. The summaries of the ran-
dom measures are then transmitted to the FC which com-
bines them to obtain a joint summary. In this experiment,
we implemented our proposed ideas for target tracking in

the HSN shown in Fig. 8a. There are six sensors placed at
(26, 45), (45, 90), (65, 30), (95, 150), (100, 20), (150, 50)

which form two clusters. The sensors collected three different
measurements, the bearing, the power of the signal emitted
by the target and the relative velocity of the target [17]. These
three signal modalities can be mathematically written as

yn
1,t = arctan

(
x2,t − ln

y

x1,t − ln
x

)
+ vn

1,t (22)

yn
2,t = � − 5 log10

(
(x1,t − ln

x )2 + (x2,t − ln
y )2

)
+ vn

2,t (23)

yn
3,t = νn

r,t + vn
3,t (24)

where � = −50 dB is the signal strength within a known ref-
erence distance, νn

r,t is relative velocity of the target relative to
the nth sensor, and vn

1,t ∼ N (µv1 , σ
2
v1

), vn
2,t ∼ N (µv2 , σ

2
v2

),
vn

3,t ∼ N (µv3 , σ
2
v3

), are zero mean Gaussian measurement
noise processes. We assumed the variance of the noise to be
the same across all the sensors. In our simulations we used
σv1 = 0.01, σv2 = 1, and σv3 = 1. The initial target dynam-
ics were drawn from N (µ0,�0) with µ0 = [0, 0, 5, 5]�
and �0 = diag (10, 10, 0.01, 0.01) . The target trajectories
were obtained as earlier, with the noise covariance matrix and
Cu = diag(0.1, 0.2). The sampling period was Ts = 0.1 s
and the length of each trajectory was Nt = 300, i.e., the
target was observed for 30 s.

Here we also study the scenarios when the LNs transmit
the summaries of their random measures to the FC for every
κ = 1, 5, and 10 time instants. The RMSEs were computed
over 50 different trajectory runs. In Fig. 8b, the RMSEs of
the proposed SPF method at the FC are shown. Here, the
LNs’ approximate their random measure using single Gaus-
sians. There is a very small loss in performance with the LNs
transmitting the summaries to the FC every κ = 10 time
instants, thus considerably saving power and communica-
tion resources. In Fig. 9b, we display the bias and the spread
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Fig. 9 Spread of errors in estimating the state at FC Bias and 3σ of a x1,t ; b x2,t ; c ẋ1,t ; d ẋ2,t

of the errors with the CRPF-par method. Clearly, it can be
seen that the estimate by the FC is for most of the time better
than the estimates of the LNs.

7 Conclusion

In this paper SPF and CRPF fusion algorithms for target
tracking have been presented for various scenarios, includ-
ing those of known and unknown noise probability distri-
butions. The sensors implement these SMC methods and
periodically transmit summaries of their results instead of
the complete random measures. Therefore, low communica-
tion and power requirements are needed. In SPF methods, the
summaries are represented by mean and covariance matrices.
When the posterior distribution is unimodal, these random
measures are adequately approximated with a single Gauss-
ian which has lower transmission requirements. With CRPF
methods, the summaries are represented either with a para-

metric distribution or by using the best particles of the random
measure.

We have demonstrated the performance of the proposed
algorithms through two target tracking examples in a flat and
hierarchical sensor network. Comparisons of the proposed
methods with the standard centralized approach is performed
and their good performance is illustrated by way of simu-
lations. Approximations of random measures with a single
Gaussian have slightly larger RMSE than approximations
with Gaussian mixtures. The CRPF-based summaries have
moderate error statistics but outperform the SPF with incor-
rect noise statistics. We have also investigated the effect of
feedback from the FC and observed that feedback from the
FC improves the individual sensor tracking performance.

Some of the open issues not addressed in this paper is
determining the number of components required for an
adequate representation of the sample-based distribution.
Clearly, this becomes a model order selection problem with
simultaneous estimation of model order and the parameters
of the model.
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Appendix A. Conditions for the validity of the Gaussian
assumptions

Let p(θ) be a smooth density with θ ∈ R
n . Expanding the

logarithm of the density around its mean θ̂ using Taylors
series and neglecting the higher order derivative terms (> 2)

we have

ln(p(θ)) = −1

2
(θ − θ̃)��−1(θ − θ̃) + g(θ̂)

�
(θ̂)

+g(θ̂)
�
�g(θ̂) + ln(p(θ̂) + ε(θ)

where we express, θ̃ = θ̂ + �g(θ̂), g(θ̂) = ∂ln(p(θ ))

∂θ
|
θ=θ̂

and �−1 = − ∂2ln(pt (θ ))

∂θ∂θ
� |

θ=θ̂
. Thus we have

p(θ) ∝ exp

[
−1

2
(θ − θ̃)��−1(θ − θ̃)

]
∝ N (θ̃ ,�). (25)

Similarly we have for a product of N densities

pN (θ) =
∏

n

pn(θ) ∝
∏

n

Nn(θ , θ̃n,�n) ∝ N (θ , θ̃ f ,� f )

(26)

�−1
f = �−1

1 + �−1
2 + · · · + �−1

N

θ̃ f = � f (�
−1
1 θ̃1 + · · · + �−1

N θ̃ N )

θ̃ f = �(�−1
1 θ̂1 + · · · + �−1

N θ̂ N ) + �(g(θ̂1)

+g(θ̂2) + · · · + g(θ̂ N ))

�−1θ̃ f = �−1θ̂ f + (g(θ̂1) + g(θ̂2) + · · · + g(θ̂ N )) (27)

= �−1θ̂ f + �g(θ̂).

A ratio of two distributions can be expressed as

p1(θ)

p2(θ)
∝ N1(θ , θ̃ s,�s), (28)

where �−1
s = �−1

1 − �−1
2 and �−1

s θ̃ s = �−1
1 θ̃1 − �−1

2 θ̃2.

Thus we have the following form for a ratio of a product of
densities using (26) and (28)

∏
k pa,k(θ)∏
k pb,k(θ)

∝ N (θ , θ̃a,�a)

N (θ , θ̃b,�b)
∝ N (θ , θ̃ab,�ab) (29)

�−1
ab = �−1

a − �−1
b

�−1
ab θ̃ab = �−1

a θ̃a − �−1
b θ̃b = �−1

a θ̂a − �−1
b θ̂b

+�g(θ̂a) − �g(θ̂b)

= �−1
ab θ̂ab + �g(θ̂ab).

When these distributions are approximated by a Gaussian dis-
tribution around the true mean θ̂ of the distribution, instead
of θ̃ it can be shown that the ratio of these products is offset

by an exponential product of exp[−2�g(θ̂ab)
�
θ ].

Appendix B. Divergence of the distributions

In [18], the author proposes the use of χ2 and harmonic diver-
gence to asses the accuracy of posterior approximations. The
χ2 divergence, defined as

χ2 =
∫

p2(xt | y1:t )
q(xt | y1:t )

dxt (30)

measures the difference between the posterior distribution
p(·) and its approximating density q(·). We have

p(xt |y1:t ) = cp(yt |xt )p(xt |y1:t−1) = c p̃(xt | y1:t ),

where c is a normalization constant. With a slight abuse of
notation the χ2 distance can now be expressed as follows

χ2 =
∫

p2

q
dxt =

∫
p2

q2 q dxt

whose estimate can be obtained as

χ̂2 = M

∑M
m=1

(
p̃(x(m)

t | y1:t )
q(x(m)

t | y1:t )

)2

(∑M
m=1

p̃(x(m)
t | y1:t )

q(x(m)
t | y1:t )

)2 , (31)

where x(m)
t ∼ q(xt | y1:t ).
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