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Abstract—In many situations, solutions to nonlinear discrete-
time filtering problems are available through approximations.
Many of these solutions are based on approximating the posterior
distributions of the states with Gaussian distributions. In this
letter, we compare the performance of Gaussian-based filters
including the extended Kalman filter, the unscented Kalman filter,
and the Gaussian particle filter. To that end, we measure the
distance between the posteriors obtained by these filters and the
one estimated by a sequential Monte Carlo (particle filtering)
method. As a distance metric, we apply the Kullback–Leibler and
2 information measures. Through computer simulations, we

rank the performance of the three filters.

Index Terms—Extended Kalman filter, filtering, information
measures, sequential Monte Carlo, unscented Kalman filter.

I. INTRODUCTION

THE discrete state–space (DSS) model is an indispensable
mathematical model that describes the evolution and the

observation function of the state [1]. A standard formulation of
the model is as follows:

(1)

(2)

where is the unknown state, is the state transition func-
tion, are the measurements, is the measurement func-
tion, and and are noise processes.

The estimation of the filtering or posterior distribution
or their statistics is a standard filtering problem.

Closed-form analytical and optimal solutions to this filtering
problem exist in a small number of cases, for example, when the
functions and of the DSS model are linear, and the
noise vectors and are zero-mean Gaussian with covariance
matrices and , respectively. However, in many real-
world scenarios, closed-form solutions cannot be obtained [2].

Some approximate parametric solutions to these problems
are obtained via the extended Kalman filter (EKF) and the un-
scented Kalman filter (UKF) [1], [3]. With the advent of more
computing power, the last decade has seen a surge in Monte
Carlo methods where the posterior distributions are approx-
imated by a large weighted set of samples. These sequential
Monte Carlo (SMC) methods, also known as particle filters
(PFs), have been proposed in the last decade as more robust and
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close to optimal solutions in determining posterior distributions
and their statistics [4]. The Gaussian particle filter (GPF) is an
SMC method that approximates the posterior distributions with
Gaussian distributions [5]. In this letter, we refer to the EKF,
UKF, and GPF as Gaussian-based filters.

We reiterate that the underlying idea of these methods is that
they approximate the posterior distribution with a Gaussian.
However, the process by which this approximation is obtained is
different, and therefore, the resulting distributions are also dif-
ferent. The EKF achieves the Gaussian approximation through
a linearization of the DSS model, the UKF obtains it by means
of an unscented transformation, while the GPF obtains the pa-
rameters of the approximations using SMC steps.

Popular metrics for assessing the performance of these ap-
proximations are through root mean square errors (RMSEs) of
the point estimates of the states. An alternative is to estimate
biases and variances of the estimates, thereby capturing only
a limited picture of the filter’s performance. In this letter, we
provide a more complete performance comparison among the
methods by measuring how close their posterior distributions
are from the posterior distribution obtained by particle filtering.
This has been suggested recently in [6]. The reason for choosing
the posterior obtained by particle filtering is that the true poste-
rior is not known and that particle filtering has the most am-
bitious aim while estimating unknown states by attempting to
track the evolution of their posterior distributions. For mea-
suring distance, we use information measures, more specifically
the Kullback–Leibler (KL) and information metrics. We de-
velop and discuss the computation of these metrics in the context
of the performance comparison of the filters. In the remainder of
this letter, we provide a brief summary of the EKF, UKF, stan-
dard particle filter (SPF), and GPF and provide details of the
comparison by information metrics.

II. BRIEF SUMMARY OF THE FILTERS

Most recursive solutions to the filtering problem involve two
key operations at each time instant: 1) propagation of the state
estimate from the previous time instant to the current time in-
stant and 2) updating of the state estimate using the current mea-
surements. We now briefly summarize the various filters that
provide approximate solutions to the filtering problem when
the functions in the DSS model are nonlinear. In these filters,
the following approximations are made: the predictive density
of the state is approximated by a Gaussian,

, where and are the predictive
mean and covariance matrix of given , and the fil-
tering density is approximated by another Gaussian,

, where and are the mean and covari-
ance matrix of given .
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A. EKF

In the EKF, through a Taylor series expansion, the DSS equa-
tions are linearized and transformed into a model for which the
Kalman filter presents an optimal solution [1]. With initial mean,

, and covariance matrix, , and
using the Gaussian approximation of the predictive and filtering
distributions at time instant , the two steps in the EKF at
time instant are as follows.

1) Time update step:

(3)

2) Measurement update:

(4)

where
, and

.

B. UKF

In the UKF, a set of deterministically chosen points known
as sigma points are used in approximating the filtering and
predictive distributions by a Gaussian distribution. In this filter,
the state of the system is represented by concatenating it with
the process and measurement noise states, i.e., by forming

. The main steps in the UKF are as follows.
1) Calculation of sigma points:

, where is the dimension of
and is a scaling parameter, and is the covariance
matrix of .

2) Time update step: Using (1), the sigma points are
propagated to obtain , which are then appropriately
weighted. Using and the weights, the mean
and covariance matrix of the predictive distribution
are easily obtained. The predictive sigma points are
transformed through the observation model (2) to obtain a
new set of measurement points and their predictive
measurement mean .

3) Measurement update step: Using the points computed in
the time update step, the covariance matrix of
and the cross covariance matrix between
and are computed. The parameters of the filtering
density are obtained as follows:

(5)

More details about the expressions of the UKF can be found in
[3] and [7].

C. SPF

In SMC methods, the filtering density is represented by a
discrete random measure that is a set of weights and samples,

[4]. This is mathematically written

as , where is a
randomly drawn sample of the unknown state , with corre-
sponding weight , and denotes the Dirac delta func-
tion. The main steps of the SPF are as follows.

1) Generation of particles: This is the time update step with
particles drawn from a proposal distribution function

.
2) Calculation of weights: Using the measurement , the

weights are updated by

and normalized such that .
A third step known as resampling is performed to replace parti-
cles that have negligible weights with particles with non-negli-
gible weights.

D. GPF

The GPF is an SMC filtering algorithm that also approximates
the predictive and posterior distributions with Gaussian distribu-
tions [5]. The main steps of this filter are as follows.

1) Generation of particles: Samples are drawn from
and the samples are drawn

from .
2) Computation of the mean and covariance of the predictive

density: Using the samples of the previous step, the sample
mean and covariance matrix are obtained.

3) Computation of the weights: Using the measurement ,
the weights are calculated by

where is a Gaussian with a mean and
a covariance matrix . The weights are subsequently
normalized.

4) Computation of the mean and covariance of the filtering
density: The sample mean and covariance of
the filtering density are obtained using the weighted set of
samples.

III. INFORMATION METRICS

For measuring the distance between the Gaussian posteriors
produced by the Gaussian-based filters and the posterior ob-
tained by the SPF, we use the KL and information metrics [8].
However, the proposed approach for measuring performance
is general and can be applied to a broad class of information
measures.

With a slight abuse of notation, the KL and the information
metrics are defined as follows.

• KL information:
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• information:

In our problem, is the posterior obtained by the SPF, and
is the posterior estimated by a Gaussian-based filter. A

straightforward computation of these measures is not feasible
because the random measures obtained by the SPF are discrete
while the Gaussian posterior approximation is continuous. We
avoid this by computing

(6)

In the integral in (6), we express the posterior
as

(7)

and for the posterior , we obtain

(8)

We will write , where

(9)

A. Computation of Information

The distance at time instant is expressed as

(10)

The integral in (10) can by computed by Monte Carlo inte-
gration by drawing samples from . It is easy to show that

(11)

where is the number of drawn samples from and

(12)

and

B. Computation of Information

The at time instant is given by

(13)

Fig. 1. The � information of the GPF, EKF, and UKF filters.

A Monte Carlo estimate of is obtained in a similar way, and
it is given by

(14)

where the symbols have the same meaning as in (11).

IV. SIMULATIONS

We provide two examples where we compare the perfor-
mance of the EKF, UKF, and GPF.

A. Univariate Nonlinear Model

Consider the following one-dimensional nonlinear time
series:

(15)

Here, and are both zero mean Gaussian noise processes
with unit variance. The initial distribution [5].
In the simulation of the Monte Carlo filters, parti-
cles were used. The number of samples that were generated
for computing the information measures was also 10 000. For
obtaining the weights associated with each sigma point of the
UKF, the parameters , and were set to

. We measured the performance of the algorithms by
computing the information metric using different tra-
jectories. In Figs. 1 and 2, the averaged information metric
and the RMSEs are shown. From the plots, it can be seen that the
Gaussian approximation to the posterior distribution with GPF
is considerably better than the ones of the EKF and the UKF.
However, the GPF is computationally more intensive.

B. Bearings Only Target Tracking

We considered a target tracking scenario using angle mea-
surements, which is a four-dimensional DSS model, with par-
tially observed states

(16)
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Fig. 2. RMSE with the GPF, EKF, and UKF filters.

where are the target’s posi-
tion and velocity in a two-dimensional plane, is a tran-
sition matrix, and is a Gaussian noise vector. The tran-
sition matrix and the covariance matrix of the noise process
are given by

where is the sampling interval.
The measurement equation is given by

(17)

where is a measurement noise considered zero mean and
Gaussian.

The initial distribution of is modeled as
a Gaussian distribution , where

and is given as
diag1 . The values of the other param-
eters were and . In the Monte Carlo SPF
and GPF, we used particles. The initial particles
were all drawn from . Similarly, when implementing
the EKF and UKF, the initial mean and covariance matrix of
the state vector were those used in . We compute the

metric and the RMSE by averaging them over
different trajectories. In Figs. 3 and 4, we present the obtained
results. Again, the performance of the GPF is better than the
other two filters.

V. CONCLUSIONS

In this letter, we provided a novel method for computing the
metrics that measure the distance between the posterior distri-
butions obtained with the SPF and the Gaussian-based filters,
EKF, UKF, and GPF. Through simulation studies, we note that
the GPF provides a better approximation to the posterior distri-
bution than the EKF and the UKF but at a higher computational
cost.

1The diag(x) operation refers to the formation of the diagonal matrix with
vector x along the main diagonal.

Fig. 3. The KL -information for the GPF, EKF, and UKF filters.

Fig. 4. RMSE in position with the GPF, EKF, and UKF filters.
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