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a b s t r a c t

We propose algorithms for distributed sensor self-localization using beacon nodes.

These beacon nodes broadcast some information which describes their positions. The

sensor nodes with unknown location information utilize these descriptions along with

the characteristics of received signals to obtain estimates of their positions. Sensors with

resolved positions, in the successive stages of the algorithm also broadcast their location

information to other sensors so that they can resolve their own positions. Conditional

upon the availability of probabilistic distributions of noise processes, we propose

iterative and Monte Carlo sampling-based methods for obtaining sensor location

descriptions. We also provide approximate hybrid Cramér–Rao bounds for distributed

sensor self-localization and compare them with the proposed algorithms. We

demonstrate the performance of the proposed algorithms through extensive computer

simulations.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction and motivation

Wireless sensor networks play a vital role towards
pervasive sensing and computing with minimal human
supervision. Recent interest in sensor networks has been
primarily due to improvements in their performance and
decrease in their cost. As these sensors are inexpensive,
tiny and untethered, they can be deployed in large
numbers. Some civilian applications of sensor networks
include monitoring systems in vineyards, environmental
habitats, community areas, traffic highways and smart
bridges [1]. In military applications, sensors networks are
used for surveillance of armed troops and vehicles in
battlefields and detection, tracking and classification of
enemy targets [1,2].

In many sensor networking applications such as object
tracking, sensors measure signals that are functions of the
geometry between the object under surveillance and the
ll rights reserved.

ula),
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sensor. Therefore, to extract meaningful information of
the object’s dynamics, knowledge about the sensors’
location is required. Incorporation of technologies like
global positioning system (GPS) into these networks
increases the cost and power requirements of the
sensors. Alternatively, a periodic calibration of sensors’
positions can be accomplished by establishing collabora-
tion among the sensors. This procedure is known as self-
localization.

In centralized sensor networks, the sensor measure-
ments are routed to a central unit which performs the task
of obtaining the sensors’ locations. In [3,4], the authors
suggest a centralized framework and propose a maximum
likelihood (ML)-based solution for finding the sensors’
locations. Self-localization is also addressed using beacon
nodes, also known as anchor nodes, leader nodes or access
points [5,6]. In the remainder of this paper, we use the
term beacon nodes when referring to sensors which have
some initial information about their positions. In dis-
tributed sensor localization algorithms, the beacons
broadcast their locations. The sensors estimate their
distances from the beacons and using these distances, a
set of equations or geometric constraints are formed.
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Triangulation, trilateration, least squares (LS) or other
optimization methods have been used in the literature to
obtain the sensors’ positions [7,8]. In these methods, the
effects of uncertainty due to measurement noise and
beacon position are not considered. A quantitative
comparison of some of these distributed techniques is
provided in [9]. Static and mobile beacon-based self-
localization procedures have also been explored in the
literature (see, for example [6,10–13]). A more compre-
hensive survey of localization in sensor networks is
provided in [14,15] and the references therein.

In this paper, we propose a distributed Bayesian (BS)
framework for solving the sensor self-localization problem.
In [16], an iterative multilateration technique for localizing
nodes with unknown location is proposed. In our work, we
consider similar algorithms, but we formulate the sensor
location estimation from a probabilistic point of view and
we include as input information uncertainty of the beacon
positions. Most sensor localization algorithms within the
probabilistic framework can be classified as (a) ML methods
or (b) BS posterior estimation methods. The advantage of the
BS techniques is in that they provide a principled way of
dealing with location uncertainty and multi-sensor fusion
[17]. This latter framework is considered in [18–21]. In [18],
the sensors with unknown positions receive the descriptions
of the beacon positions which are used by the sensors to
update their own positions. However, it is unclear how one
computes and stores the posterior probability distributions
of the locations. In [19], the authors propose factorized
variational BS methods for energy-based detection and
localization. Two popular methods for numerical estimation
of the posterior distributions of the locations are based on
importance sampling (IS) and Monte Carlo Markov chains
(MCMC) methods. In [20], an MCMC scheme for obtaining
sensor self-localization is employed. There, the authors do
not consider the impact of beacon position uncertainty. In
[21], an IS based method known as non-parametric belief
propagation (NPB) for self-localization of sensors is pre-
sented. According to the proposed scheme, each sensor node
updates the message received from neighboring sensors and
utilizes it to compute its belief distribution which is then
transmitted to the neighboring sensors. In [21], each sensor
transmits to its neighbor a message whereas in our
approach the sensors broadcast the same message and
thereby provides probabilistic descriptions of their locations.

More specifically, in this paper we propose methods for
distributed sensor self-localization that incorporate beacon
position uncertainty using iterative LS and Monte Carlo
sampling-based methods. Contributions of this paper in-
clude:
�
 proposal of IS and cost-based (CS) algorithms for
sensor self-localization, and

�

1 Note that the signals are not time-varying but random that account

shadow fading in wireless environments.
development of approximate iterative hybrid Cramér–-
Rao bounds (HCRBs) for sensor self-localization under
beacon position uncertainty.

The organization of the paper is as such. In Section 2.1, we
formulate the sensor localization problem and describe a
generic framework for the proposed algorithms. In Section
3, we present iterative BS and LS methods while in Section
4 we provide Monte Carlo sampling-based solutions to the
problem. In Section 5.3, we discuss some computational
and communication requirements of the proposed meth-
ods. In Section 6, we derive approximate HCRBs of the
estimates of a sensor location with multiple beacons
under position uncertainty and bounds for the proposed
distributed framework. In Section 7, we show some
simulation results that demonstrate the effectiveness of
the proposed methods. We finally conclude the paper
with Section 8.

2. Sensor self-localization: problem statement and
proposed framework

2.1. Proposed framework and signal modeling

Consider the sensor network shown in Fig. 1. The
shaded nodes represent beacons that broadcast their
location details using probabilistic or spatial descriptions.
The parameters of these descriptions are transmitted
using known reference or pilot signals. We represent this
prior information about their locations, ‘b 2 R

2; b ¼ 1;2;3
as pð‘bÞ, and we write for the signal received by a sensor

ys;b ¼ f ð‘s; ‘bÞ þ vs;b (1)

where ys;b
1 is the received signal characteristic by sensor s

from beacon b; ‘s; ‘b 2 R
2 are the positions of the nodes s

and b in the two-dimensional Cartesian coordinate system
(‘s ¼ ½ls;x; ls;y�

> and ‘b ¼ ½lb;x; lb;y�
>); and vs;b is a Gaussian

noise process with mean zero and variance s2
s;b. In our

simulations we consider measurements that represent the
logarithm of the received signal strength (RSS) [4], which
can be expressed mathematically as

f ð‘s; ‘bÞ ¼ C0 � 10a log10 ðj‘s � ‘bjÞ (2)

where C0 is the power received at a known reference
distance, a is the path-loss attenuation and j � j denotes
norm of a vector. This model captures the log-normal
shadowing effects in wireless networks but does not capture
fully other wireless phenomena such as multipath fading.

2.2. Proposed framework

We explain our sensor self-localization framework by
using Fig. 1. There are three sensors and three beacons in
this network. The beacons 1–3 are within the sensing
range of sensor 1, whereas only beacons 2 and 3 are within
the sensing range of sensor 2 and only beacons 1 and 3 are
within the sensing range of sensor 3. In each time epoch,
nodes with known locations broadcast their location
descriptions, which are utilized by the neighboring nodes
with unknown locations to obtain their estimates. In the
first time epoch, beacons 1–3, transmit their location
descriptions. Sensor node 1 receives signals from all the
beacons and combines the received prior descriptions and
the measurements to obtain an estimate of its location.
However, sensors 2 and 3 which do not have beacons 1
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and 2 within their sensing range, respectively, do not
receive any signals from these beacons and, therefore,
cannot resolve the ambiguity in their positions. At the end
of the first time epoch only the beacons 1–3 and sensor 1
have position information. Sensors which have knowledge
about their position may broadcast their locations that
may be used by other sensors to estimate their positions.
Therefore, in the next time epoch, sensors 2 and 3 utilize
the information transmitted by the beacons in their
sensing ranges and the sensor to obtain estimates of their
respective locations. The algorithm, thus, proceeds in
successive time epochs with sensors estimating, broad-
casting or updating their location estimates. A suitable
criterion based upon convergence of position estimates or
upon energy resources can be used for determining when
sensors can stop broadcasting their location information.

Clearly, two important issues of the proposed frame-
work are
�
 the combining of the information in the noisy
measurements and the distributions of the beacon
locations to obtain accurate sensor estimates, and

�

2 The symbol diagðxÞ represents a diagonal matrix formed with the

vector x as its diagonal.
3 The symbol diagðA;BÞ ¼ ðA0

0
BÞ, where A;B are diagonal matrices.
the representation of the sensor location estimates for
effective transmission.

In the sequel, we propose methods which address these
two problems. In Section 3, we provide two iterative
solutions based on linearization of (2) and in Section 4, we
present Monte Carlo-based solutions that avoid any
linearization of the model and yield sample-based
distributions. In these sections we analyze situations with
known and unknown measurement noise distributions.
3. Iterative sensor localization methods

In this section we propose two iterative methods
for sensor localization which incorporate beacon
location uncertainty and are based on linearization of
the measurement function in (1). We consider a
generic scenario where a sensor s receives signal mea-
surements from B beacons as well as some information
about their locations. We denote the set of measure-
ments as fys;1; . . . ; ys;Bg and describe the uncertainty in
beacon location with standard multivariate Gaussian
distributions.

Stacking these set of measurements and writing in
vector notation, we have

ys ¼ fð‘Þ þ vs (3)

where ys ¼ ½ys;1 . . . ys;B�
>, fð‘Þ ¼ ½f ð‘s; ‘1Þ; . . . ; f ð‘s; ‘BÞ�

>, and
v ¼ ½vs;1 . . .vs;B�

> are all vectors of dimension B� 1. Under
assumptions of independent zero mean Gaussian noise,
we denote the distribution of vs as Nð0;RvÞ where Rv ¼

diagð½s2
vs;1
; . . . ; s2

vs;B
�Þ.2 The prior description of the location

of the beacon nodes is given by pð‘bÞ ¼Nð‘̂b;R‘b
Þ; b ¼

1;2; . . . ;B. Assuming independence among the beacon
prior distributions, we have pð‘1:BÞ ¼Nðl̂‘;P‘B

Þ, where
l̂‘ ¼ ½‘̂

>

1 ; . . . ; ‘̂
>

B �
>, and P‘B

is a block diagonal matrix, i.e.,
P‘ ¼ diagðR‘1

; . . . ;R‘B
Þ.3
3.1. BS method with linearization

A direct approach for solving the sensors’ positions is
within the ML framework. The optimization criterion can
be written as

arg min
‘s

½ðys � fð‘ÞÞ>R�1
v ðys � fð‘ÞÞ� (4)

The Levenberg–Marquardt method is one popular opti-
mization method for finding solutions to problems like (4)
[22]. However, in its straightforward application, the prior
information pð‘1:BÞ of the beacons positions uncertainty is
not incorporated. We change the procedure to incorporate
this prior knowledge.

We denote the sensor position and the set of
beacon locations as ‘ ¼ ½‘>s ; ‘

>
1:B�
>, a 2ðBþ 1Þ � 1 vector.

Using a Taylor series expansion and neglecting higher
order terms, we linearize (3), with respect to ‘ around ‘0

as follows:

ys � f ð‘0Þ � H� ð‘ � ‘0Þ þ vs (5)
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where

H ¼

qf ð‘s; ‘1Þ

q‘s

qf ð‘s; ‘1Þ

q‘1
� � �

qf ð‘s; ‘1Þ

q‘B

..

. ..
. ..

. ..
.

qf ð‘s; ‘BÞ

q‘s

qf ð‘s; ‘BÞ

q‘1
� � �

qf ð‘s; ‘BÞ

q‘B

2
66666664

3
77777775

¼

qf ð‘s; ‘1Þ

q‘s

qf ð‘s; ‘1Þ

q‘1
� � � 0

..

. ..
. ..

. ..
.

qf ð‘s; ‘BÞ

q‘s
0 � � �

qf ð‘s; ‘BÞ

q‘B

2
66666664

3
77777775

(6)

with qf ð‘s; ‘iÞ=q‘j ¼ 0; 8iaj, i; j 2 1; . . . ;B. Here H is a 2B�

2ðBþ 1Þ matrix and ‘0 is a vector of dimension
2ðBþ 1Þ � 1. A BS solution to this linear problem which
incorporates the prior information is as follows [23]:

‘̂ � ‘0 ¼ ðR�1
l þH>R�1

v HÞ�1H>R�1
v ðys � fð‘0ÞÞ (7)

where R�1
l ¼ diagð02;P

�1
‘B
Þ. For the sensor localization

problem, we solve for ‘ by iteratively computing (7) with
a suitable stopping criterion. Therefore, at iteration i we
have

‘̂
ðiÞ
¼ ‘̂
ði�1Þ
þ ðR�1

l þHðiÞ>R�1
v HðiÞÞ�1HðiÞ>R�1

v ðys � fð‘̂
ði�1Þ
ÞÞ

(8)

where HðiÞ is defined in (6) and computed at ‘̂
ði�1Þ

. The
initialization of the beacon parameters by ‘̂

ð0Þ
is obtained

using l̂‘ , and the sensor location is initialized using the
mean of the beacon positions. The covariance matrix of
the estimate of ‘ is ðR�1

l þHðiÞ>R�1
v HðiÞÞ.

3.2. LS method with linearization

A LS criterion that incorporates the prior knowledge of
the beacons’ locations can be written as [24]

arg min
‘
½ð‘ � ‘0Þ

>R�1
l ð‘ � ‘

0Þ þ jys �H� ð‘ � ‘0Þj2�

and its solution is

‘̂ ¼ ‘0 þ ðR�1
l þH>HÞ�1H>ðys � f ð‘0ÞÞ

Similarly we can iteratively solve for ‘. Thus, at iteration i,
we have

‘̂
ðiÞ
¼ ‘̂
ði�1Þ
þ ðR�1

l þHðiÞ>HðiÞÞ�1HðiÞ>ðys � fð‘̂
ði�1Þ
ÞÞ (9)

and the corresponding covariance matrix of ‘̂
ðiÞ

is
ðR�1

l þHðiÞ>HðiÞÞ.
Clearly, we can see that (8) differs from (9) in that the

LS solution does not take into account the distribution of
the noise process vs. In the proposed iterative methods,
the iterations are performed in one time epoch and once a
sensor resolves its position, then in the subsequent time
epochs it, too, broadcasts its position description. Using
the final estimates and the covariance matrix, the sensor
position can be modeled as a Gaussian distribution and
these parameters are transmitted in the following time
epochs for both the BS and LS methods.

4. Monte Carlo-based methods for sensor localization

In Monte Carlo-based methods the posterior distribu-
tion of the sensor location is approximated by a set of
samples. In these methods, the measurement functions
are not linearized but the marginal distributions are
represented by a set of weighted samples. We consider the
earlier scenario where each sensor receives measure-
ments from B beacons and their location descriptions.

4.1. IS-based method

In a BS framework, all knowledge about the sensors’
and beacons’ positions is contained in the posterior
distribution pð‘jysÞ. We, therefore, have

pð‘jysÞ ¼ pð‘s; ‘1; . . . ; ‘BjysÞ / pð‘sÞ
YB

b¼1

pðys;bj‘s; ‘bÞpð‘bÞ (10)

which is obtained using Bayes’ theorem and assuming
independence among the prior distributions. Closed form
analytical solutions to this posterior density cannot be
obtained when the function f ð�Þ in (1) is nonlinear in the
state parameters and/or the noise process vs;b is non-
Gaussian. Therefore, we use Monte Carlo (MC) methods
for capturing the posterior distribution or some of its
statistics. In most MC methods these posterior
distributions are represented by sample-based discrete
random measures. IS is one such method where one can
obtain a discrete representation of the posterior distribu-
tion [25].

Very briefly, with IS, the density pð‘Þ is approximated
by a weighted set of samples Nl � f‘

ðmÞ;wðmÞgMm¼1 with M

being the total number of drawn samples and m the
sample index. This approach is particularly useful when it
is infeasible to draw samples directly from the density pð‘Þ

but can be evaluated up to a constant. The samples are
obtained from another function known as importance
function or proposal density, pð‘Þ. The importance weights
are proportional to pð‘ðmÞÞ=pð‘ðmÞÞ and measure the quality
of the generated particles. A rigorous treatment of the
subject can be found in [25].

The posterior density (10) is approximated as a
weighted set of particles foðmÞ; ‘ðmÞs ; ‘ðmÞ1 ; . . . ; ‘ðmÞB g,

pð‘s; ‘1; . . . ; ‘Bjys;1; . . . ; ys;BÞ

¼
XM
m¼1

oðmÞdð‘s � ‘
ðmÞ
s Þ �

YB

b¼1

dð‘b � ‘
ðmÞ
b Þ (11)

which is then easily marginalized, i.e.,

pð‘sjys;1; . . . ; ys;K Þ �
XM
m¼1

oðmÞdð‘s � ‘
ðmÞ
s Þ (12)

As before, if the sensor obtains information about its
location, it is described by a probability distribution which
is broadcast in the next time epoch to other sensors so
that they in turn estimate their own positions.
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The main steps of this IS-based procedure are:
�
 Generation of beacon and sensor location samples
f‘ðmÞs ; ‘ðmÞ1 ; . . . ; ‘ðmÞB g: The beacon location samples are
drawn from their transmitted prior location distribu-
tions, i.e., ‘ðmÞb 	pð‘bÞ, and samples representing the
sensor location drawn from an importance distribution
function pð‘sÞ. In Section 4.3, we propose methods for
constructing these importance distributions.

�
 Computation of weights: The weights, oðmÞ, are

obtained according to

oðmÞ / pð‘ðmÞs Þ

pð‘ðmÞs Þ

YB

b¼1

pðys;bj‘
ðmÞ
s ; ‘ðmÞb Þpð‘

ðmÞ
b Þ

pð‘ðmÞb Þ
(13)
�
 Estimation of the transmitting distribution para-
meters: Transmission of these sample-based distribu-
tions would require large amounts of communication
resources, and therefore we approximate them with
standard probability distributions and broadcast their
parameters only. As an example, we approximate the
sample-based distribution by a Gaussian Nðl‘s

;R‘s Þ

where the means l‘s
and covariance matrices R‘s are

obtained as

l‘s
¼
XM
m¼1

oðmÞ‘ðmÞs

R‘s ¼
XM
m¼1

oðmÞð‘ðmÞs � l‘s
Þð‘ðmÞs � l‘s

Þ
> (14)

4.2. CS Monte Carlo sampling method

In the above proposed IS method, the computation of the
weights in (13) requires the evaluation of the likelihood
term for which the probability distribution of the measure-
ment noise should be completely known. In many scenarios,
such information is not available. We propose an alternative
sampling method which does not make probabilistic
assumptions of the model noise. In the following method,
we only require that the noise process is zero mean.

We motivate the approach as follows: under assump-
tion of zero mean noise, a LS criterion for obtaining the
sensor location given the measurements ys;1; � � � ; ys;B can
be formulated as

‘̂s ¼ arg min
‘s

Cð‘sÞ ¼
XB

b¼1

jys;b � f ð‘s; ‘bÞj
2

( )
(15)

Note that in this formulation we have not explicitly
included the beacon location information. However, the
optimization is carried out by incorporating the beacon
location uncertainty. Using this formulation as a starting
point, we propose a procedure where we draw samples
representing the beacons’ and sensors’ locations and
associate a cost with these samples using the measure-
ments and beacon location descriptions. The main steps of
the algorithm are as follows:
�
 Generation of beacon and sensor location samples: The
beacon location samples f‘ðmÞ1 ; . . . ; ‘ðmÞB g are drawn using
the beacon location descriptions. The sensor samples
‘ðmÞs are obtained using an importance function as
discussed in Section 4.3. These beacon and sensor
samples can be considered as representative solutions
of the beacon and sensor locations.

�
 Obtaining costs: For each of the samples generated in

the previous step, we associate a cost that defines
their quality under sensor measurements. In
general, the cost function depends on the observat-
ions and the sampled locations. We assign the costs
according to

CðmÞ ¼
XB

b¼1

Rðys;b; ‘
ðmÞ
s ; ‘ðmÞb Þ ¼

XB

b¼1

Rð�s;bÞ (16)

where �s;b ¼ ys;b � f ð‘ðmÞs ; ‘ðmÞb Þ and rð�; �; �Þ is a nonnega-
tive function of its arguments. The cost function is
chosen to reflect that more representative samples of
the locations have smaller costs and samples which are
far away from the true locations have larger costs. We
use the following cost functions:
(1) L2 cost function: Rð�Þ ¼ j�j2
(2) L1 cost function: Rð�Þ ¼ j�j
(3) Fair function: Rð�Þ ¼ 2k2

½
j�j
k logð1þ j�jk Þ� with k ¼

1:3998 [26].
Using these costs we form a pseudo probability
measure such that,

p̃ð‘ðmÞÞ / 1

CðmÞ

such thatX
m

p̃ð‘ðmÞÞ ¼ 1. (17)
�
 Estimating sensor location regions: We can approxi-
mate the sensor location distribution by using
standard probability distributions such as the Gaussian
distribution (as in the previous subsection). These
distributions can be obtained using the sample
mean sensor location and the covariance matrix
which are calculated using the pseudo probability
measure (17). These statistics are obtained as earlier
with

l̃‘s
�
XM
m¼1

p̃ð‘ðmÞÞ‘ðmÞs

R̃‘s �
XM
m¼1

p̃ð‘ðmÞÞð‘ðmÞs � l̃‘s
Þð‘ðmÞs � l̃‘s

Þ
>. (18)

4.3. Construction of the importance function for sensor

location

Samples representing the beacons’ positions are drawn
from their prior or marginal posterior distributions of
their locations. However, in absence of any prior of the
sensor location, we construct importance functions for the
sensor location. Naive approaches of drawing samples
from the entire sensor field or regions within the beacon
sensing region require a large number of samples to be
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drawn for sufficient accuracy in location estimates.
Intuitively, we would like to draw samples from regions
around the sensors true location density.

For RSS-based measurements, we obtain initial esti-
mates of the sensor location using fast trilateration
methods for constructing the prior density. We first
convert the RSS measurements to distance measure-
ments. Consider the measurement ys;b received by the
sensor s from the beacon b and define

zs;b ¼
C0 � ys;b

10a b ¼ 1;2; . . . ;B

ds;b ¼ 10zs;b �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðls;x � l̂b;xÞ

2
þ ðls;y � l̂b;yÞ

2
q

(19)

where ds;b represents an initial estimate of the Euclidean
distance between the sensor and the beacon, zs;b is an
intermediate variable and ½l̂b;y; l̂b;y� are estimates of the
beacon position. When beacons approximate their loca-
tion information using Gaussian distributions, this esti-
mate is readily available through the mean of the
distribution. Using (19) and a fast trilateration scheme,
we obtain the initial estimates l̃s ¼ ½l̃s;x; l̃s;y�

> of the sensor
position. Thus, we can construct a Gaussian importance
function, pð‘sÞ ¼Nðl̃s; R̃sÞ for drawing samples to com-
pute the weights in (13). The choice of the covariance
matrix R̃s is arbitrary. In our simulations we have used
R̃s ¼ s̃2

s I2 with a judicious choice of s̃s. A similar approach
is torun the iterative algorithms discussed in Section 3 for
smaller number of iterations and use the obtained
estimates to construct Gaussian distributions as discussed
above.

5. Discussion of the algorithms

5.1. Assumption of independence of prior distributions

The proposed algorithms for sensor localization are
suboptimal because of our construction of the joint

distributions of the locations of the beacons and sensors
that broadcast. We obtain the joint distribution as a
product of marginals (of the individual beacons and
sensors), which is only an approximation. The optimal
fusion algorithm can be derived for small networks along
the lines shown in (10) by taking into consideration the
dependence of these distributions on data. Due to lack of
space, we do not present the optimal fusion algorithm
which has significant communication, topological, and
processing requirements. Some of these requirements
arise due to loops in the network.

5.2. Parameterizations of the location distributions

In the Monte Carlo methods, the resulting location
distributions are represented by weighted sets of samples.
To avoid large communication requirements, the sensors
approximate their location distributions with parametric
distributions whose parameters are then transmitted.
Since in most scenarios the distributions are unimodal,
one can approximate them with Gaussian distributions. In
that case, each broadcast of a location requires the
transmission of five numbers, two for the mean and three
that define the covariance matrix of the Gaussian. This
communication can further be reduced by approximation
the distribution with a Gaussian with a covariance matrix
of the form s2I. Then the total of transmitted number per
reported location is only three.
5.3. Computation requirements

The BS and LS methods require the calculation of the
sensor location estimates through (8) and (9), which
includes multiplicative and inverse operations on ma-
trices of dimensions 2ðBþ 1Þ � 2ðBþ 1Þ with B being the
number of nodes communicating with a particular sensor.
The LS method requires two matrix inversions, two
matrix–matrix multiplications and one matrix–vector
multiplication whereas the BS method requires three
matrix inversions, four matrix–matrix multiplications and
one matrix–vector multiplication. For the same number of
iterations, the LS method has smaller computational
requirements. In the section on simulations, we see that
when compared with the BS algorithm, the LS method is
less accurate. Thus, we have a tradeoff between computa-
tion and accuracy of the two algorithms.

In the Monte Carlo IS and CS algorithms, the computa-
tional requirements of the weights of the IS algorithm
depend on the form of the likelihood function and those of
the CS algorithm, on the cost function. A Gaussian-type
likelihood function requires computations of exponential
(or logarithmic) functions, which is demanding. On the
other hand, the L2 and L1 cost functions have smaller
computational requirements. If the computations are a big
issue, one can choose an appropriate cost function that
does not require much computation (for example, a zero-
one cost function).
6. HCRBs for sensor self-localization

We now derive Cramér–Rao Bounds (CRBs) for sensor
self-localization for the two scenarios (a) a single sensor
which receives measurements and location information
from multiple beacons, and (b) multiple sensors with
multiple beacons which localize themselves using the
proposed distributive framework.

The CRB is a bound of the variance of unbiased
estimators for non-random parameters and the BS or the
Van-Trees version of the CRB is a bound of the mean
square error of estimates of random parameters [23,27].
We consider here a hybrid Cramér–Rao bound (HCRB),
which is a bound of the mean square error of estimates of
random and non-random parameters [28,29].
6.1. Single sensor, multiple beacons

Recall that ‘ ¼ ½‘s; ‘1; . . . ; ‘B� ¼ ½‘s; ‘̄�, is the unknown set
of parameters to be estimated, i.e., the vector containing
the locations of the sensor ‘s and the beacons ‘̄ which are
modeled as non-random and random parameters, respec-
tively, and ys ¼ ½ys;1; . . . ; ys;B� is the set of beacon signal
measurements made by sensor s. The HCRB has the



ARTICLE IN PRESS

M. Vemula et al. / Signal Processing 89 (2009) 1144–11541150
following form:

R‘ ¼ Ef½‘̂ � ‘�½‘̂ � ‘�>gXJ�1 (20)

where R‘ is the estimation error covariance matrix, and J
is the hybrid Fisher information matrix (HFIM) defined as

J ¼ E‘;ys
½fr‘ log pðys; ‘Þ r

>

‘ log pðys; ‘Þg�

J ¼ E‘½Eysj‘½fr‘ log pðysj‘Þ r
>

‘ log pðysj‘Þg�� þ Jb

J ¼ Js þ Jb (21)

with

Jb ¼
0 0

0 E‘̄½fr‘̄ log pð‘̄Þ r>‘̄ log pð‘̄Þg�

" #
¼

0 0

0 Jbb

 !

and r‘ ¼ ½q=q‘s; q=q‘1; . . . ; q=q‘B�
>. We model the prior

distribution of the beacon location as a Gaussian, and
therefore the matrix Jbb is a block diagonal matrix of
inverses of all the covariance matrices of the beacons’
location distributions. Details of the computation of these
CRBs are provided in Appendix A.
4 Although these computations may seem demanding, this is usually

not an issue if power dissipation is of concern. Sensors spend much more

power on communication.
6.2. Multiple sensors, multiple beacons

We calculate bounds for the proposed distributed
framework where at every time epoch sensors with
known position information broadcast their location
information and sensors with unknown information
attempt to localize. Also, sensors with known information
utilize measurements from new beacons to update their
information. These aspects are considered in the calcula-
tion of the HCRB for the proposed distributive framework.

With a slight change in notation, we write the set of all
received signals ys, at sensor s as

ys ¼ fsð‘Þ þ vs (22)

with fsð‘Þ ¼ ½f s;1ð�Þ; . . . ; f s;Bð�Þ�
> and vs ¼ ½vs;1; . . . ;vs;B�

>. We
form a vector ŷ by stacking all the measurements ŷ ¼
½y>1 ; . . . ; y

>
B �
> of all the sensors in the network. Note that

only sensors with known location information broadcast
their position information, therefore, the entries corre-
sponding to sensors which do not broadcast are zero in
this vector. We obtain the expression

ŷ ¼ f̂ð‘Þ þ v̂ (23)

When we consider the set of sensor locations with prior
information as random parameters and the set of sensor
locations with no prior information as non-random
parameters, the HFIM at time epoch n can be obtained
as in (21)

JðnÞ ¼ E
‘;ŷ1:n ½�fD‘

‘ log pðŷ
1:n
; ‘Þg� (24)

with expectation performed over sensors with
resolved positions, D‘

‘ ¼ r‘r
>

‘ , and ŷ
1:n

, the set of all
measurements from time epoch 1 to n. We have that
pðŷ

1:n
; ‘Þ ¼ pðŷ

n
j‘Þpðŷ

1:n�1
; ‘Þ, and therefore we can
write (24) as

JðnÞ ¼ E‘;ŷn ½�fD‘
‘ log pðŷn

j‘Þg� þ E
‘ŷ1:n�1 ½�fD‘

‘ log pðŷ1:n�1
; ‘Þg�

¼ E‘;ŷn ½�fD‘
‘ log pðŷn

j‘Þg� þ Jðn�1Þ

¼ E‘½Eŷn
j‘½fr‘ log pðŷn

j‘Þ r>‘ log pðŷn
j‘Þg�� þ Jðn�1Þ

¼ E‘½fr‘ f̂
>

ð‘ÞR�1
v r

>

‘ f̂
>

ð‘Þg� þ Jðn�1Þ (25)

with Jð0Þ ¼ E‘½fr‘ log pð‘Þ r>‘ log pð‘Þg�. If the sensor in a
particular time epoch is able to resolve its position, then its
HCRB is smaller than when it is not able to resolve
its position. Using this criterion, we identify sensors which
can become beacons in the next time epoch. We rearrange
the matrix Jðn�1Þ such that the elements corresponding to
sensors with unknown locations are all 0’s and denote this

new prior matrix as J̃
ðn�1Þ

b . We write (25) as JðnÞ ¼

JðnÞs þ J̃
ðn�1Þ

b . In computing the Cramér–Rao bound we

assume that the prior is a Gaussian with mean equal to
the true locations of the nodes and a covariance matrix
given by ðJ̃

ðn�1Þ

b Þ
�1. Thus, in the computation of JðnÞs , the

averaging was done using these prior locations.
7. Simulation results

To assess the performance of the proposed algorithms,
we performed several simulation experiments with the
purpose of (a) motivating the need of prior information as
in the LS, BS, and IS methods for sensor localization, and
(b) studying the performance of these algorithms for a
large network.
7.1. Motivation

We considered the sensor network as shown in
Fig. 2(a). The beacon nodes, B1, B2, and B3 with some
prior information are represented with shaded circles and
the sensor S1 with unknown location is denoted by a
diamond mark. The beacons B1, B2, and B3 and the sensor
S1 were located at (0,15), (0,0), (15,0) and (21.213, 21.213),
respectively. We assumed Gaussian prior location dis-
tributions Nðllb

;rI2Þ for the beacon positions, where the
prior mean had an offset b from the true position, i.e,
llb
¼ ½lb;x þ b; lb;y þ b�>. In the LS and BS methods, the

position of sensor S1 was initialized with the average of
the three beacon mean locations. Recall that the LS and BS
methods are iterative procedures. These procedures were
run for 50 iterations.4 Alternately, a simple stopping
procedure for these methods is to compare the change in
the residual error between successive iterations. For the IS
method, in the construction of the sensor proposal
distribution we ran the LS and BS methods with 10
iterations and utilized this sensor estimate in the
construction of the prior proposal distribution with s̃s ¼

3 as outlined in Section 4.3. The number of drawn samples
for each node location was M ¼ 1000.
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In Fig. 2(b), we plotted the root mean square errors
(RMSEs) of the location estimate of sensor S1 with varying
s2

v. In our simulations the reference power was fixed at
C0 ¼ �50 dB, the measurement noise variance s2

v across
all sensors was the same, the beacon offset was set to
b ¼ 0 and the variance parameter to r ¼ 2. We also
simulated the LS algorithm wherein we assumed that the
mean location of the beacons was their true positions and
did not take into account any uncertainty associated with
it. We termed this method as LS-No Prior. Clearly, the LS-
No Prior has inferior results in terms of RMSE in
comparison with the other methods.

In another set of simulations, we studied the effect of
the sensor position estimate by varying the offset of
beacon B2. The beacons B1 and B3 had zero offsets. In
Fig. 3(a) we plotted the corresponding RMSEs with
varying b2, the offset of the location of beacon B2. For
this scenario, the performance of the IS procedure is
similar to that of the LS and BS methods when b2 is
positive. Also, when the offset is positive, the LS-No Prior
method had a large error in estimating the sensor’s
position. When the offset is negative, for small values of
b2, the IS outperforms the LS/BS methods. Thus, the IS and
LS/BS which take into account the beacon prior position
information produce reliable sensor estimates. Clearly, we
can see that the LS-No prior method is considerably
inferior than the other procedures which incorporate prior
information about the beacon’s location.
7.2. Localization in a large network

In this experiment, we studied the performance of the IS
and CS methods for self-localization in large networks. To
this end we considered a network which consisted of 48
randomly distributed sensors with unknown locations and
of 16 beacons with some location information. As earlier, the
distributions of the prior location of the beacon nodes were
modeled using Gaussian distributions Nðllb

;rIÞ with llb
¼

½lb;x þ b; lb;y þ b�> where b represents the unknown offset in
the beacon location. In this experiment, we quantified the
performance of the proposed algorithms by using the
cumulative distributive function (CDF) of the RMSE.
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The RMSEs of the estimated sensor positions were
computed from K ¼ 100 different realizations of measure-
ments. In the first set of simulations, we studied the
effect of b on determining the sensor locations. There,
we assumed that we know the values of the follow-
ing parameters: r ¼ 0:5, C ¼ �50 dB, and a ¼ 2:5. The
measurement noise across all the sensors was formulated
as Gaussian with mv ¼ 0 and sv ¼ 1. In Figs. 4(a) and (b),
we plotted the CDFs of the RMSE of the IS, LS, BS and CS
methods for b ¼ 0 and 2. Further, to rank the perfor-
mances of our methods we obtained the value of d0:95, the
95th percentile of the RMSE error. This percentile states
that 95% of the time the RMSE was below this quantity.
From Fig. 2(a), d0:95;IS ¼ 1:25, d0:95;BS ¼ 3:25, and d0:95;CS ¼

4:2. Obviously, in these scenarios, the IS procedure had the
best performance. In Fig. 4(b), it can be seen that the tails
of the CDFs of the BS and CS methods are more towards
the left than for the IS method, suggesting that the best
performance of the IS is lower than the best performance
of the other methods. However, if one considers the d0:95

performance metric, the IS method produced better
RMSEs for all the sensors.
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In Fig. 5(a), we show more results of our study of the IS
procedure. The plotted curves were obtained from an
experiment where we used various positive and negative
values of b. As can be seen, the method is robust to the
sign of the offsets. In Fig. 5(b), we plotted the results from
an experiment where we varied the standard deviation of
the measurement noise. We see that with increasing the
noise, the CDF curve shifts to the right indicating increase
in estimation error. We also studied the performance of
the CS method in comparison to the IS method. In
Fig. 6(a), the performances of the IS and CS methods
(with L2, L1 and Fair cost functions) are displayed. The
performance of the CS method which makes no assump-
tions of the noise distributions is comparable with the
performance of the IS method.

Finally, we conducted a set of simulations to study
the robustness of the methods to knowledge of the
noise distributions. The probabilistic IS method assumed
wrong measurement noise distribution p̂ðvÞ ¼Nð0;0:12

Þ

while the true distribution was pðvÞ ¼ 0:8Nð0;1Þþ
0:2Nð3;0:22

Þ. When the IS method made wrong assump-
tions, it had much poorer performance than the CS
method. Fig. 6(b) shows the robustness of the CS methods
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and the sensitivity of the probabilistic method to the
knowledge of the noise distribution.

8. Conclusions

We proposed distributed algorithms for sensor self-
localization with beacon position uncertainty. The pro-
posed algorithms can be classified as iterative least
squares (LS) and Bayesian (BS) methods, Monte Carlo
importance sampling (IS) and cost-based (CS) methods.
The iterative LS and Monte Carlo CS methods do not
require knowledge of the model noise distributions while
the iterative BS and Monte Carlo IS methods do require it.
Through simulations we have observed that the perfor-
mance of the IS method is good over a wide range of
scenarios. However, when the IS method is based on
incorrect assumptions about the noise statistics, its
performance can be degraded considerably. In those
situations, the cost-based approach has relatively good
performance.

Appendix A. HCRBs for sensor self-localization

The set of measurements obtained by sensor s can be
expressed as (22). When vs is a Gaussian random vector
and the prior density is also Gaussian with covariance
matrix R‘ , the HFIM can be written as [27]

J ¼ E‘½fr‘h
>
ð‘ÞR�1

v r
>

‘ h>ð‘Þg� þ Jb (A.1)

For the RSS model, the elements of r‘h
>
ð‘Þ are calculated

by

qhb
ð‘Þ

qls;x
¼ �

10a
log 10

ðls;x � lb;xÞ

ðls;x � lb;xÞ
2
þ ðls;y � lb;yÞ

2

" #

qhb
ð‘Þ

qls;y
¼ �

10a
log 10

ðls;y � lb;yÞ

ðls;x � lb;xÞ
2
þ ðls;y � lb;yÞ

2

" #
(A.2)

qhb
ð‘Þ

qlb;x
¼ �

qhb
ð‘Þ

qls;x
;

qhb
ð‘Þ

qlb;y
¼ �

qhb
ð‘Þ

qls;y

qhb
ð‘Þ

qlj;x
¼
qhb
ð‘Þ

qlj;y
¼ 0 ð8bajÞ. (A.3)
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