
J Sign Process Syst
DOI 10.1007/s11265-009-0434-4

Study of Algorithmic and Architectural Characteristics
of Gaussian Particle Filters

Miodrag Bolić · Akshay Athalye ·
Sangjin Hong · Petar M. Djurić

Received: 9 October 2007 / Revised: 5 November 2009 / Accepted: 5 November 2009
© 2009 Springer Science + Business Media, LLC. Manufactured in The United States

Abstract In this paper, we analyze algorithmic and
architectural characteristics of a class of particle fil-
ters known as Gaussian Particle Filters (GPFs). GPFs
approximate the posterior density of the unknowns
with a Gaussian distribution which limits the scope of
their applications in comparison with the universally
applied sample-importance resampling filters (SIRFs)
but allows for their implementation without the clas-
sical resampling procedure. Since there is no need for
resampling, we propose a modified GPF algorithm that
is suitable for parallel hardware realization. Based on
the new algorithm, we propose an efficient parallel and
pipelined architecture for GPF that is superior to sim-
ilar architectures for SIRF in the sense that it requires
no memories for storing particles and it has very low
amount of data exchange through the communication

This work was supported by the NSF under Awards
CCR-9903120 and CCR-0220011.

M. Bolić (B)
School of Information Technology and Engineering,
University of Ottawa, Ottawa, Canada
e-mail: mbolic@site.uottawa.ca

A. Athalye · S. Hong · P. M. Djurić
Department of Electrical and Computer Engineering,
Stony Brook University, Stony Brook, NY 11794-2350, USA

A. Athalye
e-mail: athalye@ece.sunysb.edu

S. Hong
e-mail: snjhong@ece.sunysb.edu

P. M. Djurić
e-mail: djuric@ece.sunysb.edu

network. We analyze the GPF on the bearings-only
tracking problem and the results are compared with re-
sults obtained by SIRF in terms of computational com-
plexity, potential throughput, and hardware energy. We
consider implementation on FPGAs and we perform
detailed comparison of the GPF and SIRF algorithms
implemented in different ways on this platform. GPFs
that are implemented in parallel pipelined fashion on
FPGAs can support higher sampling rates than SIRFs
and as such they might be a more suitable candidate for
real-time applications.

Keywords Gaussian particle filters ·
Sample-importance resampling filters · FPGA ·
Parallel architecture · Algorithmic modifications

1 Introduction

Sequential importance sampling based filters or particle
filters (PFs) have recently been in the focus of exten-
sive research [8]. These filters are applied to problems
that can be formulated by dynamic state space (DSS)
models. DSS models describe the evolution of a state
of interest with time and the observations as a function
of the state. PFs are used to estimate the unobserved
states or their functions or to detect events described
by the states. They outperform other filters in many
important practical situations, and their flexibility in
addressing a wide variety of problems makes them very
attractive.

PFs are methods for sequential signal processing
where the distributions of interest are approximated
by discrete random measures which are represented by

J Sign Process Syst

samples (particles) from the space of unknowns and
weights associated to the particles. Particle filters imple-
ment three steps: 1) propagation of (proposal of new)
particles, 2) computation of their weights (by using the
principle of importance sampling), and 3) resampling.
There are many variations of PFs, but in this pa-
per we consider two types. One employs the sample-
importance-resample (SIR) algorithm and we refer
to these filters as sample-importance-resample filters
(SIRFs). The other filters do not employ resampling
but use Gaussian approximations of the desired den-
sities, and we call these filters Gaussian particle filters
(GPFs) [19].

Applications of the GPF are restricted to problems
where the filtering densities can be approximated by
Gaussian distributions. The GPF can be applied to any
problem where the Extended Kalman Filter (EKF) or
the unscented Kalman filter (UKF) can be used. In [28]
it was stated that the GPF is asymptotically optimal, in
contrast to the EKF and UKF, and that its performance
is better for as long as enough random particles are
employed by the GPF. The better performance of the
GPF with respect to that of the EKF and UKF has been
demonstrated in [26], where as metrics for comparison
were employed the Kullback-Leibler and χ2 distances
between the filtering distributions obtained by these
filters and the one estimated by the standard particle
filtering method.

The number of applications where one can use GPFs
is large and they include localization, tracking, and
navigation. Examples of navigation include map based
localization of objects [25] and those of tracking com-
prise target tracking based on bearing measurements
[1], ballistic radar data [17, 23] or blind doppler data
[23]. Examples of navigation include global positioning
systems [1] and navigation of road vehicles [18]. Other
applications are in data association and fusion [22].

Recently, the GPF was used for effective message
representation/approximation in belief propagation
algorithms for a wireless networks application [30]. In
[5], the GPF was emplyed for the implementation of a
probability hypothesis density filter (a multiple-target
filter that recursively estimates the number of targets
and their state vectors from sets of observations). In
[11], the GPF was exploited for tracking of a maneu-
vering target and it showed excellent performance even
for complex target maneuvering patterns. In [13], the
GPF was used for in-motion alignment of the inertial
navigation system when the observation variable is the
velocity. The simulation results showed that the GPF is
much more robust than the UKF in presence of initial
misalignment.

Since all of the above applications are real-time ap-
plications and particle filters are expected to perform
better than traditional algorithms, it is worthwhile ana-
lyzing and improving the implementation aspects of
particle filters. PFs are very computationally extensive
and that restricts their application to real-time prob-
lems. Previous work dealt with several different aspects
of implementation of PFs and it was focused mainly
on SIRFs. Several modifications of the particle filtering
algorithm that improve execution time and simplify
the particle filtering steps were proposed in [2]. Novel
particle filters designed to overcome the barrier of
sequential implementation and brought closer to a fully
parallel implementation were developed and studied
in [3]. Architectures for particle filters applied to the
bearings-only tracking problem were proposed in [3]
and [15]. The hardware implementation improved the
speed of the particle filter in comparison with the imple-
mentation of the same filter on digital signal processors
by 50 times.

In some of our previous work, it was shown that
many applications require parallel implementation of
SIRF in order to achieve real-time requirements. Par-
allel SIRFs were implemented with multiple processing
elements (PEs), where each PE processes a fraction
of the total number of particles, and a single central
unit controls the operations of the PEs. The sample
and importance steps of SIRFs are inherently parallel;
therefore most of the effort is focused on modifying the
resampling procedure so that it is more suitable for par-
allel implementation and on modifying the algorithm
so that the data exchange between the parallel PEs is
reduced and made deterministic [3].

The GPF has some properties that makes it very
suitable for parallel implementation with multiple PEs.
GPFs do not require a resampling procedure and there-
fore there is no need for exchanging particles between
the PEs. So, the data exchange in GPFs, though not
negligible, is significantly lower than in SIRFs and is
deterministic.

In this paper, the GPF algorithm is first modified
using loop fusion and some additional transformations
so that it is suitable for pipelined hardware implemen-
tation with multiple PEs. These modifications result in
an attractive feature of the GPFs in that they can be im-
plemented without storing particles between successive
time instants. This eliminates the need for memories
in hardware and provides freedom of using a large
number of particles for processing without having con-
straints by memory size. The latter might be important
for embedded applications. In SIRFs, the number of
used particles are restricted by the practical limits on

J Sign Process Syst

memory capacity determined by the available chip area
and speed.

In the paper we also analyze the algorithms and high
level architectures of SIRFs and GPFs from a hardware
implementation viewpoint on the basis of execution
throughput, memory requirements and complexity of
data exchange between CUs and PEs in case of parallel
implementation. The application that is used for the
analysis is the bearings-only tracking problem [12]. We
consider the FPGA design platform for single PE and
multiple PE configurations. We have determined that
SIRFs are more energy efficient for low capacity single
PE implementations and that GPFs are superior in
executing a large number of particles with multiple PEs
and at high sampling frequencies.

The choice between traditional SIRFs and GPFs for
hardware implementation will always involve a tradeoff
[4]. Although GPFs have the aforementioned advan-
tages for parallel hardware implementation, they suffer
from increased complexity due to some operations that
are particular to the GPF algorithm. These include a
more complicated particle generation (sampling) step
as compared to the one of SIRFs, and Cholesky decom-
position of covariance matrices. Complexity analyses of
GPFs and SIRFs are provided as well as elaboration on
how to choose the right filter for an application where
the critical features of the filters are the number of
particles and the model dimension.

A hardware implementation of GPFs is presented
in [16]. In this paper, the original GPF algorithm is
implemented in hardware in pipelined but not parallel
fashion. The paper also provides a novel architecture
and a mapping method for the control path of the
design. This paper is different from [16] in that it shows
algorithmic modifications of GPFs and analyzes differ-
ent algorithmic/architectural parameters of both SIRFs
and GPFs especially for parallel implementation.

The rest of the paper is organized as follows.
Section 2 describes the way the GPF is implemented in
the paper and the main design parameters that are used
for quantifying the performance of the implementation.
Section 3 provides a brief review of the theory of GPFs.
Section 4 presents the proposed modifications of GPFs
and an analysis of the algorithmic complexity of GPFs
in terms of temporal and spatial concurrency. Section 5
discusses implementation issues for sequential and con-
current implementations of both SIRFs and GPFs. A
data flow analysis and high level architecture charac-
terization are given in this section. A lower level com-
parison between SIRFs and GPFs in terms of resource
utilization and speed is presented in Section 6. This
section is intended to give an estimate of the resource

usage and energy consumption of SIRFs and GPFs
based on the algorithm and high level architectures.
Section 7 concludes the paper.

2 Design Metrics and Their Relation to PFs

In order to fulfill the real-time requirements, we con-
sider parallel pipelined implementation of GPFs and
SIRFs on an FPGA platform. Next, we describe several
concepts that are used in the paper.

Concurrency of operation means that different in-
structions or different parts of the instructions can be
executed at the same time on different hardware re-
sources (pipelining) [21]. In order to apply pipelining
efficiently, it is necessary to work with streams of data.
The longer the streams are, the more efficient the
pipelining is because the time overhead associated with
initiating and ending the pipelining is less important.
GPFs and SIRFs are stream based algorithms where the
streams are particles and not the input observations as
it is common with other DSP algorithms.

Data parallelism means that the same instructions
can be executed on different data sets using different
hardware resources. In this paper we analyze algo-
rithms for which we use time-multiplexed hardware for
parts of the algorithms with data dependencies. For
the parts of the algorithm without data dependencies,
the one-to-one mapping method is used, which means
that every operation in the algorithm has its own block
in hardware. One-to-one mapping results in significant
speed improvements if both concurrency of operations
and data parallelism can be utilized.

The reasons (from hardware standpoint) for using
the design of SIRF as a reference are: 1. it has rela-
tively simple independent operations in comparison
with more advanced particle filters, which entails
smaller area requirements and 2. it has a relatively
large number of particles per PE in comparison with
the pipelining depth, and that justifies pipelined and
parallel implementation. In the sequel we show that
the GPF is even better suited for parallel hardware
implementation.

In this paper, we analyze the algorithms and high
level architectures of SIRFs and GPFs from a hardware
implementation viewpoint on the basis of the following
metrics: (a) execution throughput, (b) memory require-
ments, and (c) complexity of data exchange between
CUs and PEs in case of parallel implementation. These
metrics are evaluated against model dimension and
number of used particles. We selected these metrics

J Sign Process Syst

because increasing any of them also increases the com-
plexity of the hardware implementation.

Execution throughput is defined as the input sam-
pling frequency that can be achieved for a specified
number of particles. The main design criterion in this
paper is high speed, so we try to maximize the input
sampling frequency for a given number of particles.
Regarding data exchange, we consider the number of
data exchanges between the CU and the PEs as well as
the type of exchange which can be either deterministic
(known before run time) or random (unknown before
run time). The data exchange in GPFs, though not
negligible, is significantly lower than in SIRFs and is
deterministic. This makes the GPF a better candidate
for parallel implementation. Memory requirements
include the amount of memory that is needed to store
the particles and their weights.

On the implementation side, energy and area re-
quirements for FPGA are analyzed.

3 Theory of Gaussian Particle Filtering

PFs are used in problems which are represented using
DSS models. These models involve a state equation
which shows how the state evolves with time and an
observation equation that relates the noisy observa-
tions to the state. These equations have the form:

xn = fn(xn−1, un)

yn = gn(xn, vn) (1)

where n ∈ N is a discrete-time index, xn is a signal
vector of interest, and yn is a vector of observations.
The symbols un and vn are noise vectors, and fn and
gn are a signal transition function and a measurement
function, which are assumed known. In a particle filter-
ing framework, the objective is to estimate recursively
in time the signal xn, ∀n, from the observations y1:n,
where y1:n = {y1, y2, · · · , yn}.

The particle filters base their operation on repre-
senting relevant densities by particles drawn indepen-
dently from an importance function π(xn|x(m)

n−1, y1:n) that
has the same support as the posterior density. Each
particle has a weight associated with it. Accordingly,
if the particles

{
x(m)

0:n ; m = 1, 2..., M
}

1 are drawn from
the importance function π(x0:n|y1:n), then an estimate
of E(h(x0:n)),

I = E(h(x0:n)) =
∫

h(x0:n)p(x0:n | y1:n)dx0:n (2)

1The notation x(m)
0:n represents the set

{
x(m)

0 , x(m)
1 , · · · , x(m)

n
}
.

where h(x0:n) is some function of x0:n, can be obtained
by the following expression [8, 9]:

ÎM(h) =
M∑

m=1

h
(
x(m)

0:n
)
w(m)

n (3)

w(m)
n = w̃(m)

n
∑M

j=1 w̃
(j)
n

(4)

w̃(m)
n = p

(
y1:n | x(m)

0:n
)

p
(
x(m)

0:n
)

π
(
x(m)

0:n | y1:n
) (5)

where x(m)
0:n denotes the m−th stream of particles of the

unobserved state of the system, y1:n is the sequence of
observed data, and w̃(m)

n is the non-normalized weight
of the m−th particle.

Densities that play a critical role in sequential signal
processing are the filtering density, p(xn|y1:n), and the
predictive density, p(xn+l|y1:n), l ≥ 1. It can be seen
that SIRFs operate by propagating the approximations
of the desired densities recursively in time. GPFs op-
erate in the same way but by making the additional
assumption that the filtering and predictive densities
are Gaussians. In the latter case, therefore, only the
parameters of the densities are propagated recursively
in time (the mean vector and the covariance matrix).
In the implementation of GPFs, Monte Carlo simu-
lations are employed to obtain the estimates of the
necessary density parameters and these estimates are
recursively updated in time [19, 20]. Propagation of the
first two moments only instead of the whole particle
set simplifies the parallel implementation of the GPF
significantly.

The GPF is much easier to implement when the prior
density is used as importance function. This means that
π(xn|xn−1, y1:n) is given by p(xn|xn−1). In this case, the
GPF performs the steps shown in Pseudocode 1.

4 Algorithmic Modifications and Complexity
Characterization

4.1 Temporal Concurrency

It is observed that the GPF contains four loops of M
iterations, where each loop is used for calculation of
one step in Pseudocode 1. Since the results from step
one are used in the following steps, all M values of
the states and weights must be saved in the memory
for further processing. However, all four steps have the

J Sign Process Syst

Pseudocode 1 GPF
algorithm with the prior
density as importance
function.

Input: The observation yn and previous estimates μn−1 and �n−1.
Setup: Mean μ0 and covariance �0 based on prior information.
Method:

GPF - Time update algorithm.
1. Draw conditioning particles from N (xn−1;μn−1, �n−1) to obtain

{
x(m)

n−1

}M
m=1.

2. Generate particles by drawing particles from p
(
xn | x(m)

n−1

)
to obtain

{
x(m)

n
}M

m=1.
GPF - Measurement update algorithm

3. (a) Calculate weights by w̃
(m)
n = p

(
yn | x(m)

n
)
.

(b) Normalize the weights by w
(m)
n = w̃

(m)
n

/ ∑M
m=1 w̃

(m)
n .

4. Estimate the mean and covariance of the filtering distribution by
(a) μn = ∑M

m=1 w
(m)
n x(m)

n

(b) �n = ∑M
m=1 w

(m)
n

(
x(m)

n − μn
)(

x(m)
n − μn

)�
.

same number of iterations and as such they are suitable
for loop fusion [24].

The steps 1, 2 and 3(a) in Pseudocode 1 can be easily
fused. Weight normalization (step 3(b)) requires that
all the weights are known in order to form the sum
of the weights and as such is not appropriate for loop
fusion. However, we can modify the algorithm so that
in calculating the mean and covariance coefficients we
first use the non-normalized weights and perform nor-
malization at the end with the sum of weights Wn. Step
4(b) cannot be fused in its original form since the mean
is not known during the computation of the covariance
coefficients until all of the M particles are processed.
However, this step can be rewritten as follows:

�n = 1

Wn

M∑

m=1

w̃(m)
n x(m)

n x�(m)
n − μnμ

�
n . (6)

The second term on the right is constant, and it can
be calculated outside the loop. The first term of the
modified step 4(b) can be fused with the previous three
steps. The fused steps are presented in Pseudocode 2.
Note that the particles x(m)

n do not need to be saved,
which is advantageous for hardware implementation.
There is additional processing outside the main loop
that is still necessary (Pseudocode 3) and it involves:
final computation of the mean and covariance coef-
ficients (step 2), calculation of the final covariance
coefficients using Eq. 6 (step 3) and performing the
square root of a matrix (step 4). The square root of a
matrix is needed because the Gaussian random number
generation in step 1 of Pseudocode 2 utilizes Cn which
is the square root of the covariance matrix. For that
step, we selected the Cholesky decomposition as one
of the possible solutions for square rooting of a matrix.
In non-parallel implementations (i.e., with a single PE),
step 1 in Pseudocode 3 is not necessary.

4.2 Spatial Concurrency

Spatial concurrency can be exploited for developing
parallel architectures by mapping independent opera-
tions to multiple hardware units that operate in parallel.
While temporal concurrency is exploited for reducing
storage requirement and increasing throughput, spatial
concurrency is exploited to increase throughput only.
The throughput is increased by making all hardware
units operate independently. Spatial concurrency is also
exploited for multiple PEs execution.

It can be seen from the GPF algorithm that the par-
ticle and weight calculation steps for each of the M
particles are independent of the other particles. The
operations of each iteration of the loop in Pseudocode
2 are independent. Moreover the loop does not have
any loop-carried dependence [14]. Thus, the loop level
parallelism can be exploited for increasing throughput.
This is done by having multiple independent PEs each
processing a fraction of the total number of particles.
The number of PEs, K, defines the degree of paral-
lelism. The maximum degree of parallelism is obtained
when each PE consists of only one particle (K = M).

There is dependence among the iterations of the
step related to estimation of the mean and the co-
variance. To parallelize this step, partial sums of the
mean and covariance

(
μk

n and �k
n

)
are calculated by

the PEs and then added in the end in the CU (step 1
of Pseudocode 3). In the pseudocode, quantities with
subscript k represent the result of operations in the
k−th PE. During the final addition of partial sums, the
PEs communicate with the CU and the amount of data
transferred corresponds to the dimension of the state
space model.

In summary, with the modified algorithm, in the
PEs we perform concurrent operations on the parti-
cles whereas in the CU, we carry out sequential post
processing.

J Sign Process Syst

Pseudocode 2 Part of the
GPF algorithm that runs
in parallel on PEs after
loop fusion is applied.
The symbol k denotes
the k−th PE and K
denotes the total
number of PEs.

Input: The observation yn and previous estimates μn−1 and matrix Cn−1 s.t. �n−1 = Cn−1C�
n−1.

For n = 1, mean μ0 and covariance �0 are based on prior information.
Setup: Sum of weight, mean and covariance elements in the k−th PE: Wk

n = 0, μk
n = 0, �k

n = 0.
Method:

for m = 1 to M/K
1. Drawing conditioning particles from N (xn−1;μn−1, �n−1) to obtain x(m)

n−1.

2. Generation of particles: Draw a particle from p
(
xn | x(m)

n−1

)
to obtain x(m)

n .
3. (a) Weight calculation w̃

(m)
n = p

(
yn|x(m)

n
)
.

(b) Update the current sum of weights by Wk
n = Wk

n + w̃
(m)
n .

4. Updating mean μk
n and covariance �k

n by
(a) μk

n = μk
n + w̃nxn

(b) �k
n = �k

n + w̃nxnx�
n .

end

4.3 SIR Algorithm

For the purpose of comparison, we provide the modi-
fied SIR algorithm in Pseudocode 4. Algorithmic mod-
ifications to extract temporal and spatial concurrency
have also been applied to the traditional SIRF. These
modifications have been detailed in [3]. The presented
SIR algorithm is also considered to run in parallel on K
PEs, where each PE processes M/K particles.

4.4 Computational Complexity Characteristic

A comparison of number of operations and memory
requirements for one recursion of SIRFs and GPFs
is shown in Table 1. The number of operations for
particle generation and weight calculation is not pre-
sented because it is the same for both filters. Additional
complexity for GPFs is added due to the generation
of conditioning particles and computation of the mean
vector and covariance matrix of the states. We would
like to stress here that the complexity of these steps is
related to the dimensionality of the model Ns as O(N2

s).
For the GPF, the number of multiplication operations

for the computations of the mean vector and covariance
matrix is equal to Ns(Ns + 1), whereas for the SIRF, the
number of multiplications for calculation of the mean
is Ns. On the other hand, the memory requirements of
SIRFs are dominant. They increase with the increase of
the dimension of the model as shown in [6]. In the table,
(Ns + 2) data per particle are used for storing Ns states,
a weight and an index that is a result of the resampling
process.

In presenting the amount of data exchange required
for SIRFs and GPFs, we consider SIRFs with parallel
resampling described in [3]. In both filters, operations
without data dependencies are mapped to the PEs in
order to allow for parallel processing. In GPFs, these
are the four operations described by Pseudocode 2. In
SIRFs with parallel resampling, the particle generation,
weight calculation and partial resampling are mapped
to the PEs. The parallel architecture for GPFs that
consists of four PEs and the CU is shown in Fig. 1.

For an Ns dimensional model, the amount of
data acquired by the CU from each of the K PEs
is: Ns(Ns + 1)/2 + Ns + 1 = (N2

s + 3Ns)/2 + 1, where
Ns(Ns + 1)/2 is the number of data in the covariance
matrix �(k)

n (which is symmetric), Ns is the number of

Pseudocode 3 Part of the
GPF algorithm that runs
sequentially on the CU
and exchanges data
with K PEs.

Input: Wk
n , μk

n and �k
n for k = 1, ..., K.

Setup: sum of the weights Wn = 0, initial mean μn = 0 and covariance �n = 0.
Method:

1. Collect data including update central sum of weights, mean and covariance
for k = 1 to K

(a) Wn = Wn + Wk
n .

(b) μn = μn + μk
n

(c) �n = �n + �k
n

end
2. (a) Scale mean and covariance

(a) μn = μn/Wn

(b) �n = �n/Wn

3. Compute the covariance estimate �n = �n − μnμ�
n

4. Compute the Cholesky decomposition of the matrix �n in order to obtain Cn.

J Sign Process Syst

Pseudocode 4 The SIR
algorithm with concurrent
operations on the
PEs and sequential
operations on the CU.

Input: The observation yn and previously resampled particles
{
x̃(m)

n−1

}M/K
m=1 .

Setup: Initial sum of weights Wk
n = 0.

Method:
PE Operation CU Operation
for m = 1 to M/K

1. Draw a particle x(m)
n from p

(
xn|x̃(m)

n−1

)
.

2. Calculate weights by w̃
(m)
n = w

(m)
n−1 · p

(
yn|x(m)

n
)
.

3. Update the partial sum
of weights by Wk

n = Wk
n + w̃

(m)
n

end
4. Transfer Wk

n for k = 1, ..., K to the CU
5. Compute the total sum Wn

6. Compute the number of particles
each PU will produce after
resampling as Mk

n = �Wk
n · M/Wn�

7. The CU sends Mk
n for k = 1, ..., K

to the PEs
8. Resample M/K particles to obtain

a new set of particles
{
x̃(m)

n
}Mk

n
m=1 and w

(m)
n = Wk

n · K/(Wn · M) .
9. Redistribute the particles x̃(m)

n

from the PEs with surplus
to PEs with deficit of particles.

data in the mean vector μ(k)
n , and 1 corresponds to the

sum of weights W(k)
n . The CU sends back to the PEs

the calculated mean μn and the Cholesky factorization
Cn of the final covariance matrix. This is an additional
Ns(Ns + 1)/2 + Ns data. Since, the same data are sent
to each PE, it is beneficial to use mechanisms that
allow for simultaneous transfer of data from the CU
to all the PEs. For the bearings-only tracking problem,
when there is one target, Ns = 4, so the number of data
sent from each PE to the CU is 15 and the number
of data sent from the CU back to the PEs is 14. This
data exchange is depicted in Fig. 1. Overall, however,
the number of data that are transferred during data
exchange is much smaller than in the case of SIRFs, and
it is fixed over time. This feature greatly increases the
scalability [14] of the filter and also ensures that data
exchange is never the dominant operation of GPFs.
In contrast, in the worst case of SIRFs, M/2 particles
are sent during data exchange [3].

The complexity characteristics of SIRFs and GPFs
are summarized in Table 2. In the table, the effects

of the increase in model dimension on different par-
ticle filter parameters are shown together with their
resources requirements. The summary of the effects is
as follows:

1. For GPFs, the number of operations per particle
increases quadratically with model dimension. This
significantly affects the complexity of the units for
drawing conditioning particles and covariance es-
timation as well as the complexity of the CU. For
SIRFs, the number of operations increases linearly
with the model dimension.

2. The number of particles needed to achieve a re-
quired accuracy increases with the model dimen-
sion and that affects the sampling periods of both
SIRFs and GPFs. However, SIRFs are more af-
fected since there is an additional time for accessing
the memories. There is a significant area increase
in the spatial implementation of SIRFs, because
physical memories are necessary to store particles
and weights.

Table 1 Comparison of the number of operations and memory requirements of SIRFs and GPFs in a PE.

Algorithms Gaussian random Multiplication operations Memory requirements
number generator Drawing conditioning particles Computation of estimate

GPF 2Ns M Ns(Ns + 1)M/2 Ns(Ns + 1)M 0
SIRF Ns M 0 Ns M (Ns + 2)M

One sampling period of PF is analyzed. The operations that are the same in the particle generation and weight calculation steps are not
considered.

J Sign Process Syst

PE1

PE4

PE2

PE3

CU

Figure 1 A parallel GPF model with K = 4 PEs.

3. For GPFs, the data exchange requirements increase
quadratically with the model dimension, but the
amount of data that is transferred between the PEs
and the CU is several orders of magnitude lower
than that for SIRFs. Besides, the data exchange
pattern of GPFs is deterministic.

4. For GPFs, the complexity of mathematical op-
erations increases resulting in a very large word
length for finite precision processing. In such cases,
floating point implementation is the more feasible
option which implies requirements for increased
area and/or increased sampling period. The finite
precision processing of SIRFs is less affected by the
increase in model dimension.

5 Implementation Issues

5.1 Latency and Sampling Period

Figure 2 shows the timing diagrams with the latencies
of various operations of SIRFs and GPFs including the
data transfer. For the GPF, the outputs of the first
three logic blocks of the data flow are generated at
clock speed, while the output of the updating mean
and covariance block (step 4 in Pseudocode 2) and the
output of the CU are generated with the PF sampling
speed. In case of the SIR, the results of steps 1–4 in

Pseudocode 4 are calculated at clock speed while the
output of the resampling unit in step 5 is calculated at
the PF sampling speed. The minimum sampling period
that can be achieved with parallel SIRFs and GPFs
for different number of particles and PEs is presented
in Fig. 3. For SIRFs whose resampling is distributed
to the PEs, the minimum sampling period that can be
achieved is

(
2M
K + LSI R + Ldex(M)

) · Tclk, where 2M
K +

LSI R is the latency of processing in the PEs. This is
because each PE processes M/K particles, and it does
sampling and weight calculation on each particle. After
the summation of the weights of each PE is completed,
the CU takes all the sums and computes the number of
particles that each PE must produce after resampling
[4]. The latency of the CU resampling is a function
of the number of PEs represented by LCUr(K). Once
this processing is completed, another M/K cycles are
needed to perform resampling in each PE. The term
LSI R = ∑3

i=1 Li + LCUr(K) accounts for the start up
latencies of each block and is inherent to any pipelined
feed forward data path. The Ldex(M) represents the
latency of the data exchange after particle allocation,
which takes place in order to redistribute particles after
resampling.

In the case of GPFs, the minimum sampling period is(M
K + LGPF + C

) · Tclk, where, LGPF is the net latency
of the critical path. The latency LGPF = ∑3

i=1 Li ac-
counts for the start up latencies of the various blocks
inside the PEs. The constant term C = ∑6

i=4 Li ac-
counts for the latency of both the CU and the data
exchange between the PEs and the CU. Thus, we see
that though GPFs have a larger constant latency of
the CU, for large number of particles the latency of
the GPFs will be smaller than that of SIRFs. This is
primarily because SIRFs require resampling, which is
not only sequential and dependent on the result of
processing all the particles in the PE, but also necessi-
tates particle redistribution that has an execution time
proportional to M. In our simulations, we assume that
the clock period is equal for both filters Tclk = 10ns
and that LGPF = 3 · LSI R = 300 and Ldex(M) = 0 for
SIRF. In Fig. 3, the minimum execution time for SIRFs
is presented by black line and for GPFs by gray line.
The large total latency affects the scalability of GPFs

Table 2 The effect of the
number of particles and the
number of states in the model
on number of operations,
number of particles, number
of data exchanged and finite
precision wordlength.

Parameter Effects on algorithmic parameters

SIRF GPF

Number of operations Linear increase with the Ns Quadratic increase with Ns

Number of particles Increase with model dimension as in [6]
Data exchange Proportional to M Proportional to N2

s
Finite precision Increase with the number and complexity of operations

word length

J Sign Process Syst

(a) SIRF Timing (b) GPF Timing

Figure 2 Timing diagrams for a SIRF and b GPF.

when M is small. On the other hand, when M is large,
the sampling period of GPFs is almost twice smaller
than the one of SIRFs. Hence GPFs are appropriate
for high speed applications that require large number
of particles on platforms that have enough resources for
spatial parallel implementation.

5.2 Architectures and Resource Requirement

We consider spatial implementations of PFs applied
to bearings-only tracking [12], with a one-to-one map-
ping between each operation and the hardware re-
source. The range of tracking is restricted to the region
[−2, −2] × [2, 2] resulting in a 16-bit representation of
the hidden states. We use the mean square error (MSE)
of tracking as a performance evaluation criterion for
fixed precision analysis, where the error due to finite
precision arithmetic is kept within the limits of ±10%
of the floating point value. Our simulations indicate

1

10

100

1000

0 5 10 15 20 25 30 35

Number of processing elements

S
am

pl
e

pe
rio

d
(u

s)

SIRF (M=500)
SIRF (M=5000)
SIRF (M=50000)
GPF (M=500)
GPF (M=5000)
GPF (M=50000)

Figure 3 Minimum sampling period versus number of PEs of
parallel GPFs and SIRFs for M = {500, 5000, 50000}. Spatial
implementation of PFs is assumed.

that the steps 1–3 in Pseudocode 2 are less sensitive to
finite precision effects. The MSE within defined limits is
achieved using 16 bit representations for the operations
of these steps. However, step 4 in Pseudocode 2 and all
the steps of Pseudocode 3 are very sensitive to finite-
precision effects. One of the operations is Cholesky
decomposition which requires that the input matrix is
positive definite, a condition that may not be satisfied
for representations which use small number of bits. In
order to alleviate this problem, 40 bits of precision are
necessary for operations in step four of Pseudocode 2.
Similarly, all the operations that are executed in the CU
(Pseudocode 3) require more than 50 bits.

Figure 4 shows the basic architecture of the GPF’s
PE, where each operation in the algorithm has a
dedicated hardware unit. The steps of drawing condi-
tioning particles and particle generation require four
and two random number generators (RNGs), respec-
tively. These RNGs produce Gaussian random num-
bers with properties as per the requirement of the
model. The RNGs are based on a look up table
approach detailed in [10]. Inputs of the drawing con-
ditioning particles steps are the 16-bit mean vector and
covariance matrix from the CU and 16-bit inputs from
the RNGs. The particle generation step comprises of
taking the conditioning particles which contain four
16-bit buses and producing final particles (four 16-bit
buses) which are the inputs for weight generation and
updating of the mean and the covariance matrix. The
weight calculation takes also input observations (16-bit
bus) at its input and computes the 16-bit weights. In
this step, the calculation of the exponential and arctan-
gent functions is attained by using Coordinate Rotation
Digital Computer (CORDIC) algorithms [27]. The out-
put and the internal operations of the updating of

J Sign Process Syst

Noise 1

Noise 4

Noise 3

Noise 2

Drawing
conditioning

particle

Particle
generation

Noise X

Noise Y

Weight
calculation

and
accumulate

Update
Covariance

Matrix

Update
Mean

Chol. dec
cov. matrix
from CU

Mean
from CU

To CU

Input
Observation

Figure 4 Architecture of a GPF’s PE.

the mean and covariance matrix are represented using
40 bits. Since there are 14 40-bit outputs which are
generated once in a recursion, we assume a single
40-bit bus that connects the PE and the CU.

The PEs calculate the covariance and mean coeffi-
cients in one clock cycle, and so a fully spatial design is
used for them. The percentage of required resources for
the hardware blocks of PEs is shown in Fig. 5. We used
the Xilinx Virtex II pro FPGA platform [29] to estimate
the resource and area requirements. The considered
resources are the number of occupied slices and the
number of used block multipliers. The only reason

0

10

20

30

40

50

60

70

80

90

100

Random number
gen.

Time update Sample Importance Estimate

Slices (%)
Multiplier blocks (%)

Figure 5 Percentage of number of slices and multipliers of each
block in PEs estimated for Xilinx Virtex II Pro chips.

for domination of the step in which the covariance
matrix and mean are estimated, is the large number
of bits used for fixed point representation. To be able
to calculate four mean and 10 covariance coefficients
per clock cycle, 14 multipliers are required. With a 40-
bit representation, each multiplier occupies 9 multiplier
blocks each with 18 × 18 bits on the Virtex II Pro chip.
However, for lower dimensional models, the ratio of
resources in hardware blocks will look different. For
example, for two dimensional tracking models only
three covariance coefficients and two mean coefficients
are necessary for estimation, while the importance step
is almost the same. In this case, the area of the impor-
tance step would dominate.

The operations that take place in the CU are
sequential due to data dependency and have compu-
tationally intensive tasks such as square rooting, divi-
sion, multiplication and addition. Thus, the CU is a
good candidate for time-multiplexed implementation
where hardware resources are shared in time by various
operations. This implementation minimizes hardware
without degrading execution throughput. We estimate
that the overall sampling frequency of the GPF is re-
duced about 4% for time-multiplexed implementation
in comparison to spatial implementation. However,
area saving in the CU is about 90%.

With a very tight performance criterion, the neces-
sary precision of the GPF’s CU is more than 50 bits.
This is because the coefficients of the covariance matrix
are very small and their truncation may entail violation
of the positive definiteness of the covariance matrix. If
there is a violation, the matrix cannot be decomposed
and hence the recursion cannot proceed. So, when
the CU is realized with the floating-point library [7]
of Xilinx II Pro for estimating the area and latency,
the clock frequency of the slowest floating point block
(divider) is twice less than the speed of the slowest

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 5000 10000

Number of particles

E
n

er
g

y
(m

J)

15000 20000 25000

5kHz-GPF

1kHz-GPF

5kHz-SIRF

1kHz-SIRF

Figure 6 Energy versus number of particles for SIRFs and GPFs
with a single PE for different maximum sampling rates.

J Sign Process Syst

0.5

0.45

0.4

0.35

0.3

0.25

0.2

E
n

er
g

y
(m

J)

0.15

0.1

0.05

0
0 2000 4000 6000 8000

Number of particles
10000 12000 14000

50kHz-GPF

10kHz-GPF

50kHz-SIRF

10kHz-SIRF

Figure 7 Energy versus the number of particles for SIRFs and
GPFs implemented with four PEs for different maximum sam-
pling rates.

synthesized fixed-point block using 50 bits precision.
For a GPF implemented by a single PE with M = 5000
particles, the sampling frequency is decreased 1.0167
times, the latency is increased 1.3 times, and the logic
area is increased 1.02 times in comparison with the area
of the PF with a time multiplexed CU that uses 50-bits
precision fixed-point arithmetics. Thus, the floating
point implementation is an alternate solution when the
maintenance of precision is the key issue. Then the
throughput and area are not affected significantly.

6 Comparisons and Tradeoffs Between SIRFs
and GPFs

6.1 Energy with Speed Constraints

The modeling of high-level energy is performed on a
module level by estimating the power functions of the
elements associated with each module such as adders,

multipliers, registers or memories. The power for each
module is initially estimated using the Xilinx Spread-
sheet Power Tools and verified using Xilinx XPower.

The energy of a single PE implementation of
SIRFs and GPFs calculated for a PF sampling pe-
riod is shown in Fig. 6. The filters are applied to the
bearings-only tracking problem. The energy is esti-
mated for various number of particles (M = {500, 1000,

2000, 5000, 10000, 15000, 20000, 25000}) and for vari-
ous maximum sampling frequencies (fs = {1, 5}kHz).
The minimum depth of pipelining of the functional
blocks that satisfies a given sampling frequencies is
calculated and applied in order to reduce energy. There
were 16 bits for all SIRF variables and steps 1–3 of
Pesudocode 2 for the GPF. Step 4 of Pseudocode 2
and all the steps in Pseudocode 3 are represented in
fixed point with 40 bits. The operating clock frequency
is defined by the speed of the CORDIC which is
the slowest individual unit in the data path. For our
analysis, the clock frequency is set to 100 MHz. From
Fig. 6, it is clear that for smaller number of particles
and lower frequencies, SIRFs dissipate less energy than
GPFs. It is important to note that with the increase
of number of particles, the energy of SIRFs becomes
comparable and even higher than the energy of GPFs
(for more than 17,000 particles). There are two reasons
for faster increase of the energy in SIRFs. Since SIRFs
are memory dominant, with the increase of number of
particles, the size of memory increase results in higher
energy. Secondly, the number of operations of the
CU of SIRFs is a function of M, while for GPFs the
number of operations of the CU is a constant, so that
the energy of the CU of SIRFs increases linearly and
the energy of GPFs stays constant.

SIRF implementations with a single PE cannot
achieve higher requirements such as processing of

0

1

2

3

4

5

6

7

8

9

10

1000 2000 5000 10000 15000

Number of particles

N
u

m
b

er
 o

f
lo

g
ic

 s
lic

es
(*

10
00

0)

10kHz-SIRF

50kHz-SIRF

100kHz-SIRF

10kHz-GPF

50kHz-GPF

100kHz-GPF

(a) Area of SIRFs and GPFs

0

100

200

300

400

500

600

1000 2000 5000 10000 15000
Number of particles

N
u

m
b

er
 o

f
b

lo
ck

 R
A

M
s

10kHz-SIRF

50kHz-SIRF

100kHz-SIRF

10kHz-GPF

50kHz-GPF

100kHz-GPF

(b) Memory of SIRFs and GPFs

Figure 8 a Area in the number of slices and b number of block RAMs versus number of particles. The area is evaluated for different
sampling frequencies and for necessary number of PEs so that the PFs satisfy sampling frequency requirements.

J Sign Process Syst

10,000 particles at 5 kHz. The energy for the parallel
implementation of SIRFs and GPFs which utilize mul-
tiple PEs is presented in Fig. 7. The energy of SIRFs
is calculated for the worst case data exchange among
PEs and the CU which corresponds to transferring
[M − M/K] particles. The data exchange is modeled
using a shared memory. Again, we can see that the
energy of SIRFs is lower than the energy of GPFs when
the number of particles is low. However, for 15,000
particles and 1kHz sampling speed, the energy of SIRFs
is higher than the energy of GPFs.

6.2 Area Requirement in FPGA

We also evaluated and compared the area requirements
of SIRFs and GPFs. Resource requirements are repre-
sented using the number of Virtex II Pro logic slices
and block RAMs (Fig. 8). Here, the area is evaluated
for various number of particles and various sampling
frequencies. The number of PEs is adaptively changed
so that the PFs meet the sampling frequency require-
ments. For example, for SIRFs with M = 5000 and fs =
1 kHz we choose an implementation with 2 PEs because
they are necessary to satisfy the requirements. The
GPF algorithm does not contain memory for storing
particles. However, it uses one block RAM per random
number generator for implementing the Box-Muller
method. From Fig. 8a and b, it is clear that SIRFs are
memory dominated and GPFs are logic dominated.

7 Conclusion

In this paper, we proposed a physically realizable GPF
algorithm and analyzed its design complexity. The pro-
posed GPF allows for an implementation without stor-
ing particles in memories. We considered designs with
FPGAs and provided results that facilitate the selection
of PFs for various operating conditions and filter para-
meters. We indicated that SIRFs are memory limited
whereas GPFs are logic limited. SIRFs are more energy
efficient for low capacity single PE particle filtering,
and GPFs are superior in both energy and in executing
a large number of particles with multiple PEs at high
sampling frequencies.

References

1. Bar-Shalom, Y., Rong Li, X., & Kirubarajan, T. (2001). Esti-
mation with applications to tracking and navigation: Theory,
algorithms and software. New York: Wiley.

2. Bolić, M., Djurić, P. M., & Hong, S. (2004). Resampling
algorithms for particle filters: A computational complexity
perspective. EURASIP Journal of Applied Signal Processing,
15, 2267–2278.

3. Bolić, M., Djurić, P. M., & Hong, S. (2005). Resampling
algorithms and architectures for distributed particle fil-
ters. IEEE Transactions on Signal Processing, 53(7), 2442–
2450.

4. Bolić, M., Athalye, A., Djurić, P. M., & Hong, S. (2004). Al-
gorithmic modification of particle filters for hardware imple-
mentation. In Proceedings of the European signal processing
conference (pp. 1641–1646), Vienna, Austria.

5. Clark, D., Vo, B.-T., & Vo, B.-N. (2007). Gaussian particle
implementations of probability hypothesis density filters. In
The proceedings of the IEEE aerospace conference.

6. Daum, F., & Huang, J. (2002). Curse of dimensionality and
particle filters. In Fifth ONR/GTRI workshop on target track-
ing and sensor fusion. Newport, RI, June 2002.

7. Digital Core Design Inc. (2009). Pipelined floating point
libraries. www.dcd.pl.

8. Doucet, A., de Freitas, N., & Gordon, N. (Eds.) (2001).
Sequential Monte Carlo methods in practice. New York:
Springer.

9. Doucet, A., Godsill, S. J., & Andrieu, C. (2000). On sequen-
tial Monte Carlo sampling methods for Bayesian filtering.
Statistics and Computing, 10, 197–208.

10. Danger, J. L., Ghazel, A., Boutillon, E., & Laamari, H.
(2000). Efficient FPGA implementation of Gaussian noise
generator for communication channel emulation. In Pro-
ceedings of IEEE ICECS conference (pp. 366–369). Laslik,
Lebanon.

11. Ghirmai, T. (2007). Gaussian particle filtering for track-
ing maneuvering targets. In The proceedings of the IEEE
SoutheastCon (pp. 439–443).

12. Gordon, N. J., Salmond, D. J., & Smith, A. F. M. (1993).
A novel approach to nonlinear and non-Gaussian Bayesian
state estimation. IEE Proceedings F, 140, 107–113.

13. Hao, Y., Xiong, Z., & Hu, Z. (2006). Particle filter for INS
in-motion alignment. In The proceedings of the 1ST IEEE
conference on industrial electronics and applications.

14. Hennessy, J. L., & Patterson, D. A. (2006). Computer archi-
tecture: A quantitative approach (3rd ed.). San Mateo: Mor-
gan Kauffmann Publishers.

15. Hong, S., Chin, S.-S., Djurić, P. M., & Bolić, M. (2006). De-
sign and implementation of flexible resampling mechanism
for high-speed parallel particle filters. The Journal of VLSI
Signal Processing, 44, 47–62.

16. Hong, S., Djurić, P. M., & Bolić, M. (2005). Simplifying
physical realization of Gaussian particle filters with block
level pipeline control. EURASIP Journal of Applied Signal
Processing, 4, 575–587.

17. Howland, P. E. (1999). Target tracking using television-based
bistatic radar. IEE Procedings, Radar, Sonar and Navigation,
146(3), 166–174.

18. Julier, S. J., & Durrant-Whyte, H. F. (1995) Navigation and
parameter estimation of high speed road vehicles. In Robotics
and automation conference, Japan (pp. 101–105).

19. Kotecha, J. H., & Djurić, P. M. (2003). Gaussian particle
filtering. IEEE Transactions on Signal Processing, 51(10),
2592–2601.

20. Kotecha, J. H., & Djurić, P. M. (2003). Gaussian sum parti-
cle filtering. IEEE Transactions on Signal Processing, 51(10),
2602–2612.

21. Kumar, M.. (1988) Measuring parallelism in computation-
intensive scientific/engineering applications. IEEE Transac-
tions on Computers, 37(9), 1088–1098.

http://www.dcd.pl

J Sign Process Syst

22. van Lawick van Pabst, J., & Krekel, P. F. (1993). Multisensor
data fusion of points, line segments and surface segments in
3d space. In P. S. Schenker (Ed.), Sensor Fusion VI, SPIE
Proceedings (Vol. 2059). Pasadena: Jet Propulsion.

23. Ristić, B., Arulampalam, S., & Gordon, N. (2004). Beyond
the Kalman filter: Particle filters for tracking applications.
Cormano: Artech House.

24. Shiva, S. G. (1996). Pipelined and parallel computer architec-
tures. London: Harper Collins College.

25. Uhlmann, J. K. (1994). Simultaneous map building and local-
ization for real-time applications. Technical report, University
of Oxford.

26. Vemula, M., Bugallo, M. F., & Djurić, P. M. (2007).
Performance comparison of Gaussian-based filters using
information measures. IEEE Signal Processing Letters,
14(12), 1020–1023.

27. Volder, J. (1959). The CORDIC trigonometric computing
technique. IRE Trans. Electronic Computing, EC-8, 330–334.

28. Wu, Y., Hu, X., Hu, D., & Wu, M. (2005). Comments on
Gaussian particle filtering. Transacations on Signal Process-
ing, 53(8), 3350–3351.

29. Xilinx Inc. (2003). Virtex-II Pro Patforms FPGA: Functional
description. www.xilinx.com.

30. Zhang, Y., & Dai, H. (2007). Dynamic self-calibration in
collaborative wireless networks using belief propagation with
Gaussian particle Filtering. In Proceedings of the 41st an-
nual conference on information sciences and systems, CISS
(pp. 771–776).

Miodrag Bolić is an associate professor at School of Information
Technology and Engineering at the University of Ottawa. He
received his B.Sc. and M.Sc. degrees in electrical engineering
from the University of Belgrade, Serbia in 1996 and 2001 and
his Ph.D. degree in electrical engineering from Stony Brook
University, U.S. in 2004. He has over 7 years of industrial expe-
rience related to embedded system design, instrumentation and
signal processing. His research interests include computer archi-
tectures, hardware accelerators, signal processing for biomedical
applications and RFID. He is a director of Radio Frequency
Identification Systems Laboratory and Computer Architecture
Research Group at the University of Ottawa.

Akshay Athalye received his Ph.D. in Electrical Engineering
from the State University of New York, Stony Brook in 2007.
His research interests lie in the development of dedicated hard-
ware for signal processing applications. His work encompasses
algorithm design, architecture development, and use of recon-
figurable SoC design for various real-time signal processing ap-
plications. His secondary research interests lie in design and
implementation of algorithms for efficient signal processing in
RFID systems. He is currently a Research Associate at the
Center of Excellence in Wireless in Information Technology
(CEWIT) at Stony Brook, NY. He is also a co-founder of As-
traion LLC, a Stony Brook, NY based start-up company working
on the development of innovative RFID systems for a wide
range of applications. He has served as an External Reviewer
for various journals and conferences affiliated to the IEEE and
EURASIP.

Sangjin Hong received the B.S and M.S degrees in EECS from
the University of California, Berkeley. He received his Ph.D in
EECS from the University of Michigan, Ann Arbor. He is cur-
rently with the department of Electrical and Computer Engineer-
ing at Stony Brook University - SUNY. Before joining SUNY, he
has worked at Ford Aerospace Corp. Computer Systems Division
as a systems engineer. He also worked at Samsung Electronics
in Korea as a technical consultant. His current research inter-
ests are in the areas of low power VLSI design of multimedia
wireless communications and digital signal processing systems,
reconfigurable Systems on Chip design and optimization, VLSI
signal processing, and low-complexity digital circuits. Prof. Hong
served on numerous Technical Program Committees for IEEE
conferences. Prof. Hong is a Senior Member of IEEE. He is also
a member of Eta Kappa Nu and Tau Beta Pi Honor societies.

http://www.xilinx.com

J Sign Process Syst

Petar M. Djurić received his B.S. and M.S. degrees in electrical
engineering from the University of Belgrade, in 1981 and 1986,
respectively, and his Ph.D. degree in electrical engineering from
the University of Rhode Island, in 1990. From 1981 to 1986 he
was a Research Associate with the Institute of Nuclear Sciences,
Vinča, Belgrade. Since 1990 he has been with Stony Brook
University, where he is Professor in the Department of Electrical
and Computer Engineering. He works in the area of statistical
signal processing and his primary interests are in the theory of
modeling, detection, estimation, and time series analysis and its
application to a wide variety of disciplines including wireless
communications and biomedicine. Prof. Djurić has been elected
Distinguished Lecturer of the IEEE Signal Processing Society.
He has also been on the Editorial Boards of several journals. In
2007, he received a paper award for a paper published in the
IEEE Signal Processing Magazine. Prof. Djurić is a Fellow of
IEEE.

	Study of Algorithmic and Architectural Characteristics of Gaussian Particle Filters
	Abstract
	Introduction
	Design Metrics and Their Relation to PFs
	Theory of Gaussian Particle Filtering
	Algorithmic Modifications and Complexity Characterization
	Temporal Concurrency
	Spatial Concurrency
	SIR Algorithm
	Computational Complexity Characteristic

	Implementation Issues
	Latency and Sampling Period
	Architectures and Resource Requirement

	Comparisons and Tradeoffs Between SIRFs and GPFs
	Energy with Speed Constraints
	Area Requirement in FPGA

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

