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Abstract—Model assessment is a fundamental problem in sci-
ence and engineering and it addresses the question of the validity of
a model in the light of empirical evidence. In this paper, we propose
a method for the assessment of dynamic nonlinear models based
on empirical and predictive cumulative distributions of data and
the Kolmogorov–Smirnov statistics. The technique is based on the
generation of discrete random variables that come from a known
discrete distribution if the entertained model is correct. We pro-
vide simulation examples that demonstrate the performance of the
proposed method.

Index Terms—Cumulative distributions, Kolomogorov–Smirnov
statistics, model assessment, particle filtering, predictive distribu-
tions.

I. INTRODUCTION

I N many science and engineering applications, we use
models, which we consider correct, and we make decisions

and/or draw conclusions based on the models. If we have a set
of models to choose from and we do not know which model
is the best one (given a certain criterion), we proceed with a
model selection procedure [2], [20]. Often, however, we have
only one model, and then we may simply want to know whether
the model is good or not. We refer to this problem as model
assessment. If the model is not good, we continue by proposing
a modified one. It is clear that the assessment of the plausibility
of a model is a fundamental problem. Areas where it is of great
interest include robotics, telecommunications, control, speech
processing, climatology, epidemiology, geology, astrophysics,
econometrics, and finance.

Suppose that we have a model for a vector of observa-
tions described by the likelihood and the prior
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, where is a vector of model parameters. For the joint
distribution of and given the model , we can write

(1)

where the symbol denotes proportionality. The first factor on
the right side of the proportionality sign in (1) is the posterior of

given the observed data and the model , and the second
one is the predictive distribution of the data given the model

. In much of the literature the emphasis has been on the first
factor, which is essential for parameter estimation. We point
out that even if the model were incorrect, it would be im-
possible to detect its incorrectness from the first factor [5]. The
second factor , however, can be used for model assess-
ment. In particular, one would seek some function of the data ,

,1 and would construct statistics of that function under the
assumption that the model is correct. For instance, the function
could simply be the sample average or a moment coefficient.
The underlying idea is that would have unusual values if
the model is not correct [5].

There is a class of tests for model assessment which are
based on statistics derived from empirical distribution func-
tions [28]. In this paper we propose to use one of them, the
Kolmogorov–Smirnov (KS) statistic, which we apply to the
construction of . Our method is based on processing the
observations one at a time. After an observation becomes
available, we transform it to produce a KS distance measure,
and all the distances computed up to that time are used for
testing whether the model should be rejected.

Mathematically, we formulate the problem as follows. We de-
fine the model by using the set of equations

(2)

(3)

where

is a discrete time index;

is the unknown state of the system
at time instant ;

is a scalar observation;

is a state noise vector with known
distribution;

is an observation noise vector with
known distribution;

1We note that ���� is a function of the data ��� and not a probability distribution
function of ���.
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is a known function;

is a known function.

We also assume that the initial distribution of the state
is known. The objective is to develop a sequential methodology
for assessing the validity of .

We point out that a more general description of the model
would include unknown constant parameters both in the state
and observation equations. Here we do not include them for pre-
sentation purposes and for avoiding distraction from the main
contribution of the paper.

The remaining of the paper is organized as follows. In
Section II, we briefly review some standard model validation
methods from the literature and give some basic background
on the Kolmogorov-Smirnov family of tests. We introduce the
proposed method in Section III and follow up with a discus-
sion of some relevant implementation issues in Section IV. In
Section V, we show illustrative computer simulation results
and, finally, in Section VI we provide conclusions of our work.

II. BACKGROUND

In this section, we first review some methods for model as-
sessment and then recall some basics of the KS statistics.

A. Methods for Model Assessment

The classical approaches for model assessment are based on
standard test statistics derived from reference distributions that
are independent of the unknown model parameters. The litera-
ture on model assessment is rich, especially on assessing linear
regression and generalized linear models, where the test is often
known as test for goodness of fit.

In this paper, the objective is to develop a methodology for
assessing dynamic models. Unlike the assessment of linear re-
gression and generalized linear models, the assessment of dy-
namic models has received much less attention. A quantity that
plays an important role in assessments is the predictive distri-
bution of the observations. In [14], the statistics for assessment
are given by the normalized and recursive residuals defined by

where is the expectation of given the past
observations and the model , and is the
conditional standard deviation of .2 Under the hypothesis that
the model generates the data, the residuals are indepen-
dent and identically distributed (i.i.d.) samples from a standard
Gaussian distribution. This entails that one can use one of the
numerous tests that exist in the literature for deciding whether
the are indeed distributed as predicted by the model. For ex-
ample, if is correct, the sum of squared residuals

has a distribution with degrees of freedom. In testing ,
one can then apply one of several tests, for instance, Pearson’s

2We denote scalar random variables with capital letters and their values
with small letters. The notation � signifies the set of observations
�� � � � � � � � � �.

test [21]. For more on the subject of testing the residuals ,
see [6].

In [27], an assessment method was proposed based on the
one-to-one transformation of the distribution into
a uniform distribution on the dimensional hypercube via [23]

(4)

where the are outcomes of independent uniform random
variables on , and

is the one-step-ahead predictive cumulative
distribution function (CDF) of given the observations
and the model .3 The uniform random variables are then
converted to Gaussians by the transformation ,
where stands for the standard Gaussian CDF. Thus, if the
model is correct, we have a sequence of i.i.d. standard normal
random variables [23]. It is important to note that this is true
even if the CDF of in (4) is not Gaussian. For testing the
Gaussianity of one may apply the Shapiro–Wilk [24], [25],
or the Bowman–Shenton [4] tests, or, for testing independence,
the Ljung–Box test [17].

The work from [27] was also extended in [15], where it was
assumed that the model had additional unknown parameters.
The unknowns had to be integrated out, and for integra-
tion, the authors proposed the use of Markov chain Monte
Carlo (MCMC) methods. MCMC sampling had to be employed
at every time instant, which is impractical for large data sets.

The method from [27] was further exploited in [11], where
the standard normal random variables used for testing the ade-
quacy of the model were estimated by MCMC and importance
sampling. The advantage of [11] over [15] is that MCMC sam-
pling is run only for a small percentage of the data.

Further use of the method from [27] can be found in [15]
and [29] in the context of modeling stochastic volatility and
speech signals, respectively. There, the estimation of

was implemented by sequential Monte Carlo
methods. A similar approach was also suggested in [1].

B. Kolmogorov–Smirnov Tests

The classical one-dimensional KS tests belong to the class
of nonparametric tests, and they measure disagreement between
two CDFs by using the largest absolute difference between them
[3], [22]. These distances are referred to as KS statistics. In gen-
eral, there are two types of KS tests, known as one-sample and
two-sample KS tests. The former create an empirical CDF from
available data and compare it to a reference CDF. The latter form
empirical CDFs from two sets of data and compare the obtained
CDFs. Under the null hypothesis, one can obtain the distribution
of the KS statistic and then apply it for testing the null hypoth-
esis.

In our work, we use the two-sample KS test and therefore we
explain it in more detail. Let us consider two sets of samples

and , which are i.i.d. ac-
cording to some continuous probability distributions and

, where and denote the CDFs of and , re-
spectively. We want to test the null hypothesis , where

3The notation � ��� indicates the probability of the event �.
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We note that the test does not postulate anything about the distri-
butions of the data except that they are continuous distributions.

From the samples, we construct the empirical distributions
and , where and are the numbers of samples

available for constructing the respective distributions, and test
for their agreement by using the KS statistic defined by

The hypothesis of equal CDFs is rejected at level if [22]

where is a threshold that satisfies

One can obtain the relevant thresholds from tables. In [18] there
are tables for small and , and from [26] one can use limiting
results to obtain thresholds for large and .

In the rest of the paper, we use data sets with and
, and so we study this case. Even though it may seem

disadvantageous to apply the KS test in this extreme scenario,
we will see that, in fact, it provides some benefits. Since in the
sequel we always have and is known from the con-
text, we simplify the notation and denote the KS distance
simply as .

III. MODEL ASSESSMENT

A. Preliminary Results

Before we proceed, we state two propositions, where we as-
sume that the data and come from con-
tinuous distributions.

Proposition 1: The support of the KS statistic is given by
.

Proof: Let denote the single sample from which the
empirical CDF is constructed. Since for all

and for all , it is apparent that

The equation above directly implies that , because
for all . Moreover, and

cannot be smaller than 0.5 simultaneously, hence .

Proposition 2: If and , are i.i.d.
samples from the same distribution, we have the equation shown
at the bottom of the page.

Proof: Let
be the set of samples that are smaller than and let
be the number of such samples (obviously, ).
Since are i.i.d. samples, the values of are,
a priori, equally probable. In particular, there are dif-
ferent ways in which the samples can be
ordered and the value of depends on the relative position of

after the samples are sorted out (e.g., if is the smallest
sample, then and if there is exactly one , then

). However, given the relative position of , there are
still different ways in which the remaining samples can be
ordered. Therefore,
for every , i.e., is a realization of a discrete
uniform random variable, .

Moreover, the realization determines the value of
, i.e., , and, as a consequence, the

value of . To be precise, assume first that is odd. Then

which implies that there are two different outcomes of
that result in the same value of . Specifically, for every

, both and yield .
Therefore,

If we assume that is even, the same argument can be ap-
plied for any , hence ,
but the value can only be achieved when ,
which implies .

Thus, under and and odd, according to Proposition
2, the KS statistic is a uniform discrete random variable on the
support , whereas
if and even, it is almost uniform. These distributions
provide us with various possibilities for testing the hypothesis

, as will be shown in the sequel.

B. Use of the KS Statistics for Model Assessment

In our problem, we process the data sequentially as they
are observed. The data are modeled by (2) and (3), and typ-
ical processing, using stochastic filtering methods, amounts to
tracking the posterior distribution of the state, .
Let us assume for a moment that we can generate independent

if

if
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TABLE I
SUMMARY OF THE PROPOSED ASSESSMENT METHOD

samples from (which we view as fictitious ob-
servation data), i.e.,

where

We reiterate that we have only one actual observation at time ,
while are simulated. We note that the observed

stands for .
Let us compute

(5)

where is the empirical CDF generated by the single obser-
vation , while is the empirical CDF obtained from the
simulated samples . When the model is correct,

is a realization of the random variable , with known prob-
ability distribution given by Proposition 2. Therefore, we can as-
sess the degree of compatibility of the assumed model with
the data by performing various tests on , which form
a sequence of i.i.d. samples when is correct. One concep-
tually straightforward possibility is to apply a one-sample test,
such as, e.g., Pearson’s test, to the samples (note that the
reference distribution given by Proposition 2 is discrete). How-
ever, in practice it may be simpler and more useful to design a
test that can be applied, at every time , to a scalar statistic com-
puted from the samples available up to that time. In [9], we
used the central limit theorem and the fact that, for even mod-
erate , the random variable

is distributed approximately as a Gaussian with known mean
and variance. Alternative approaches exist, however, that do not
involve approximations. In Section V, we show that the distribu-
tion of can be found exactly and we design a simple sequen-
tial test for obtaining exact -values of the model hypothesis.

C. Simulation of Samples From

All that remains is to show how we can actually simulate the
samples , at every time , according to the
assumed model . To that end, we use particle filtering as
follows. Recall that with particle filtering we process the data

sequentially and obtain an approximation of the posterior
of using a random measure , where

is the total number of particles, and and are the

particles and weights, respectively, that define the random mea-
sure [8], [10]. For the predictive distribution
we can formally write

If the predictive distribution is approximated by

one can readily generate samples from it, provided it is easy
to draw from , which we assume here. Thus, we
sample according to

(6)

which then allows us to draw , according
to

(7)

Therefore, the generation of samples of is a two-step proce-
dure where in the first step we obtain samples of according
to (6) and in the second step we draw samples of using (7),
making a total of samples.

In summary, at every time instant , the method is imple-
mented in four steps, as shown in Table I.

The first two steps represent simulation of based on ,
the third step is the computation of the KS distances , and the
fourth step is testing the validity of the model from the computed

.

IV. DISCUSSION

In this section, we discuss some issues related to the imple-
mentation and complexity of the proposed method. In this paper,
we refer to the assessment methods based on estimating the
probabilities as standard tests. They
need to implement the following integration:

(8)

This integration can be carried out analytically only in a small
number of situations. When a closed form solution in (8) is not
available, one has to perform the estimation of by Monte
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Carlo methods. For example, the authors of [11] propose to
a) generate samples of , , from ,
b) for each , draw samples from ,

, and c) compute an empirical estimate of
, denoted , from the obtained

. Finally, an estimate of is obtained as

So, in total, the estimate of requires drawing of samples
at each time instant . This approach besides being computation-
ally intensive, may produce unstable estimates of [11]. By
contrast, our method requires the generation of samples
only, of which are drawn from . Moreover,

can be rather small, even as small as two. We point out that the
particle filter has to complete the step of computing the random
measure that is used for the next time instant in order to gen-
erate the needed samples. A simple approach would be to use
the SIR filter from [12], where at time instant , one generates
particles , from , draws sam-
ples according to (7), computes , evaluates the weights
of , and resamples the particles . In that case .

Second, in the calculation of only the value of is used.
However, the model is assessed using . The advantage of the
proposed procedure is that one can choose one of many possible
tests for assessing the model . For example, since we know
the distribution of , we can directly test whether the outcomes

come from that distribution. Alternatively, we can compute
a single statistic using that allows us to decide whether we
should reject the model . The latter approach is explored in
the next section. Third, in our paper we assumed that the postu-
lated model was nonlinear. If the model is linear and Gaussian,
the predictive distribution of is also Gaussian. More specifi-
cally, let our model be

(9)

(10)

where and are a known matrix and a vector, respectively,
and and are the state and ob-
servation noises, where is the covariance matrix of . We
assume that the matrix and vectors in (9) and (10) all have com-
patible dimensions. Clearly, these two equations are a special
case of the system described by(2) and (3). It is well known that
the predictive distribution of is given by [30]

where and are the estimated mean and variance of
the Gaussian distribution obtained by the Kalman filter. If

, where and are
the mean and covariance of , then

where For finding the mean and the
covariance of , we employ

Since the parameters of the Gaussian are known, this allows us
to obtain without generating fictitious observation samples

. Moreover, under ,

which implies that one can use tests for determining whether
are indeed samples from the continuous uniform distri-

bution with support . This approach is illustrated in
Section V-A.

V. EXAMPLES

We illustrate the application of the proposed method by way
of three examples. The first one is on a time-varying channel
estimation problem, well known in the communications arena.
There we use the Kalman filter to track the channel and ob-
tain the Gaussian predictive densities of the observations ana-
lytically. The second example involves a highly nonlinear dy-
namic system which has been studied in the context on nonlinear
filtering by several authors (see, e.g., [16] and the references
therein). Finally, in the last example we consider the problem of
tracking a moving target using a network of wireless sensors.

A. Linear Channel Tracking

Consider a time-varying communication channel with an im-
pulse response . The channel evolution is modeled by
the first-order autoregressive process

(11)

where is a sequence of i.i.d. dimensional
noise vectors. The parameter denotes the length of the se-
quence of channel responses. We also assume that

.
A sequence of known binary symbols, ,

, , is transmitted over
the communication channel. For and ,
we assume . At the receiving end, the observations have
the form

(12)

where and is a
sequence of i.i.d. noise samples. The variance is fixed to yield
an average signal-to-noise ratio (SNR) of 10 dB. The state-space
system given by (11) and (12), together with the prior and
the channel length , represents the model .

The model is linear and Gaussian, hence the predictive
distribution is Gaussian and can be computed
analytically using a Kalman filter, as shown in Section IV. As a
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Fig. 1. Sequence of �-values obtained by the standard one-sample KS test for
models� ,� and� . The curves are averaged over 500 independent sim-
ulation trials.

consequence, if the assumption of is correct, the KS statis-
tics are i.i.d. uniform random variables on .
In order to illustrate the performance of the proposed assess-
ment method, we also consider two more models and ,
where the channel length under is and, under ,

.
Given a sample sequence of statistics , we assess

the validity of by testing whether is a sequence of i.i.d.
samples from . Specifically, we apply a standard KS
one-sample test (as described in Section II-B) at each time step
, , to obtain a sequence of -values.4

Fig. 1 shows the sequence of -values of the tests, averaged
over 500 independent simulation runs, when the observations

(with ) are generated from , , and ,
respectively. It is seen that the -values obtained when the data
actually come from are always clearly higher and converge
to a mean value of . This means that the data would be
recognized to be generated from by a test with a type I error
as high as . When the observations are generated from
models and , the -values of the tests quickly decrease
with time. In particular, it is seen that model (with a longer
channel length) is “more different” from the model , as the

-values converge toward zero more quickly.
We also illustrate the mismatch among the distributions of

under , , and . Fig. 2 shows the histograms of
obtained in a single simulation with observations gener-

ated from each model. It is seen that the histograms for and,
especially, , depart clearly from the uniform distribution.

B. A Nonlinear Dynamical System

Let the nonlinear state-space model be given by

where is the system state, is a frequency parameter (in
rad/s), , and and are the standard devi-
ations of the state and observation noises, respectively. Thus, the
model has a parameter vector defined by . Note
that, given , the state transition distribution,

4The �-value is the maximum value of the type I error probability of the test
such that the null hypothesis is still accepted (conditional on� being true).
Small �-values indicate that the test easily fails to recognize that the data come
from the true model, while large �-values signify good agreement of the data
and the model.

and the likelihood function, , are Gaussian. We
complete the model with the assumption of a Gaussian prior,

. Under , we adopt the model
with parameters .

In order to apply the proposed method, we assume is true
and run a standard particle filter to approximate the predictive
distributions , As a result, we ob-
tain the point-mass approximations

where denotes the Dirac delta function. The corresponding
(empirical) predictive CDF of is

and is the indicator function that yields 1 when
and 0 otherwise. Given the actual observation , the KS statistic
at time can be easily computed as

When is odd, the random variable is discrete uniform, as
shown in Section II-B, and its mean and variance can easily be
obtained. Respectively, they are given by

(13)

(14)

Although there exist various possibilities for assessment
tests, for this example we focus on those that rely on the sample
mean , which is itself a random variable with
mean and variance .
We note that the sample mean is a consistent estimator of

, since irrespective of .
As a consequence, we can design efficient assessment proce-
dures without the need of drawing a large number of samples
to approximate . This is a clear advan-
tage with respect to the standard methods that rely on the
statistic , because approxi-
mates a realization of a uniform random variable only when

is a sufficiently good approximation
of the actual probability . This, in turn,
demands a large , that is, the generation of a large number of
samples from the random variable .

Besides computational savings, assessing the model with
small has the additional advantage of allowing the exact
derivation of the distribution of the sample mean . Indeed,
when , for example, has a uniform distribution on
the binary set {2/3, 1}. As a consequence, takes values on
the set with probabilities
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Fig. 2. Histograms of � obtained from a single simulation trial with (a)� , (b)� , and (c)� .

Fig. 3. (Left) Type I error probability, � �� � ��� �, for � � � and three different thresholds, � � ����� ����� ��� as a function of 	. (Right): 
-values for
the standard test (with various �) and the proposed test (with � � �).

where is the number of combinations of
elements taken in subsets of size . The CDF of can also

be evaluated exactly, namely

which turns out useful for the purpose of assessment, as shown
below.

In this example, we assessed the validity of model by
evaluating the departure of the sample-mean statistics from
the theoretical means for , where is the length of
the observed time series, . Let be
the (random) absolute deviation from the mean under the null
hypothesis. We considered a test that rejects the null hypothesis
at time (for ) if , where is some
prescribed threshold. It is apparent that, for fixed ,

and, under , , due to the con-
sistency of . Therefore, the probability of rejecting when
it is true (“type I error” of the test, in the classical terminology
[7]) vanishes with time. Fig. 3 (left) shows how
decreased for and three different values of the
threshold, namely and .

We compared the proposed assessment procedure with the
standard procedure that tests the distribution of the statistics

. To that end, using , we
generated 500 independent sequences of observations of length

. For each of these sequences, we applied the proposed
method with and the conventional approach with
50 and 500 samples drawn using (6) and (7). For the standard

procedure, we chose to validate the null hypothesis “ are
samples from the uniform distribution on ” directly, by
means of the conventional KS one-sample test. We recall that
other test procedures can readily be used as well. Any proce-
dure, however, will be limited by the number of particles, ,
available to approximate the CDF . In-
deed, for small , the are far from uniform (correspond-
ingly, the are far from standard normal), which ulti-
mately leads to an incorrect assessment.

This is illustrated by Fig. 3 (right), which depicts the average
-values, versus time, achieved by the proposed method with

(labeled “KS statistic”) and the conventional KS test of
the with 3, 50, and 500 (labeled “standard”). For both
types of tests, we computed the -values exactly for each sim-
ulation run and then averaged them for each time instant . The
figure shows that the standard test fails completely to recognize
that the data come from when . The number of sam-
ples in the computation of the ’s has to be increased up to

to obtain some acceptable results, yet clearly inferior
to the proposed method with . In fact, the new KS-based
technique attains the same average -value with as the
standard test with samples.

The result of this experiment showed that we can already ob-
tain a good performance with only samples from the pre-
dictive distribution. Nevertheless, we wanted to study the gain
if we increased the value of . To that end, we computed the
absolute deviations of from the theoretical mean of for

, and , in 500 independent sim-
ulated realizations from . The obtained results are depicted
in Fig. 4. Let denote the sample mean of the KS statistics
at time , in the th simulation. Fig. 4 (left) shows the histograms
of the realizations for (light color),

(dark color), and . It can be clearly seen that
the effect of increasing is a shift of the mean of the random
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Fig. 4. (Left): Histograms of the sample-mean �� for � � � (light color) and � � ��� (dark color). (Right): Average absolute deviations of �� from � �
�� �� � for � � � and 500 and � � �� 	 	 	 � 
��.

Fig. 5. Histograms of the sample-mean KS statistics �� and � � � for
� �� �� and� . The dark-colored histogram on the right corresponds
to� , the light-colored histogram in the middle corresponds to� (labeled
“true”), and the two overlapping histograms to the left correspond to� , (light-
colored in the background) and� (dark-colored in the foreground).

variable and a more skewed distribution, as predicted by
(13) and (14).

Fig. 4 (right) depicts the average value of the absolute devia-
tions , , for .
The increase in the number of samples, , led to a marginal
performance improvement.

In the sequel, we study the performance of the proposed
technique when are generated from a model .
Specifically, we generated observations from different models
by varying the parameters in and then computed the KS
statistics and absolute deviations for
and in 500 independent simulation trials,

.
Fig. 5 shows the histograms of the sample-mean KS statistics

at time , for , when the
observations were generated from the following:

• : true model (for comparison);
• : ( is incorrect);
• : ( is incorrect);
• : ( is incorrect).

The shift in the mean of is apparent for , , and
and it shows how these model mismatches can be detected

easily. The assessment method is more sensitive to the variation
in the frequency parameter (model ), while the histograms
obtained for and are very similar and closer to the his-
togram obtained for .

It is also of interest to determine how the histograms of the test
statistics evolve with time both for and . Fig. 6 shows
the histograms of the sample means across the 500 simulation
trials, , , at times
[Fig. 6(a)], , [Fig. 6(b)], [Fig. 6(c)] and

[Fig. 6(d)]. The light-colored plot in the foreground corre-
sponds to , while the dark-colored histogram in the back-
ground, to . It can be seen that both histograms overlap con-
siderably up to . At time , the histograms are
clearly separated.

Finally, we assessed the sensitivity of the method to variations
in these three parameters, , and . Fig. 7 shows the average
absolute deviation of , for , from its mean when
is varied from 1.16 to 1.24 , when is varied
from 0.25 to 4 , and when is varied from 0.25
to 4 . The results for are depicted in the left plot,
while the results for and are jointly shown in the right
plot. The proposed assessment method is particularly sensitive
to mismatches in the frequency parameter . The mean of
has a clearcut minimum at the assumed value . The
incorrect values of the standard deviations and are also
reflected in the respective absolute deviations from the means
of the KS statistics.

C. Target Tracking With a Sensor Network

As a third example, we consider the problem of tracking a
target that moves along a two-dimensional region using a net-
work of sensors. We assume that the target is equipped with
a radio transmitter and the sensors independently measure the
power of the transmitted signal. The position and velocity of
the target have to be sequentially estimated from the noisy mea-
surements. Similar problems have recently been addressed in,
e.g., [13] and [19].

Formally, we represent the system of interest using the state-
space model

where is the 4 1 state vector
at time , denotes the target position
in the plane, is the target velocity,
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Fig. 6. Histograms of the KS sample-mean statistics at times (a) � � ��, (b) � � ��, (c) � � �� and (d) � � ���. The dark-colored histograms in the
background correspond to� while the light-colored histograms in the foreground, to� .

Fig. 7. Absolute deviations from the mean of the KS statistic, � � � �� � � � for � � 	, obtained for several values of � (left) and � and � (right).

and are the state transition matrix and
the covariance of the state noise, respectively, defined by

with denoting the identity matrix, is the sam-
pling interval, and . In the observation equation,

is the power measurement, in decibels, collected by the th
sensor (with ), denotes the th sensor
position, is the Euclidean distance between the target
and the th sensor, is a path-loss parameter that depends on the
physical environment, , and is the standard

deviation of the observation noise.
Here, we compute the KS statistics for each scalar observa-

tion, i.e., we generate samples from the predictive distributions
, , using a particle filter, and

then compute the statistics , , as functions of
the actual scalar observations . It can be shown that each time
sequence of represents i.i.d. random variables, and thus all
the previous results can be applied safely (per-sensor).

In the experiment, we set and the number of
sensors was . In this way, the specific form of the
model depended only on two parameters, . We
assessed the reference model defined by . All
the computations were based on the predictive distributions

, , and for their approximation
we again ran the standard particle filter. As in the previous
example, we carried out a test based on the statistics .
Specifically, for each sensor , we computed the absolute
deviation . The test was designed to reject the
model whenever , where was a predefined
threshold.

Fig. 8 (left) shows the absolute deviation , for
and , averaged over 400 indepen-

dent simulation runs. We observe how the deviation decreases
with time, since is a consistent estimator of under

. This implies that, for any fixed threshold , the type
I error probability of the test can be made as small as we
wish by simply letting grow. In the same plot, we show the
average value of the deviation over the sensors, i.e.,

, . We see that the average deviation
is almost identical as the deviation for a single sensor.
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Fig. 8. (Left): Absolute deviation of �� from its mean � for sensor 1 and the mean of the absolute deviations of all the sensors �� � ��. (Right): �-values for
the proposed test and the standard procedure based on �� . (See details in the text).

Fig. 9. Histograms of realizations of � for � � �� � � � � � , � � 	 and
	 � 
��. The results are obtained from realizations based on� ,� (with

 � 
��
) and� (with � � 
).

Fig. 8 (right) shows the evolution of the -value of the test for
sensor 1 with time . Since , the -value
can be computed exactly for each simulation run because the

, and , follow the distribution
in (15). The curve shown in the figure is the average of the exact

-values for sensor 1 over 400 independent simulation runs. On
the same graph, we displayed the average of the -values for
the sensors. Again, the curves for a single sensor and
the mean are almost identical. We also depicted the -values for
the standard KS one-sample test of the null hypothesis obtained
with (labeled “standard”). We observe that the -value
for sensor 1 and the mean over all sensors quickly go to 0. This
is because samples are not enough to obtain a good
approximation of the probability
and, as a consequence, the are far from uniform.

We also studied the changes in the distribution of due to
mismatches in and . In particular, we considered two al-
ternative models, and , defined by and

, respectively. We carried out 400 independent sim-
ulations for each model and computed for ,

, and under the null hypoth-
esis. Fig. 9 shows the resulting histograms. The histogram ob-
tained when the observations are generated from the true model
is depicted in light color, in the middle. The histogram of
appears clearly shifted to the right, while the histogram of
is shifted to the left and is slightly more skewed.

Fig. 10 shows the average of 400 independent realizations
of (where ) for

, and different values of the path-loss exponent

Fig. 10. Average of the absolute deviations 
 , � � 	 and 	 � 
��, over
400 independent simulations. (Left) For several values of 
. (Right) For several
values of � .

(ranging from 1.95 to 2.05), and the observation-noise standard
deviation, (ranging from 0.5 to 4). It is apparent that the as-
sessment procedure is very sensitive to mismatches in . Indeed,
very small variations in result in large differences in absolute
deviation.

Finally, we studied a scenario in which the model parame-
ters can change with time. Specifically, we performed an exper-
iment where the value of depended on the multipath propaga-
tion characteristics of the radio channel, which is time-varying
in many environments. We set up a simulation for which

, when , and ,
otherwise. We ran 400 independent simulations using

, with and . In order to account for
the variability in the model, we computed a statistic different
from the previous experiments. Instead of using the accumu-
lated sample-means , we calculated sliding sample-means
of the form for the different sensors,
and then averaged them, .

Fig. 11 depicts the mean absolute deviation ,
with and , averaged over 400 inde-
pendent runs. The parameter shift at time is
clearly observed, as the absolute deviation grows sharply. In the
same way, a steady decrease of the deviation starts at ,
as the parameter falls back to the reference value .

VI. CONCLUSION

We have proposed a method for the assessment of dynamic
models that is based on the Kolmogorov–Smirnov distance. The
method tests whether the observations come from the predictive
distribution of the data conditioned on the model. To that end,
a predictive CDF is constructed from generated data and com-
pared to the CDF obtained from the single observation. The KS
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Fig. 11. Average absolute deviation of the KS statistic �� , with � � � and
� � ���, from its mean for a time-varying path-loss parameter � .

distances are i.i.d. random variables with known discrete distri-
butions which allow us to implement various types of tests. We
have demonstrated the performance of the proposed approach
on three examples and showed its superiority over a standard
procedure.
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for change detection, system identification and control,” Proc. IEEE,
vol. 92, pp. 423–438, 2004.

[2] J. M. Bernardo and A. F. M. Smith, Bayesian Theory. New York:
Wiley, 1994.

[3] J. P. Bickel and K. Docksum, Mathematical Statistics. New York:
McGraw-Hill, 2001.

[4] K. O. Bowman and L. R. Shenton, “Omnibus test contours for depar-
tures from normality based on

�
� and � ,” Biometrika, vol. 62, pp.

243–250, 1975.
[5] G. E. P. Box, “Sampling and Bayes’ inference in scientific modelling

and robustness,” J. R. Stat. Soc., vol. 143, pp. 383–430, 1980.
[6] P. Brockwell and R. Davis, Introduction to Time Series and Fore-

casting. New York: Springer, 2002.
[7] M. H. DeGroot and M. J. Schervish, Probability and Statistics, 3rd

ed. New York: Addison-Wesley, 2002.
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