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Abstract—In this paper, we study the problem of joint model
selection and parameter estimation under the Bayesian frame-
work. We propose to use the Population Monte Carlo (PMC)
methodology in carrying out Bayesian computations. The PMC
methodology has recently been proposed as an efficient sampling
technique and an alternative to Markov Chain Monte Carlo
(MCMC) sampling. Its flexibility in constructing transition ker-
nels allows for joint sampling of parameter spaces that belong
to different models. The proposed method is able to estimate the
desired a posteriori distributions accurately. In comparison to the
Reversible Jump MCMC (RJMCMC) algorithm, which is popular
in solving the same problem, the PMC algorithm does not require
burn-in period, it produces approximately uncorrelated samples,
and it can be implemented in a parallel fashion. We demonstrate
our approach on two examples: sinusoids in white Gaussian noise
and direction of arrival (DOA) estimation in colored Gaussian
noise, where in both cases the number of signals in the data is a
priori unknown. Both simulations show the effectiveness of our
proposed algorithm.

Index Terms—Bayesian methods, Markov Chain Monte Carlo
(MCMC), model selection, Population Monte Carlo (PMC).

I. INTRODUCTION

M ODEL selection is an important topic in signal pro-
cessing. It has found application in various areas

including array signal processing, communications, and speech
signal processing and therefore has been studied extensively. A
recent review provides some common approaches and criteria
for model selection [1]. The model selection problem is often
presented as a problem of joint model selection and parameter
estimation. Many researchers have addressed it within the
Bayesian framework. The main difficulty of this approach lies
in solving multidimensional integrals. Some early works on
model selection are based on the use of large sample theory
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and approximating the final posterior by Taylor expansion
around the maximum-likelihood (ML) estimates of the un-
known parameters [2]–[4]. In [5], the authors developed an
efficient iterative algorithm for carrying out the maximization
needed for obtaining maximum a posterior (MAP) estimates.
More recently, Reversible Jump Markov Chain Monte Carlo
(RJMCMC) sampling [6] has been introduced for approxi-
mating joint posteriors and computing estimates of model order
and parameters of interest [7]–[9]. Although computationally
intensive, this algorithm was shown to have very good perfor-
mance, especially when the sizes of available data are small.
However, algorithms based on RJMCMC have several draw-
backs. First, a burn-in period, whose samples are discarded, is
required. Second, typical MCMC implementation may have
poor mixing, i.e., the chain may converge to a final distribution
which depends on the starting point of the chain. Third, one
may argue that it is hard to implement the algorithm in a parallel
fashion because at each time step , the algorithm produces
only one sample, which depends on the sample produced in the
previous time step.

PMC has recently been introduced in [10] and [11]. It is
essentially an iterative sampling method which at each itera-
tion employs importance sampling (IS) to produce a set of ap-
proximately uncorrelated samples from the target distribution. It
also uses resampling [12] to prevent sample degeneration when
needed. However, it is well known that for IS, the importance
function (IF) needs to be carefully chosen to ensure that the
“region of importance” is reached quickly [13]. It is the ability
of PMC to accommodate multiple IFs (or rather, transition ker-
nels), and to adaptively improve their sampling efficiency that
makes it superior to pure IS. Between different iterations, the al-
gorithm can, based on certain criteria, change the structure of the
transition kernels to ensure that the subsequent sampling proce-
dure is carried out more efficiently.

In [11], a fixed number of preselected transition kernels have
been used and each of them has been assigned different weights
at different iterations. The efficiency of the algorithm has been
demonstrated by an example with the posterior being a mixture
Gaussian distribution. It has been shown that the produced sam-
ples by the algorithm accurately approximate the distribution.
In [14], the authors have proposed an algorithm to adaptively
choose transition kernels so that the asymptotic variance of the
estimates decreases. In [15], it has been demonstrated that the
PMC algorithm could progressively sample from distributions
that had diminishing Kullback distance from the target distribu-
tion. Comparisons between MCMC and PMC have been made
in [11] and [16]. In both cases, PMC has outperformed MCMC,
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mainly because of the slow mixing property of the MCMC. Im-
proved performance of PMC in parameter estimation by the use
of Rao–Blackwellization has been shown in [17].

In this paper, we propose to apply the PMC methodology
to joint model selection and parameter estimation. We use a
two-stage sampling procedure: we first sample the model order
from a set of discrete transition kernels, and then we sample the
parameters from a set of transition kernels that correspond to
the sampled model. This two-stage sampling procedure allows
us to sample from parameter spaces with different dimensions.
When the samples are properly weighted, the samples and the
weights produce approximations of the desired posteriors.

The paper is organized as follows. In Section II we provide
the formulation of the problem, and in Section III, we describe
the steps of the algorithm. There we also give a proof of con-
vergence of the algorithm. In Section IV, we introduce two ex-
periments: 1) detection of sinusoids in white Gaussian noise
and estimation of their frequencies and 2) detection of number
of sources whose signals impinge on an array of sensors. In
Section V, we provide numerical results that show the perfor-
mance of the proposed method and we compare it with the
RJMCMC algorithm. Our main objective is to demonstrate that
PMC is a valuable alternative to RJMCMC.

II. FORMULATION OF THE PROBLEM

In this section, we formulate the problem of joint model se-
lection and parameter estimation in a Bayesian framework. As-
sume we have an observation vector which contains data
samples. We also have competing models ,
and one of them generates the observations. Associated with
each model, there is a vector of parameters , where
denotes the parameter space of . The objective is to identify
the true model as well as to estimate the parameters associ-
ated with the model.

We can view the model order as a realization of a discrete
random variable, so that the total parameter space could be
expressed as follows: . Note that each
may have different dimension and may include different param-
eters. The objective of Bayesian inference is to obtain the pos-
terior , which can then be used (if needed) to compute
point estimates.

In the Bayesian context, one typically employs the MAP
model selection rule, which can be expressed as

(1)

where is an indicator function that takes the value 1 when
and is 0 otherwise. The difficulty of using (1) for model

selection is that the posterior is usually highly nonlinear in ,

and the integration does not have a close form expression. In that
case, one can resort to a Monte Carlo technique to approximate
the general integral by first drawing a sample

of size directly from the distribution , and then per-
forming Monte Carlo integration by

(2)

From the strong law of large numbers, the above approximation
converges to the true value of the integration with probability

one. In our case, if one can draw the samples
directly from the posterior , then (1) becomes

(3)

As stated above, is an indicator function, and
essentially calculates the total number of drawn

samples with . Thus, one can calculate

by first drawing samples from ,
then selecting the model order that is most frequently sam-
pled.

It is well known that one can directly generate samples from
the posterior distribution only in a very few cases. When such
generation is impossible, one may resort to the use of IS. In the
following, we first briefly review this technique and then apply
it to solve the model selection problem.

IS has been used mainly for numerical integration [13] and
has many applications in signal processing and communications
[18], [19]. For example, in signal processing, in order to obtain
the minimum mean square (MMSE) estimate of a parameter
from the observation , we have to solve the following integra-
tion:

where is the posterior distribution of , and is the
MMSE estimate of . The above integration is usually hard to
solve directly. It may also be hard to draw samples directly
from the distribution in order to perform the classical
Monte Carlo numerical integration. Alternatively, we can draw
samples from an IF , and perform numerical integra-
tion as follows:

It has been shown that when the sample size is
large, the estimate obtained by the above IS algo-
rithm converges to the mean of the posterior. If we define

, the above estimate can be
interpreted as the weighted mean of the drawn samples .
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If is only known up to its proportionality constants (in
other words, is unscaled), then we calculate by

and normalize the weights according to

One interesting interpretation of the sample weight pairs
is that they form a discrete random measure

, where the samples constitute the sup-
port of this measure, and are weights associated to these
samples. When the sample size is large, the measure “ap-
proximates” the posterior distribution of .

In light of the above IS algorithm, we can draw samples

(where ) from an IF , and
assign each sample a proper weight , so that the random

measure approximates the posterior
distribution. We can then approximate the integration in (1)
according to

(4)

where

(5)

The above expression indicates that one can approximate the
a posteriori probability of the model with index , by

summing up all the weights of the samples ,
where . With the MAP criterion, we choose the model
whose sum of weights is maximum. Moreover, one can use the
weights to estimate the unknown parameters of each model by

(6)

The above importance sampling procedure may suffer from
poor choices of IF which can, for example, make most of the
sample weights negligible and cause the subsequent estimation

inaccurate. This situation may arise when the IF generates sam-
ples that concentrate on regions with low probability mass under
the target posterior. The choice of the IF is both art and sci-
ence, and many criteria for selecting good IFs have been devel-
oped [13]. One can, for example, choose an IF with heavy tails
that dominate the tails of the target distribution, or work with
an IF that mimics the behavior of the target distribution. How-
ever, both of these strategies require certain information about
the target distribution, which is usually not available. In the fol-
lowing section, we propose to use a PMC algorithm which ob-
tains samples from an IF that is adaptively modified so that the
“quality” of the samples improves with iterations and one can
evaluate the integral in (1) with greater accuracy.

III. PROPOSED ALGORITHM

PMC has the ability to progressively learn about the target
distribution and to adaptively modify the IF based on the
gathered information so that the sampling procedure becomes
more efficient. We first introduce various elements of the PMC
algorithm in Section III-A, and then present the algorithm used
to solve our model selection problem in Section III-B. We
present the convergence result for the proposed algorithm in
Section III-C.

A. Generic PMC Methodology

One way to overcome the main difficulty encountered by
IS—the poor choice of IFs—is to introduce into the sampling
procedure multiple IFs with different properties, and iteratively
and adaptively select them according to their performance. This
iterative procedure is a learning process, during which we gain
knowledge about the target distribution. For example, in the ini-
tial stages of the sampling, it is preferred to have IFs with heavy
tails so that the parameter space could be explored fully, while
in the later stages, the IFs with good local exploring property
may be preferred to stabilize the samples. This process could
be implemented in the following way. Before the start of the
algorithm, IFs are selected. Define the vector of
random variables and the vector of samples

, where stands for iteration. Then the overall IF
can be constructed at each iteration as follows:

(7)

It is clear that is a mixture of functions and that
could be interpreted as frequency of using the IF

for sampling. The following procedure is used to sample from
. Let denote the index of the IF that

is used for sampling . Then is determined by drawing
it from a multinomial distribution followed
by generating from .

The significance of the above construction of is that,
one can modify at each iteration by changing the weights

, according to the performance of each in the past.
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One criterion to evaluate the performance of the is the
sum of the weights of the samples it generates [11]. This crite-
rion favors the IFs that focus on exploring the so called “region
of importance” of the target distribution, and thus generate sam-
ples with large total weights. According to this criterion, is
updated by the following equation:

(8)

where is an indicator function that takes a value
1 if the sample is generated by the IF , and 0
otherwise.

These time-varying IFs generate samples at each
iteration, and with the weights , they form a random

measure that approximates the distri-
bution of the random variable . The objective of the algo-
rithm is to ensure that this distribution converges to the target
distribution when is large.

For monitoring the sampling efficiency, we can use the en-
tropy relative to uniformity [20], i.e.,

(9)

where is a measure of uniformity of the weights at
time . If the IF converges to the target distribution, then the
weight of each sample converges to , and con-
verges to 1, and every sample can be seen as drawn approxi-
mately from the target distribution.

For the presented iterative IS algorithm, it is beneficial to
relate the samples in a current stage with the samples from
the previous stage. PMC introduces dependence of the current
samples on the samples in the previous iteration

by replacing the IFs (which do not depend
on the past) with transition kernels. This idea is closely related
to smoothly approximating the posterior distribution using the
kernel technique [20], except that PMC uses multiple kernels at
each stage. Recall that , is the set of random
variables approximated by the iterative importance sampling al-
gorithm at each iteration . A transition kernel is
defined as follows:

(10)

The transition kernel is a generalization of a transition matrix of
discrete state Markov chains, where is the prob-
ability density of the state of the chain at iteration conditional
on the chain being in state at iteration . We can
replace our previous IF with a transition kernel ,
where can take the form, for example, of a
Gaussian kernel (in the case when is one-dimensional):

. It
is clear that the new samples drawn from this kernel will
be located near , and the shape of the kernel is deter-
mined by . In this case, the kernel is a family
of normal distributions with as location parameter.

PMC uses a mixture of multiple kernels in
each iteration to improve the sampling efficiency, and the sam-
pling is performed as in (7), i.e.,

(11)

(12)

where is determined as in (8).
We summarize the procedure by explaining how we gen-

erate one particular sample at iteration . First, we select the
index of the transition kernel from the multinomial distribu-
tion ; then we generate a sample by the
kernel with index . Because the sample is actually gener-
ated by the kernel , the weight of this sample
can be obtained by

(13)

which follows from (5). We use the proportionality operator
here to include the case when the posterior distribution is not
scaled. Equation (13) represents the weight in the original PMC
algorithm, and it has been used in many applications of the
PMC, for example, [16], [17], and [21].

The samples produced by so called iterated particle systems
[18] like PMC and particle filters [22] may be degenerated, i.e.,
the weights of a few samples dominate the remaining samples.
Resampling [23] is thus introduced to prevent the samples from
degeneration. We use to denote the samples after
resampling.

We summarize a generic PMC implementation as follows.
For each iteration :

1) generate samples from the mixture of transition kernels;
2) compute the weights of the samples ;
3) perform estimation based on the weights;
4) resample;
5) compute the weights for each kernel .

B. PMC for Model Selection

In a parameter estimation problem only, as demonstrated in
[11], [17], the above steps are sufficient to produce approxi-
mation of the target distribution. Under model uncertainty, a
direct extension of the above method would be to run par-
allel PMC algorithms, one for each model, and compare their
performance to determine the model. Of course, this naive ap-
proach is very computationally expensive when the number of
competing models is large, because the computational load is
“equally” distributed upon the different models. Similar obser-
vation, which serves as inspiration for using RJMCMC instead
of multiple MCMC under model uncertainty, has been made in
[8].

Observe that there is a natural hierarchy in our full parameter
space : the space for the parameter is determined only by
the choice of . After the determination of , it is sufficient to
sample only from the parameter space to produce samples
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that approximate the distribution . It is thus natural to
decompose our sampling kernels into two components: one for
sampling of the model order from the index set , and
the other for sampling from the parameter space . Let
denote the kernel we use for sampling the model order, and let

denote the kernel we use for sampling . We propose
the following two-stage sampling scheme:

At iteration :
1) draw a model order sample from ;

2) draw a parameter sample from ,

where is the estimate of the parameter of the spe-
cific model at iteration .

It is worth mentioning that the model order is a discrete random
variable, so that the kernel is represented by a
matrix with transition probabilities. For example, if

, which is a by identity matrix, we will always have
.

In the following we use predetermined kernels for
generating model order, where , and for each
model , we have a single kernel for generating the
parameters that belong to the parameter space . One reason
of using multiple model kernels is to improve the sampling ef-
ficiency, as stated in Section III-A. An extension can be easily
made to generate parameters using multiple kernels under each
model. However, the rationale is the same, and we keep our
choice of single kernel for the parameters in order to maintain
the presentation clear.

Based on the above decomposition of transition kernels, the
sampling of can be expressed by

and the weight for each sample can be expressed according to
(13) as follows:

(14)
where . The estimate of the marginal posterior
for the model order can be obtained by summing up the normal-
ized weights for each model

The resampling procedure equalizes the weight of the sam-
ples, and is commonly carried out by duplicating samples pro-
portional to their weights [24]. Namely, for , we
first sample the index and then we
let . After resampling, the models with large
total weights (thus large estimated marginal posterior) occupy
greater portion of the sample.

Now, we can provide another justification for using multiple
kernels for sampling the model order. Let denote
a matrix with entries all ones. By choosing either

or , and assigning for all
in the initial stage of the algorithm, there will always be equal
number of samples for each model at every iteration, which cor-
responds to the naive approach mentioned in the beginning of
this section. Consequently, it is desirable to find a transition
kernel that distributes the right amount of computational time to
each competing model, preferably according to their true poste-
rior, i.e., the models with high posteriors should get more “atten-
tion.” Since the true posterior is not known, one can use multiple
transition kernels and let the algorithm choose the most efficient
distribution of computational time. In Section V, we demon-
strate that, indeed, by using different transition kernels, we
get better performance than when we use only one kernel.

We also provide some heuristic guidelines for designing the
set of predetermined kernels for model order. First,
we would like to build our current computation based on the
distribution obtained from the previous iteration. As a result,
we would expect that the majority of the model order samples

generated at iteration correspond to the model
orders with the largest total weights in iteration . Second,
we would also like to improve upon the previous distribution
by exploring the parameter spaces more thoroughly. One way
to achieve this is to allow portions of the majority samples in
iteration to “move” to the other model orders, and this
behavior is determined by the off-diagonal entries of .
Specifically, if , then 50% of the samples that
have model order at iteration will be moved
to in the next iteration. Now it is clear that the above
requirements are somewhat conflicting with each other: the
first requirement translates to the strategy of selecting
that have large diagonal entries, while the second requirement
dictates how to choose with off-diagonal entries not too
small. As a result, we suggest to design multiple kernels that
achieve a tradeoff between these requirements: some kernels
may have negligible off-diagonal entries, while some may have
relatively large off-diagonal entries. Our choice of transition
kernels in the following simulation section is an example of the
above suggested design. We will also show in the simulations
that strategies that do not obey the above suggestions may lead
to poor performance of the PMC algorithm.

In Table I, we summarize the proposed algorithm and in
Fig. 1, we present a graphical illustration of it.

C. Convergence

A natural question is whether the above stated algorithm can
approximate the target distribution, or specifically, if for each
iteration , when the number of samples goes to infinity, we have

(15)

for any function that satisfies certain regularity conditions.
If (15) is true, then when the function is , the
above equation becomes

(16)

(17)
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TABLE I
PROPOSED ALGORITHM

Fig. 1. Graphical illustration of the proposed algorithm.

We prove the following theorem regarding the convergence
of the PMC algorithm for model selection.

Theorem 1: For the PMC algorithm detailed in Table I, we
have the following convergence result:

(18)

or more specifically, when takes the form of , we
have

where “ ” stands for convergence in probability.
Proof: The proof is given in the Appendix.

D. Discussion

It is easy to extend the above algorithm to support multiple
kernels for exploring the parameter space instead of
using a single kernel. Alternatively, we can adaptively change
the single kernel to achieve improved sampling

efficiency. Assume that is a Gaussian

kernel . We propose to use a time-varying kernel
as follows. If is the MAP

estimate of the model order at iteration , let

(19)

and else, let

(20)

where is a constant. It is clear that if is large enough and the
estimates for stabilize, then stabilizes for all .
By setting relatively large, the above scheme allows us
to have kernels with heavy tails at the initial stages of the al-
gorithm so that we can explore the whole parameter space, and
have lighter tails to focus on local sampling in the later stages of
the algorithm. Once the order estimates stabilize, shrinks
and allows the kernel to explore the local parameter space in-
stead. We will demonstrate the improvement of the sampling
efficiency for this choice of .

It is also worth mentioning that our proposed algorithm is ca-
pable of sampling nuisance parameters if their conditional dis-
tributions are known. Specifically, denote with the vector of
nuisance parameters. Then we can sample at iteration ac-
cording to , where and

are the resampled parameters of interest and the model
order, respectively.

IV. EXAMPLES

In this section, we present two examples that will later be used
to test the performance of the proposed PMC algorithm. The
first example is the joint detection and estimation of sinusoids
in white Gaussian noise [5]. The second example is the joint
detection of number of sources and estimation of direction-of-
arrival (DOA) of signals emitted by the sources [25]. The signals
impinge on an array of sensors and are corrupted by colored
Gaussian noise. In Sections IV-A and IV-B, we briefly present
the mathematical model for these problems. For their detailed
description, we refer the readers to [8] and [9].
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A. Detection and Estimation of Sinusoids in White Noise

We have an observation vector with data samples. The
observations are generated by one of the following models:

where , , are in-
dependent and identically distributed (i.i.d.) noise samples, and

. In matrix form, the observation vector can be
expressed as follows:

(21)

where is the observation vector, is a Gaussian
noise vector, i.e., , is a frequency vector
defined as , is a amplitude vector,
and is a matrix whose elements can be expressed
according to

The unknown parameter vector is . Our ob-
jective is to jointly determine which model generated the ob-
servations and estimate the parameters . Note that and

are treated as nuisance parameters. Therefore, we use the
Bayesian methodology: we integrate out the nuisance parame-
ters and determine the model order and frequency from the joint
posterior distribution .

We first assign prior distributions to the parameters. We as-
sume the models have equal prior probability; thus,

(22)

Note, that in the RJMCMC setting, the prior for model order
is usually set to be a truncated Poisson distribution

with hyperparameter
in order to facilitate the “Birth” and “Death” moves. We use

the Jeffreys’ prior for the noise variance [26]

(23)

Then we can write the joint posterior distribution as
follows:

(24)

Assuming, that has a uniform prior on and has
a zero mean normal prior, we have

(25)

where , with being a hyperparam-
eter that can be integrated out numerically if we choose for it an
inverse gamma prior of the form . (See [8, Sec. V-C]
for detailed discussion.)

After integrating out and in (24), we obtain

(26)

where

and

In Section V-A, we show that our PMC algorithm is capable
of approximating the marginalized distribution (26).

B. Detection of Number of Sources and Estimation of DOA

We have an complex observation matrix . Each
column of , , is an vector representing the data
received by a linear array of sensors that can be expressed as

(27)

where is an zero mean Gaussian noise with covari-
ance matrix , is a amplitude vector, and is
an matrix whose elements can be expressed by

(28)

where , , and . The
vector is defined by , where is given
by with being the angle between the
incident signal and the sensor array, the carrier frequency of
the received signal, the distance between the sensors, and
the propagation speed of the signal. In summary, each element

of could be expressed as

(29)

We need to determine which one of the following models
generates :

Besides determining the model order, we need to esti-
mate . Again we integrate out the nuisance parameters

and , and estimate the model
order and using the marginalized posterior distribution

.
Define the projector on the signal subspace by [5]

(30)
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and let the projector on the noise subspace be

(31)

where and are orthogonal matrices whose
columns span the signal subspace and the noise subspace,
respectively. Define

(32)

(33)

Let , and define similarly. We can
show that

(34)

where , ,

, and . We will then assign the priors
to the different sets of parameters and integrate out the nuisance
parameters. Let [25]

(35)

(36)

(37)

(38)

where is a hyperparameter that can be determined numeri-
cally (see [9, Sec. V] for discussion). Finally, after integrating
out and , we get

(39)
where , and is the Gamma
function with argument . In Section V-B, we show
that our PMC algorithm can approximate (39).

V. NUMERICAL RESULTS

In this section, we demonstrate the performance of the PMC
algorithm by applying it respectively to the problem of sinu-
soids in white noise and the problem of DOA with colored noise
sketched in Section IV.

A. Numerical Results for Sinusoids in White Noise

We used the following setup for the experiment. We set
, , and , , where 1,

2, 3, 4; and .

We tested the detection performance for SNR dB and
SNR dB. The signal-to-noise ratio (SNR) was defined
as , and both sinusoids had the same
SNR.

In our simulations we assumed . For the PMC algo-
rithm we generated 3000 samples in each iteration, and we ran
the algorithm for a total of ten iterations. As a prior for the hy-
perparameter , we used . We employed three 5 5
matrices as transition kernels for model order: ,

, for ; , ,
for ; , , for .
As discussed at the end of Section III-B, by using these tran-
sition matrices, at each iteration of the algorithm, a majority
of the model order samples represented the models
with large total weights in the previous iteration , while
we still allocated a small portion of the samples to represent
those models that have small, even negligible, total weights.
The rationale for the above choice of transition kernel is as fol-
lows. Even if after resampling at iteration all the samples
represented model , the other models would not become ex-
tinct at . At iteration , instead of sampling uniformly on

, which is the prior for frequency, we chose to sample
from an IF to make sure that the samples reach the
region of interest quickly. The function is defined by

, where is a vector whose values
are the frequencies of the largest peaks of the periodogram of
the data, and is a diagonal matrix whose diagonal ele-
ments, say represent a quarter of the width of the peak
of the periodogram located at frequency . We chose the fol-
lowing form of time-varying transition kernel

, and let . When , if
, we have

; if not, then .
Of course, other choices of the transition kernels are possible,
but we found that our choice resulted in good performance.

The averaged estimates of marginal distribution of model
order 1, 2, 3 when SNR dB and is shown in
Fig. 2, from which we observe that the estimates stabilized
fairly quickly. Note, that the estimates of other models were all
zeros and we did not show them in this figure. We also show in
Fig. 3 the averaged estimates of the frequencies along with the
true values of the frequencies. It is also clear that the estimates
converge fast.

We also compared the sampling efficiencies of different
choices of kernels. We first proposed a set of alternative ker-
nels for model order that does not satisfy the requirements
we suggested in Section III-B. The alternative kernels were
defined as follows: , , for ;

, , for ; ,
, for . It is clear that none of these kernels

obey our first requirement, i.e., dominant diagonal entries.
In Fig. 4, we calculated the averaged (over 100 realizations)
entropy with respect to uniformity defined in (9) of three
PMC implementations: 1) using for model order
and time-varying kernel for parameters ; 2) using
for model order and time-invariant kernel for parameters

; 3) using the alternative kernel for model order
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Fig. 2. Estimated ������ versus number of iterations.

Fig. 3. Estimated � � � versus number of iterations.

Fig. 4. Efficiency versus iteration of various PMC implementations.

and time-varying kernel for parameters . We can see that by
employing the time-varying kernel, the sampling efficiency
increased steadily with each iteration. We can also see that the
implementation with the alternative kernels has lower
efficiency than the use of the kernels .

We implemented the RJMCMC algorithm in the following
way. The algorithm was run for 30 000 iterations with 5000 sam-
ples as burn-in period. We also used two different proposals for
updating the frequency, one for local exploration and one for
exploration of the “region of importance,” see [8, Sec. IV-A].
Note that we chose the total number of samples generated by
RJMCMC (30 000) to be large enough so that the estimated pos-
terior can be stabilized. Also note, that this number was the same
as the total number of samples used by the PMC (3000 10)
[16].

We compared these two algorithms under scenarios where the
SNR dB, 10 dB and the spacing parameter 1, 2, 4. For

TABLE II
COMPARISON OF DETECTION PERFORMANCE

each of the different scenarios, both algorithms were run for 100
realizations, and the comparison of the detection performance
is shown in Table II. The entries in the table are the number of
times a particular model was chosen out of 100 realizations.
It can be seen that the performance of the two algorithms was
comparable. Note that we also present the performance of the
PMC algorithm that employed only one transition kernel, and
the algorithm with alternative kernels defined above. We
observed that for these two choices of kernels, the performance
degraded when the sinusoids were closely spaced and the SNR
was low. The last result supports our claim that using multiple
kernels for model order is beneficial, and it also supports our
heuristics of intelligently choosing these predetermined kernels
(as discussed in the end of Section III-B).

We also observe that when the total number of samples was
relatively small, the estimation performance of the RJMCMC
deteriorated. For example, when the total number of samples
was set to 10 000, and 2000 samples were used for the burn-in
period, and we used 2000 samples per iteration with five iter-
ations for PMC, the PMC outperformed the RJMCMC for low
SNRs. Fig. 5 shows the estimation performance of the two algo-
rithms under the above settings and when . It is clear that
when the SNR is below 6 dB, the PMC performs better than the
RJMCMC. In this figure we also plotted the CRLB [27].

B. Numerical Results for DOA

We used the following setup for the model: , ,
, , the number of sensors was and

the amplitudes of the signals were fixed at , .
In order to generate a spatially colored noise, we used a second-
order autoregressive process with poles and
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Fig. 5. MSE versus SNR of RJMCMC and PMC and comparison with the
CRLB.

whose driving noise was a circularly com-
plex white Gaussian process with identical . The SNR was
defined by . The hyperparameter was de-
termined according to the criteria developed in Section V of [9]
for different SNRs. As mentioned in [9], this setup was very dif-
ficult because the two sources were within a beamwidth of the
receiver array, and the data size was very small.

For the PMC algorithm we used 1000 samples in each itera-
tion, and we ran the algorithm for a total of four iterations. We
used three 5 5 matrices as transition kernels for the model
order, which were identical to those used in the previous exper-
iment. At iteration , we sampled the model order and the
DOAs uniformly. Note that in this situation, we did not have a
natural candidate for the initial IF, as in the previous example,
so we sampled the parameters from their priors (which were

). In the subsequent iterations, we chose to use the
exact time-varying transition kernel as in the previous experi-
ment, except that . Note, that was
preselected, as suggested in [11], when no obvious candidate
was available.

We ran the RJMCMC algorithm for two settings: 4000 it-
erations with 1000 samples used for the burn-in period, and
15 000 iterations with 5000 samples for burn-in. In the first set-
ting, the total number of samples generated by the RJMCMC
(4000) was the same as the total number of samples used by the
PMC (1000 4). Notice that in this setting, our choice of total
number of samples is significantly smaller than that used in [9],
which corresponds to our second setting. The purpose here was
to demonstrate the instability of the RJMCMC algorithm when
the sample size was small. In both settings, we used two pro-
posals for updating the DOA, one for local exploration and one
for exploring the whole parameter space. See [9, Sec. IV-A] for
details.

Both algorithms were run for 100 realizations, and the de-
tection performance of the algorithms is compared in Table III.
Again, each entry of the table represents the number of times a
particular model is selected in 100 realizations. It can be seen
that when the total number of samples was small and the SNR
was low, the performance of the RJMCMC algorithm was worse

TABLE III
COMPARISON OF PERFORMANCE OF DETECTION

Fig. 6. Estimated ������ versus number of iterations obtained by the
RJMCMC algorithm.

than that of the PMC algorithm. In Fig. 6, we see a typical re-
alization of the estimates of and pro-
duced by the RJMCMC algorithm with 4000 samples and for
SNR dB. It is clear that the estimated marginalized pos-
terior was not stabilized within the window of 4000 samples,
and the estimates based on these samples are not satisfactory.
In Fig. 7, we see the averaged estimates of and

for the PMC algorithm. Since the estimates of the
other models were all zeros, we did not show them in the figure.
It is clear that although there are only four iterations of the al-
gorithm, the estimates improved with each iteration and they
stabilized quickly.

C. Discussion

In the previous simulations we demonstrated the perfor-
mance of the PMC by comparing it with that of the RJMCMC.
We showed that the PMC had comparable performance with
RJMCMC when the simulated sample size was large, and
that the PMC outperformed the RJMCMC when the sample
size was small. In both [8] and [9], the burn-in periods were
determined in a heuristic fashion. We speculate that the choice
of the updating proposals and the starting point of the algorithm
heavily influenced the length of the burn-in period.

Another advantage of the PMC over the RJMCMC, as men-
tioned in Section I, is the potential for its parallel implementa-
tion. Although a thorough investigation of this topic is beyond
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Fig. 7. Estimated ������ versus number of iterations obtained by the PMC
algorithm.

the scope of this paper, we could easily identify several similar-
ities between PMC and particle filtering, whose parallel imple-
mentation has been studied (see [28] for a recent development of
this topic). We argue that RJMCMC is not suitable for parallel
implementation mainly because each iteration of the algorithm
produces a single sample and this sample is dependent on the
sample produced in the previous iteration.

VI. CONCLUSION

We have proposed a general algorithm to carry out the
Bayesian computation required for selecting the MAP model
order. We have studied the convergence result of the proposed
algorithm and demonstrated its performance on two typical
signal processing problems. Indeed the proposed algorithm is
flexible enough to approximate the posterior distribution for
both problems, and it is computationally more efficient than the
popular RJMCMC algorithm.

One future direction of research is to investigate theoretically
the convergence rate of the proposed algorithm, which could
shed new light to its behavior. It would also facilitate researchers
in proposing new structures for the transition kernels for im-
proving its rate of convergence. We also believe that a thor-
ough study of the parallel implementation of the PMC algorithm
would be of great practical interest.

APPENDIX A
PROOF OF THEOREM 1

The proof is an adaptation of the proofs for PMC algorithm
in [15]. First note that we have the following equations for im-
portance sampling:

(40)

where is the sampling distribution and is unnormal-
ized weight. In the following, we will set out to prove that

(41)

which is the numerator of (40), and the convergence of the nor-
malization constant will be automatically established when we
plug in [15], and (18)
would follow.

We then state a Lemma. The proof of this lemma can be found
in [29]. Let “ ” denote convergence in probability.

Lemma 1: Let be a measurable space. Assume that
the following conditions hold:

1) A sequence is independent given , where
is a algebra in .

2) is bounded in probability, e.g.,

(42)

3) , .
Then,

(43)

We verify the conditions on Lemma 1 to prove the conver-
gence of the PMC algorithm.

We first state our assumptions. The function is abso-
lutely integrable under , which is to say

(44)

Also the kernels and do not take value of 0 (or
that and are both finite).

Let

(45)

where is the vector . We let

, which is, essentially, a al-

gebra generated by the sequence and .
Notice that in the proposed algorithm the step , is just

conventional importance sampling, so the proof for this case
comes from the law of large numbers of importance sampling.
Based on this observation, we check all the three conditions in
Lemma 1, for . We use induction and that the convergence
in (18) is established for .

1) At iteration , the ’s are i.i.d. and drawn from
, and the ’s are i.i.d. and
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generated from . Thus, we have that

are independent from each other conditionally
on and . We also have that each is

drawn from . Then, the indepen-

dence of conditional on comes from

the independence of (notice, that is the esti-
mate of for the model order and is obtained from

at iteration ).
2) We have

(46)

The integral in the above result is bounded for all and we
get

The last inequality comes from the assumption that is
absolutely integrable with respect to (w.r.t.) .

3) From the condition 3) of the lemma, we have the following,
shown in the first equation at the bottom of the page. No-
tice, that the expectation is taken on the random variable

and , respectively. Since

(47)

the aforementioned long equation becomes, as in (46),
shown in the second equation at the bottom of the page.

We simplify the equation by denoting
as and

as .
Notice that is a function of , and is a function

of , , , and , respectively. Then the above
equation becomes

(48)

Notice that is a function of

, , and . Evidently, we have the following
inequality:

(49)
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Consequently, we have that is a
function of , and it takes a finite value (it is also, as

mentioned above, a function of and ). Evidently,
the above function is integrable under . Let us denote the
integral by . Recall
that is a resampled particle, so the weights are normal-
ized. By induction on (18), we have

(50)

where , and
and we have . As goes to

infinity, we can show that both integrals go to 0. We omit the
detail of this claim due to space limit.

Finally, we have the following convergence:

(51)

which implies

(52)

because and .
Thus, we verified the third condition, and the conclusion fol-

lows, namely,
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