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R
isk management (RM) has a long and storied history in both engineering and finance. As 
far back as 1800 BC, inscribed in the Code of Hammurabi in ancient Babylon, there is evi-
dence that insurance premiums were paid by farmers to cover the risk of a crop failure [7]. 
This was essentially an insurance policy, or a way to manage risk, which became a growth 
industry in Europe during the 1600s with the advent of global trade and the need to miti-

gate shipping risks [36]. 
In engineering applications, RM became a serious study with man’s desire to control nature most 

notably in the building of dams. Because of the rare nature of potentially catastrophic events, engi-
neers soon realized that the science of hydrology was different from other endeavors. Harold Edwin 

Hurst, a British hydrologist who studied the flood cycles 
of the Nile, created one of the first serious investigations 
of extremal events and long-range dependence [15]. 
More recently, the advent of quality control in the auto-
motive industry was a direct result of the realization of 
the risk of bringing a malfunctioning product to market. 
This suggests a loose, albeit broad, definition of RM as 
the study and mitigation of rare events that have poten-
tially devastating outcomes. 

With that loose definition, we see that RM permeates 
our lives. Do I try to make it through the yellow light? 
What happens to my project if I have a cost overrun? How 
much insurance should I buy? These are all examples of 
how RM decisions are made almost continuously across a 
broad spectrum. As such, it is no wonder it has become a 
serious study in many areas and nowhere more noticeable 
than in the financial arena of insurance and banking. 
While finance will be our focus in this article, we believe 
RM and its close cousin, reliability theory, will enjoy con-
tinued focus in more traditional engineering applications, 
with signal processing (SP) playing a prominent role, as 

the need to formulate robust solutions to real-world problems arise. For example, in defense applica-
tions, one can see a need for improved methodologies that focus both on point estimation, or maximal 
probability events, as well as the  occurrence, prediction, and cost of outliers. Whether we address 
events like the Gulf oil spill, global warming, or terrorism acts, it is clear that we need a better and 
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more scientific approach to 
understanding and controlling 
risk in many important areas. 

While RM has many fields of 
application, probably none has 
been more storied and controversial than in the field of finance. 
And certainly, with the near-death experience of the banking sector 
in 2008, more focus has been given to improvement in methodolo-
gies. Prior to the recent financial crisis, RM was often viewed as a 
necessary evil to satisfy regulatory requirements and the “number 
crunchers” were often viewed as impediments to profitability. This 
admitted stereotype is probably more apt for the trading operation 
of a financial institution than in the insurance industry. The latter 
has a much higher regard for the study of risk since extreme events 
are part of the natural course of business [9]. It must be realized 
that RM in finance has unique features and difficulties compared to 
standard engineering fields. While SP engineers will find comfort 
in many of the familiar approaches and methodologies employed in 
this article, there are daunting problems that lurk in their applica-
tion to finance. In this article, we present an overview of RM sci-
ence and introduce current problems that are most amenable to 
the expertise of the SP community. 

INTRODUCTION
In finance, RM can be defined as the study and mitigation of 
(financial) losses with emphasis on the extremes that can occur 
with particular attention given to (financial) ruin. In Figure 1, 
we show an idealized loss distribution function where positive 
abscissas are financial losses. This is simply a probability distri-
bution function (pdf) that we all first encountered in elementary 
probability courses. SP engineers may think of potential losses 
as predictions and the loss distribution as the predictive distri-
bution used to derive statements of the future. 

The derivation of the loss pdf for the future is, of course, a 
critical component of RM as is the derivation of predictive pdfs 
in many SP problems. But in contrast to focusing on the 
mean, the median, or maximal value, our focus is on the so-
called tail of the distribution, which is shaded in our chart and 
equivalent to an upper quantile. Of highest interest here is the 
size of the tail, its shape, and its various conditional moments 
upon exceeding a threshold. This makes the problem most fas-
cinating in that, by definition, time-series models must be 
built upon a very limited set of data and, therefore, robust pro-
cedures must be utilized. 

RM in finance can essentially be boiled down into two prob-
lems. First, there is the statistical study and theory of extreme 
events [27]. For example, we are interested in the limiting prop-
erties of a sequence of maxima of random variables compared to 
their sum, which we have all encountered in the central limit 
theorem. This is also where we enter the realm of nonnormal 
pdfs and, in particular, the study of leptokurtotic, or “fat-tailed,” 
pdfs where we might not have the luxury of finite moments. The 
statistical study of extreme events is not limited to finance and, 
for example, it has been playing a vital role in research of tele-
communication traffic where packet size distributions share 

similar properties to financial 
data [20], [37]. In related work it 
has been employed for investi-
gating impulsive interference 
[34], and further in SP, for 

obtaining accurate performance measures of track-before-detect 
algorithms [17]. In medical screening, it has been used for 
detecting “abnormal” events [29], in mechanical engineering 
for identifying anomalous episodes in gas-turbine vibration data 
[4], and in oceanography for studying sea-floor data acquired by 
multibeam sonar systems [10]. 

The second problem is that of modeling and predicting the 
future distribution of losses. We want to emphasize the second 
part of this problem. It is vital that the derived loss-distribution 
function not only reflects conditional uncertainty under the 
various model assumptions but also its unconditional nature. 
This naturally lends the problem to the Bayesian approach, 
which, to date, research has not particularly focused on. The 
other emphasis is that we are specifically interested in the far 
right tail of the distribution (i.e., extreme losses or errors) and 
would willingly sacrifice predictive accuracy elsewhere to get a 
better estimate of the probabilities of rare events. 

For specialized terms with their meanings, see “Glossary of 
Terms.” The words in the glossary are italicized in the text 
upon their first mention. 

RISK MANAGEMENT TERMINOLOGY
A fundamental concept in finance is the price (or value) func-
tion that, in its simplest form, is the value of a financial claim. 
It could be the price of a stock, which is a claim on a compa-
ny’s excess cash flows, or it could be the value of a complex 
portfolio of risky assets [24]. This price function, denoted by 
P 1t 2  at time t, is a random variable (RV) defined on a suitable 
probability space, and we define the dollar loss ($-loss) over 
some time  period t as 

 L 1t, t1t 2 52 1P 1t1t 2 2 P 1t 22 . (1)

[FIG1] An example of a loss pdf.
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Generally speaking, P 1t 2  is 
known at time t and P 1t1t 2  is 
the RV of interest. An SP analo-
gy is that P 1t 2  is an observation 
or measurement, and the loss is 
the predicted change of the 
observation after a period of t. Typically, we do not work with 
prices directly but rather the natural logarithm of the price 
which, as we will see shortly, implies the loss function is the 
negative of the return (percentage price change). In either 
case, the value function P 1t 2  is modeled by a risk-mapping 
function,  f 1 # , # 2 ,  of  t ime t  and a random vector 
x 1t 2 5 3X1 1t 2 , X2 1t 2 , c,  XN 1t 24^ whose N  elements are 
called risk factors. As engineers we think of x 1t 2  as the state 
vector of the system, and f 1 # , # 2  as the system function. The 
representation, P 1t 2 5 f 1t, x 1t 22 , may be exact, as we will see 
in a simple formulation shortly, or it may be unknown, which 

opens it up to system identifica-
tion techniques and modeling 
with innovations. In general, 
the risk mapping is based on a 
(possibly empirical) relationship 
between the log-price function 

and more readily observable market variables. 
We rewrite our loss function in (1) in terms of the risk fac-

tors to get 

 L 1t, t1t 2 52 1 f 1t1t, x 1t1t 22 2 f 1t, x 1t 222 . (2)

Since the risk factors, or states of the system, are often known 
at time t, it is the distribution of risk factor changes, 
z 1t1t 2 5 x 1t1t 2 2 x 1t 2 , that is the object of statistical 
interest. 

Modeling the risk-factor changes to potentially improve on 
unconditional estimates of future losses is a critical design issue 
in RM, as it is in many SP applications, and the many issues 
confronting SP engineers are similar for risk managers. Should 
we consider a conditional or unconditional loss distribution? 
The former implies a deeper model selection problem versus 
just pure innovations. How should we design a robust system to 
handle, or mitigate, large errors? There is also the choice of 
horizon or time period for estimation. Are we interested in one-
day losses or one-year losses? They can be dramatically different 
depending on the underlying process. In this article, we consid-
er the horizon to be one day for ease of exposition (thus, from 
here on, t 5 1). Finally, and possibly unique to financial RM, we 
are interested in the distribution of potential drawdown, which 
includes cumulative loss and time to recovery [25]. Cumulative 
loss is the amount of total loss experienced over multiple days, 
and the time to recovery is how long it takes to recover from 
such loss. We will not discuss drawdown in detail here but suf-
fice it to say it is a more complex topic [35]. 

As a concrete example of a risk mapping, consider the some-
what circular risk factor X 1t 2 5 log P 1t 2 , the natural log of the 
security’s price. This is the most granular of representations as 
each security is modeled directly and independently. Clearly, 
P 1t 2 5 eX1t2, and we can write the risk-factor changes as 

 Z 1t1 1 2 5 X 1t1 1 2 2 X 1t 2
 5 log 1P 1t1 1 22 2 log 1P 1t 22
 < P 1t1 1 2 /P 1t 2 2 1

 5 r 1t1 1 2 ,
where r 1t1 1 2  is referred to as the price return at time t1 1. It 
turns out that in finance, price returns are more natural time 
series for investigation. So in this example, we are interested in 
the statistical properties of security returns and, if we can infer 
the distribution of future security returns, the $-loss distribution 
is easily obtained. As such, most financial time-series models 
focus on security returns and, in the sequel, we will assume log 
prices are modeled and losses are interpreted as negative returns. 

GLOSSARY OF TERMS

Asset
An item of economic value owned or controlled by an 
individual or corporation. 

Derivative
A security whose price is dependent upon or derived 
from one or more underlying assets like stocks, bonds, 
commodities, currencies, and interest rates. 

Drawdown
A measure of decline of a variable from a historical peak. 

Option
A contract sold by one party (option writer) to another 
party (option holder) offering the buyer the right, but 
not the obligation, to buy (call option) or sell (put 
option) a financial asset at a specified price (the strike 
price) during a stated period of time or on a specific date 
(exercise date). 

Portfolio
A collection of investments owned by an individual or 
organization. A portfolio can include stocks (investments 
in businesses), bonds (investments in debt), and mutual 
funds (professionally managed pools of money from 
investors). 

Position
The amount of a security either owned (a long position) 
or owed (a short position) by an investor. It is a trade 
that the investor holds open. 

Price/Earning Ratio
A measure of the price paid for a share relative to the 
annual net income or profit earned by the firm per share. 

Risk Factor
A variable whose change can affect the value of an asset. 

Security
An instrument that has a financial value, for example, a 
banknote, a bond, a stock, or a derivative contract.

IT MUST BE REALIZED THAT RM IN 
FINANCE HAS UNIQUE FEATURES 
AND DIFFICULTIES COMPARED TO 
STANDARD ENGINEERING FIELDS.
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STYLIZED FACTS OF FINANCIAL TIME SERIES 
Before we delve into the details of RM, it is useful to present 
some stylized facts about the financial time series of returns 
and, in general, most risk factors encountered. We will illus-
trate these using the daily returns of the popular Standard & 
Poor’s (S&P) 500 stock market index from January 1928 
through the end of 2009. This gives us not only plenty of 
observations (over 20,000), but also we have various events 
such as the stock market crashes of 1929 and 1987 as well as 
the more recent dot-com crash and the large decline post the 
subprime mortgage crisis. In addition, S&P 500 stock market 
returns are often used as a risk factor in many RM systems as a 
proxy for the overall market. The time series of returns is 
shown in Figure 2, where one can clearly see the market crash 
of 1987, which looks more like a bad data point than the actu-
al 20%-plus decline witnessed on so-called Black Monday. 
Given that the empirical, or historical, (unconditional) stan-
dard deviation is 1.2%, one can see that really extreme events 
can and do occur quite often. Just the fact that the previous 
Black Monday in 1929 occurred a mere 58 years prior with a 
13% decline should quell any desire to model the uncondi-
tional returns using a normal distribution. 

The first stylized fact is that returns show little serial corre-
lation but absolute or squared returns show significant correla-
tion. This is seen in Figure 3, which shows the correlation 
coefficient as a function of lag for the raw and absolute returns 
out to a lag of 20 days or about one month. We avoid analyzing 
squared returns since financial time series tend to be modeled 
by processes with potentially infinite higher moments. While 
the serial correlations are insignificant, statistical tests on the 
absolute return correlations, such as the Ljung-Box test, easily 
reject the strict white noise assumption. This is a bit of a shock 
since much of the foundation of modern finance is based on 
modeling the return process as Brownian motion, or a Weiner 
process. For example, the assumption of Brownian motion 
underlies the celebrated Black-Scholes option pricing theory 
[16]. So, from an SP perspective, we are immediately presented 
with the challenge of designing an appropriate model, as uncon-
ditional approaches will have an inherent misspecification. 

The presence of serial dependence in returns makes one 
question whether there is predictability in the time series. But 
our second stylized fact, that conditional expected returns are 
close to zero, puts a lid on that. Simply stated, and as most sea-
soned market participants know, it is difficult if not impossible 
to predict the market in the long run based purely on historical 
prices. A result of the first two observations—that returns are 
serially dependent but lack predictability—can be paraphrased 
with another stylized fact that volatility, or the standard devia-
tion of returns, varies over time and appears to have a predict-
able component. Thus, models that incorporate volatility 
dynamics enjoy success in analyzing financial time series. 

The next group of stylized facts have to do with the 
extreme values typically observed starting with the observa-
tion that returns are leptokurtic with heavy or fat tails particu-
larly to the left (to the right for the loss distribution). This is 

observed for the S&P 500 data set in Figure 4, which is a QQ 
plot of the return data versus a standard normal reference. 
Recall that a QQ plot is a plot of ordered statistics of empirical 
data against a reference distribution. We only show the losses, 
or negative returns, which are positive numbers in the chart. 
If the data were truly from a normal distribution then one 
would expect a linear relationship, which is clearly rejected. 
Any number of tests of normality, such as the Jarque-Bera 
test, can be run on the stock market data with all of them 
being easily rejected [32]. The exponential shape of the curve 
highlights the extreme outliers observed in the data and sug-
gests that the conditional mean, upon exceeding a threshold, 
grows with the threshold. More colloquially, conditioned on 
observing a “bad” return, the chances of observing a “really 
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[FIG2] S&P 500 stock market returns: From 1 January 1928 to 
31 December 2009 (data source: Bloomberg, L.P., and S&P 
indices).

[FIG3] Correlation coefficient versus lag for S&P 500 daily 
returns, raw and absolute values.
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bad” return increases with the 
level of “badness.” This is a 
 critical feature of financial time 
series and one that will drive the 
distributional assumptions used 
for RM [13]. In particular, we 
will find that distributions whose tails decay according to a 
power law do a much better job of modeling financial data, 
which is why we use many results from extreme value theory 
(EVT) in modeling tail probabilities [11]. 

Another stylized fact of financial time series is that 
extreme values tend to be clustered in time [33]. To some 
degree, this is a reflection of the serial dependence and 
dynamic volatility of the data. If the data were truly indepen-
dent identically distributed (i.i.d.), theory suggests the larg-
est values will tend to occur as in a homogeneous Poisson 
process with i.i.d. exponential interarrival times. It turns out 
that the Poisson assumption is reasonable but the arrival 
rate, or intensity, is not constant, which results in too many 
short interarrival times. Intuitively, when there is a large 
shock to the market leading to liquidations and a reduction 
in risk, the ability, or desire, of the market to absorb subse-
quent shocks is diminished. In other words, the market gets 
skittish and volatility tends to persist. 

Finally, a multivariate stylized fact is that correlations 
between series of financial data vary over time and exhibit tail 
dependency. The latter is a formal way of stating the old mar-
ket adage that “everything is correlated when the market takes 
a dive.” Two time series that appear to be locally uncorrelated 
for modest market moves can be highly correlated in market 
stress. This was witnessed most recently in late 2008 to early 
2009 when all stocks were seemingly phase locked. 

THE RISK MANAGEMENT PROBLEM
There are many types of risk but, in our discussion, it is the 
quantitative management of financial market risk that is of 

interest [26]. To begin with, the 
simplest and still often quoted 
quantification is called gross 
notional risk, which is the sum 
of the absolute dollar amounts 
of the portfolio positions. The 

benefit of this approach is its simplicity and the difficulty in 
tweaking its value based on a model parameter. There are 
problems, however. First, there is no standardization of risk 
before aggregation. For example, consider US$1 worth of 
Microsoft (MSFT) stock and US$1 of U.S. Treasury bills. Is it 
fair to add these together and say I have US$2 worth of notion-
al risk? Clearly, they do not bear the same risk with the former 
being inherently riskier. So the question of how to put securi-
ties on equal footing comes into play. The other main issue 
with this approach is that correlations are not accounted for 
and, in particular, negatively correlated securities are not dis-
tinguished. For example, if I own US$1 of MSFT and also own 
a contract to sell it tomorrow (a forward sale), then I have a 
gross notional exposure of US$2 even though the position is 
virtually riskless. On the other hand, correlations are also the 
reason risk managers need to examine (gross) notional expo-
sures as they are not subject to estimation error and so-called 
model risk. Finally, there is difficulty determining the notional 
amount of some derivative contracts, such as options, where 
the notional exposure can easily change or is ill defined. 

The second approach to quantifying market risk is through 
the factor sensitivities of a portfolio. Typically, this is reported 
as the gradient of the risk-mapping function with respect to 
the risk factors, where the gradient is given by 

 =f 1t, x 1t 22 5 3df/dt, df/dX1, c , df/dXN 4^.

As mentioned before, in some cases the risk mapping is known 
and its linearization can be analytically obtained or numerical-
ly computed. In many cases, due to the nonlinearity of the risk 
mapping, the second derivative or Hessian matrix also needs 
examination. The issue with this approach to RM is that it 
does not tell us the amount of risk, in terms of potential loss, 
unless we specify assumptions on the risk factor changes. In 
other words, and as we discuss shortly, unless we specify the 
distributional assumptions for risk factor changes, we cannot 
aggregate the sensitivities into a single metric. Nonetheless, 
the factor sensitivities are an important part of a risk manag-
er’s view into a portfolio, and therefore, limits for each sensi-
tivity are often imposed on a portfolio. 

We often model the risk mapping as a linear system and 
the factor sensitivities, or system coefficients, are estimated 
and predicted from empirical data. An example would be mod-
eling the sensitivity of a stock’s return to an economic risk 
factor, such as unemployment, and a stock specific factor, like 
its price/earning (P/E) ratio. These system coefficients would 
need to be estimated using historical data along with a poten-
tial time-series model for their evolution. In addition, there 
are cases where the state variable, or risk factor itself, must be 

[FIG4] Quantile-quantile (QQ) plot of the negative S&P 500 
returns against the standard normal reference distribution.
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THE PRESENCE OF SERIAL 
DEPENDENCE IN RETURNS MAKES 

ONE QUESTION WHETHER THERE IS 
PREDICTABILITY IN THE TIME SERIES.
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estimated. For example, a mort-
gage-backed security’s value is a 
function of future prepayments 
and this state variable is unob-
servable. Further, in a multivar-
iate setting, we may consider 
unobservable, or latent, risk fac-
tors using techniques such as principle component analysis. 

In a general multivariate setting, we write the log-price 
function as 

 p 1t 2 5 f 1t, x0 1t 22 1 F1 1t 2x1 1t 2 1 F2 1t 2x2 1t 2 ,
where p 1t 2  is now a K 3 1 vector of log prices and, once again, 
losses are negative returns. We have altered our original risk-
mapping definition to include a vector-valued known function, 
f 1 # , # 2 , with N 3 1 risk factor input x0 1t 2 , as well as two addi-
tional terms. The first of them includes a K 3 M matrix, F1 1t 2 , 
whose columns would typically include characteristics of the 
underlying securities that are observable at time t. This known 
factor loading matrix is post-multiplied by an M 3 1 vector of 
risk factors, x1 1t 2 , whose dynamics would typically be modeled 
and estimated from historical data. The second additional term 
is similar except that the K 3 J factor loading matrix, F2 1t 2 , is 
unknown and needs to be jointly estimated along with the 
J 3 1 risk factor vector, x2 1t 2 . Note that a pure noise term (e.g., 
Weiner process) is easily accommodated as part of one of the 
risk factors. 

We have suppressed any model parameters in the equation 
to keep things simple but they would, in general, need to be 
included. We also did not show that the risk-mapping function 
and loading matrices may depend on past prices. If the function 
f 1 # , # 2  can be suitably linearized and the factor loading matri-
ces are slowly time varying, we can write the vector loss func-
tion in a compact form as 

 L 1t, t1 1 2 < 2F 1t 2z 1t1 1 2  (3)

with the risk factor changes, z 1t1 1 2 , as defined previously and 
where the risk-mapping matrix F 1t 2  is given by 

 F 1t 2 5 3=f 1t, x 1t 22 F1 1t 2 F2 1t 24. (4)

Thus, similar to the previous section, the focus will be on the 
risk-factor changes z 1t 2  in a multivariate setting. The 1 i, j 2 th 
element of the loading matrix F 1t 2  is the sensitivity of the ith 
security’s return to the jth risk factor. As a simple example, if 
the only risk-factors are x1 1t 2  being the log price of the S&P 
500 index and x2 1t 2  as a K 3 1 vector (J5K) of uncorrelated 
error terms with F2 1t 2 5Diag 1s1, c, sK 2  then (3) is an 
expression of the classic single-factor model for stock returns 
with the K 3 1 vector F1 1t 2  being the so-called stock betas. 

The true crux of RM is in the development of risk measures 
from the loss distribution [5]. While it is inherently risky to 
summarize a distribution by a few variables, except under styl-

ized assumptions, we are not left 
with much choice. A risk manag-
er needs to communicate his or 
her findings to a wide audience 
using simple, concise, and con-
sistent language. Examples of 
such measures include value-at-

risk (VaR) and expected shortfall (ES), which we flesh out in the 
next section. 

One approach is to assume the risk factor changes, z 1t 2 , are 
represented by a random vector with known distribution, which 
can be unconditional or conditioned on a model assumption 
(e.g., a vector AR(1) model). The classic example would be a 
normal assumption, z 1t 2 |N 1m 1t 2 , S 1t 22  with the risk map-
ping approximated by a linear function so that, for a known vec-
tor a 1t 2  and a matrix B 1t 2  at time t, we have 

 L 1t1 1 2 < 2 1a 1t 2 1B 1t 2z 1t1 1 22 .
Then, for the loss L 1t1 1 2 , we can write 

 L 1t1 1 2 |N 12a 1t 2 2B 1t 2m 1t 2 , B 1t 2S 1t 2B 1t 2^2 .
In the case where the risk-factor changes are unconditionally 
normal with zero mean and constant covariance, 
z 1t1 1 2 5 C w 1t1 1 2  with S5 CC^ and w 1t1 1 2 |N 10, I 2 , 
then a 1t 2 5 0 and B 1t 2  is the risk-loading matrix used in (3) 
and defined by (4). 

In the conditional setting, m 1t 2  and S 1t 2  are the conditional 
mean and covariance, and a 1t 2  and B 1t 2  will depend on the 
model. Of course, we still have the problem of estimating the 
parameters of the distribution (m 1t 2  and S 1t 2  in this case), as 
well as the model, and usually maximum likelihood (ML) esti-
mates are employed. A popular conditional estimate for m 1t 2  
and S 1t 2  is to use exponentially weighted moving averages. 
Given the inherent uncertainty associated with such estimates, 
however, a Bayesian approach, much like what has been widely 
used in SP [30], would seem more suitable. 

This method, termed the variance-covariance method when 
a normal distribution is assumed, has some drawbacks. First, 
linearization of the risk mapping may not be a good approxi-
mation. This is particularly true for derivative portfolios that 
include options with possibly significant nonlinearities. If there 
are nonlinearities in the risk-mapping function, the linear 
approximation and resulting risk assessment will be invalid for 
large moves in the market. The other reservation with this 
methodology, as we have already stated, is that the normal dis-
tribution is too thin tailed to be useful in defining the tail of 
the observed data. This can be overcome by making alternate 
distributional assumptions and, as we will see in the sequel, 
there are natural limiting distributions for extreme values that 
are quite useful and theoretically sound. When linearization is 
not valid, a Monte-Carlo approach can be used to simulate 
future returns based on a presumed model. In fact, this can be 
extremely  powerful when combined with Bayesian methods 

THE FIRST STYLIZED FACT IS THAT 
RETURNS SHOW LITTLE SERIAL 

CORRELATION BUT ABSOLUTE OR 
SQUARED RETURNS SHOW 

SIGNIFICANT CORRELATION. 
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and computational techniques such as particle filtering [6]. Of 
course, a choice of models is still required and multivariate 
generalized autoregressive conditional heteroscedastic models 
(discussed in the article by David S. Matteson and David 
Ruppert, also in this issue)  with Student-t innovations have 
found purchase. 

One of the issues that makes RM a difficult science is the 
potential for nonstationary risk factors. For example, in the sim-
ple case introduced earlier, where the risk factor is the log price, 
the modeling of the historical time series of returns can be 
problematic. Consider the stock returns of MSFT. Today MSFT 
is a much different company than in the late 1990s during the 
dot-com frenzy. Back then it was viewed as an Internet-style 
growth company, while today it looks more like a traditional large-
cap value stock. Is it reasonable to use the historical record of 
MSFT returns to estimate future losses, even with a conditional 
model imposed? In fact, the search for stationary risk factors that 
can empirically explain returns is a major goal of RM. For exam-
ple, we may model a stock’s return on a number of company spe-
cific, time-varying variables such as its P/E ratio or dividend yield. 
Even so, it may not be reasonable to assume that, for example, 
high dividend stocks will always behave in the future like they did 
in the past. Clearly, in 2008 they did not. 

RISK METRICS
The ultimate goal of RM is to summarize the loss distribution 
by a small set of metrics that can be used to constrain a portfo-
lio, or trading unit, from taking on too much risk. An offshoot 
of this is to utilize the risk metrics to optimize or sculpt a port-
folio to maximize potential profit subject to risk controls. As 
such, a risk metric should have certain desirable properties and 
define everyday losses—those observed say once a month—and 
extreme losses, which could potentially put the financial institu-
tion at risk of bankruptcy. The dilemma, of course, is that we 
can never be sure that the future will behave anything like the 
past and the act of RM itself can actually induce risk. For exam-
ple, an RM system may suggest that a portfolio’s exposure to a 
risk factor can be increased but this act, if widely accepted 
across the financial system, can actually increase what is now 
known as systemic risk. This negative feedback was apparent 
during 2008 as the outcome of systemic risk that built up in the 
financial system based on the then ex-ante observation that 
home prices never went down. 

While the usual statistics, such as the sample moments, are 
important, as they are in SP, RM is more focused on the right tail 
of the loss distribution. The standard deviation of the distribution 
is widely used in traditional portfolio construction but, given that 
we are concerned with losses, a natural alternative is to examine 
the (upper) partial moments defined as 

 mk, u 5 3
`

u

1x2 u 2 kp 1x 2dx,

where p 1x 2  is the pdf of the loss. In particular, with u 5 m, and 
k5 2, we have the semivariance that is often used in place of vari-
ance in portfolio optimizations and financial ratios. By increasing 

k, we get a more conservative risk metric as extreme values get 
more weight. 

Risk metrics have been developed that provide a better picture 
of the right tail [12]. Probably the most widely used, for better or 
for worse, is VaR, which is the quantile of the loss distribution 
F21 1a 2  with F 1 # 2  the cumulative distribution function (cdf) and 
a [ 30, 1 4 a parameter of choice. The formal definition for VaR is 

 VaRa 5 inf 3l [ R : F 1 l 2 $ a 4, (5)

which is the generalized inverse of the cdf. If F 1 # 2  is continuous 
and strictly increasing, then VaRa is the ordinary inverse of the cdf 
evaluated at a. An example would be a “95, one-day VaR,” denoted 
by VaRa, D with a5 95% and D5 1, which is the 95th percentile 
of the one-day loss distribution. Technically, we should specify any 
conditioning information, such as the size of the historical win-
dow used, and often we drop D when the period is understood. 
Unfortunately, many people use VaR incorrectly, statistically 
speaking. For example, if our VaR95%, 15 US$1 million, one often 
hears “we should expect to see a loss of US$1 million or more 
about one day a month.” In reality, the statement should be “con-
ditioned on our model being correct, we can be 95% confident 
that losses will not exceed US$1 million on any given day.” 
Semantics aside, one reason VaR is so popular is because of the 
ease of translation into tangible events. It has even been accepted 
as the standard RM metric for global banking regulators in the 
Basel accords [2]. 

The problems with VaR, however, extend beyond its mere 
interpretation [18], [31]. Consider the following two loss distribu-
tions. With portfolio one, I have a 50/50 chance of making or los-
ing US$1. The 75% VaR is simply US$1 (note that losses are 
positive numbers and the formal VaR definition in (5) is used). 
Now consider portfolio two that has a 50% chance of making 
US$1, a 25% chance of losing US$1, and a 25% chance of losing 
US$1 million. The VaR75% is the same, namely US$1, but clearly 
there is a preference for portfolio one as it is certainly less risky. 
While this example is oversimplified, it illustrates the main issue 
with VaR in that it tells us nothing about what might occur upon 
exceedance. While it is nice to know that we have high confidence 
in losses being less than a certain amount, we certainly want to 
know what to expect if losses are larger than the VaR level. The 
above example, while simple, is actually quite realistic in that it 
portrays how a VaR-based risk system can be circumvented with 
nonlinear losses. Since VaR does not contain enough information 
about the tail of the loss distribution, strategies that potentially 
have extreme losses can not be easily distinguished from more 
benign ones. 

VaR is also problematic due to its lack of coherency. The princi-
ples of a coherent risk metric were first introduced axiomatically 
in [1] based on economic rationale. Most importantly, a risk met-
ric should be subadditive in that the risk metric of the sum of two 
loss distributions should be less than the sum of the individual 
risk metrics. In other words, it should encourage diversification 
and the merging of two portfolios into one should not create addi-
tional risk. Using a risk metric that is nonsubadditive in portfolio 
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optimizations can lead to highly concentrated portfolios that 
would be deemed quite risky by standard economic arguments. To 
illustrate the noncoherency of VaR, consider two i.i.d. securities 
that have a 90% chance of making US$1 and a 10% chance of los-
ing US$5 (a Bernoulli trial). They both have a 90% VaR of 2US$1. 
However, the combined portfolio of 1/2 of each security leads to a 
higher 90% VaR of 1US$2 so that the combination is deemed 
riskier even though there is clearly a diversification benefit. Note 
that the formal definition of VaR in (5)—the generalized inverse of 
the cdf—implies that VaRa 51$2, 4 a [ 1 .81, .99 4. This might 
seem like an unrealistic example, but it illustrates that, for a set of 
securities that have embedded options or skewed loss profiles, VaR 
can lead to concentration risk. 

Another real-world problem is that one cannot sum the indi-
vidual VaRs of different trading units and be certain of the result-
ing value bounds the combined VaR from above. Therefore, RM 
cannot be decentralized using the VaR risk metric creating com-
putational and operational burdens. It can be shown that VaR is 
subadditive under the ideal conditions of a linear risk mapping 
and risk factors that have a spherical distribution (e.g., multivari-
ate normal) but this is almost always violated in practice. 

A risk metric that overcomes these difficulties, and that VaR 
can serve as an adjunct to, is ES and is sometimes called condi-
tional VaR (CVaR) [31]. The ESa is defined under suitable condi-
tions (an integrable loss, L, and continuous loss cdf, F 1 l 2 , 
otherwise a more tedious but nonetheless applicable definition is 
required) as 

 ESa 5 E 3L|L $ VaRa 4
 5

1
12 F 1VaRa 23

`

VaRa

l dF 1 l 2 .
It can be readily seen that ESa is the conditional mean of the loss 
distribution given the loss is greater than the a-quantile or VaRa 
level. It tells us how much we can expect to lose conditioned on 
exceeding the VaRa limit and is a valuable insight that looks 
deeper into the tail of the loss distribution. 

We can estimate ESa by taking the sample average of the 
n 112a 2  upper-order statistics, from an original sample size n, 
which converges almost surely. Of course, the problem is that, 
unless we can rely on Monte Carlo simulations, the derived esti-
mate is poor as a S 1. It can be shown that ES is a coherent 
risk metric, which is extremely beneficial. Added to the fact that 
is looks further into the tail, ES gives us a much better picture of 
risk [18]. 

In Figure 5, we show the related mean excess function, 
e 1VaRa 2 5 ESa 2 VaRa, versus VaRa for the S&P 500 (negated) 
return series, and one can see that the mean excess tends to 
grow as the VaRa threshold increases, which is a prominent fea-
ture in financial time series. It can be shown that any continu-
ous cdf, F, is uniquely determined by its ES function and for a 
normal distribution the graph should be downward sloping, 
inversely proportional to the threshold, which clearly our data 
reject. For the exponential distribution it is a constant, and the 
distribution that results in a positive linear relationship, between 

e 1a 2  and VaRa, is the Pareto distribution, which is a power-law 
probability distribution that coincides with many types of 
observable phenomena. The graph in Figure 5 shows a strong 
linear relationship and the outliers to the far right need to be 
considered in the context of their large confidence intervals 
given their extremely small sample size. As it turns out, as we 
discuss next, there is good reason to consider the Pareto distri-
bution as a choice for estimation based on the asymptotic prop-
erties of the loss distribution. 

GOING TO THE EXTREME
In RM, we are often put to the task of making probabilistic state-
ments about extreme losses. For example, a financial institution 
would certainly want to know the chances of its capital being 
depleted over a given time period. While there is always risk of 
financial ruin, as in any enterprise, we want to be sure that it is 
within acceptable bounds and, as scientifically as possible, have a 
reasonable basis for truth. The extreme value theory (EVT), or 
the theory of extremes, is a branch of statistics that deals explic-
itly with this topic providing firm ground for analysis [27]. 

In many cases, we are interested in the distribution of the max-
imum of a risk factor over a prescribed time period, such as a year. 
Specifically, we are interested in the distributional form of a suit-
able normalization of the maximum, MN5max 3X1, X2, c , XN 4, 
of N i.i.d. RVs, referred to as the block maximum. If the block size 
N is large enough, the i.i.d. assumption may not be a poor approx-
imation. That said, much of what follows applies to (strictly) sta-
tionary processes in general. It turns out that, just as there is a 
limiting distribution for the normalized sums of RVs, particularly 
the standard normal, the limiting nondegenerative distribution for 
the block maximum RV sequence, properly normalized, is the 
generalized extreme value (GEV) cdf given by 

 HP 1x 2  5 e exp 12 111 Px 221/P 2 , P 2 0, 11 Px . 0
exp 12e2x 2 , P5 0, x .2`

.

[FIG5] Mean excess (conditional mean given threshold 
exceedance minus threshold) versus VaR (threshold) for S&P 500 
negated return data.
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The variable x can be scaled and translated to obtain a 
three-parameter cdf, HP,m,b 1x 2 5HP 11x2m 2 /b 2 . This result, 
known as the Fisher-Tippett theorem [26], guarantees the type 
of limiting distribution, and the parameters P [ R and b . 0 
are referred to as its shape and scale parameters, respectively. 
We should note that m [ R is not the mean of the GEV distri-
bution but rather a location parameter. The GEV comes in 
three distinct flavors although its continuity with respect to P 
allows us to reliably use the general form in statistical applica-
tions. If P . 0, as is typically the case for financial time series, 
the GEV is the Fréchet distribution. For P5 0, it is the 
Gumbel and for P , 0, it is the reversed Weibull distribution. 
The Fréchet distribution has received most of the attention 
because it is the limiting form of many underlying distribu-
tions used as innovations in financial time-series modeling, 
including the Pareto and Student-t. More generally, distribu-
tions leading to the Fréchet limit have the elegant character-
ization that their tails are so-called regularly varying [27], 
which is effectively power-law behavior. An important point to 
note for the Fréchet is that E 1Xk 2 5 ` for k . 1/P so, in par-
ticular, for the variance to exist we would need P , 1/2. 

With this limiting distribution in hand, we can look at our 
stock return data and get a first glimpse at how EVT can be 
applied in practice. In particular, we fit the annual maximum of 
the (negated) daily stock returns from 1928 to 1986 to see where 
the extreme event of 1987 fits into a predictive distribution. We 
use a simple approach, using the ML estimates for the parame-
ters as their true values to construct the predictive distribution 
for the 1987 maximum. Given we have only 59 annual maxima 
to work from, a more holistic Bayesian approach would seem 
better suited and is an area for future research. Our parameter 
estimates were m5 2.49%, b5 1.18%, and P5 .489 so the 
derived distribution barely has a finite second moment. Shown 
in Figure 6 are the empirical cdfs of the data for both prior to 
1987 and using the complete 82 years of data (1928–2009). We 
also plot the estimated cdf conditioned on the pre-1987 data 

using the ML estimates. One can see the fat right tail of the 
Fréchet distribution, which fits the historical (in-sample) data 
fairly well. Based on the pre-1987 data, we would have stated that 
the probability of the maximum daily loss in 1987 being at least 
20% was 1.35% (the actual maximum for 1987 was 20.47%) or, 
crudely speaking, a once every 75-year type storm. While clearly 
a low-probability event, our simple model would not have been 
that surprised with the 1987 extreme market crash and certainly 
any veritable financial institution would want to weather such a 
financial storm. 

While analyzing the block maximum distribution is useful 
in RM, it is only a glimpse into the potential risk and is quite 
wasteful of data. We would much prefer to make probabilistic 
statements about losses at a higher frequency (e.g., daily) and 
the block maximum approach requires a significant sample 
size, to take the maximum of, to apply the asymptotic results 
and the GEV. Fortunately, one of the major results in EVT is 
that the family of distributions for RVs whose maxima con-
verge to the GEV will have a conditional excess distribution, 
Fu 1x 2 5 P 3X2 u # x | X . u 4, that converges to the cdf of the 
generalized Pareto distribution (GPD), 

 GP,bu
1x 2 5 12 a11

Px
bu
b21/P

, P, bu . 0; x $ 0.

The shape parameter P is the same as in the limiting GEV dis-
tribution, and we have only shown the case for P . 0, typical of 
the data we investigate and the parameter bu is, once again, a 
scale parameter. Typically, in applications, u is fixed and therefore 
the subscript on b is dropped. This result, the Pickands-Balkena-
de Haan theorem [26], is extremely powerful and widely applica-
ble, effectively stating that the Pareto distribution (P . 0) is the 
canonical form for modeling extreme losses over high thresholds 
for most underlying distributions of our interest. Since, by defini-
tion, we will observe few samples in the historical record above, 
say, the 99.99% quantile (a feasible survival test level), this result 
allows us to estimate such quantities with the data at hand. In 
practice, we choose a “high enough” threshold u to estimate the 
parameters of the GPD and then use its properties to compute 
even more extreme conditional distributions and statistics. 

The mean of the GPD, assuming it is defined (P , 1), is 
E 1x 2 5 b/ 112 P 2  and it can be shown with some basic algebra 
and probability manipulations that, for a higher threshold v $ u, 
Fv 1x 2 5GP,b1P1v2u2 1x 2  so that the mean excess function, defined 
in the previous section, can be written as 

 e 1v 2 5 b1 P 1v2 u 2
12 P

.

The function e 1v 2  is linear in v and this fact is often used in a visu-
al test to admit a GPD model as well as to choose the threshold u. 
Recall, in Figure 5, the linear appearance of the empirical mean 
excess versus threshold graph that would suggest a Pareto distri-
bution (P . 0) is an appropriate model for deriving a conditional 
distribution upon exceedance. 

To compute the unconditional tail distribution, we may write 
for x $ u 

[FIG6] Empirical cdf using historical annual maxima of S&P 500 
return data (negated) and the GEV from ML estimates.
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 Q 1x 2 5 12 F 1x 2 5
 5P 1X . u 2P 1X . x|X . u 2
 5Q 1u 2 a11

P 1x2 u 2
b

b21/P

.

If we know Q 1u 2 , or can reliably estimate it from our data 
(e.g., Nu/N  where Nu is the number of samples that are great-
er than u, then we can use the above formula for the computa-
tion of various unconditional tail probabilities. The trick is 
that we need a high enough threshold so the asymptotic GPD 
is appropriate but low enough to get a good estimate of Q 1u 2 . 
An area of future research is using robust Bayesian techniques 
to provide for a true predictive distribution upon marginaliza-
tion over the parameter space with appropriate priors. With 
some minor effort, we can write 

 VaRa 5 u1
b

P
aa12a

Q 1u 2 b
2P

2 1b
and 

 ESa 5
VaRa
12 P

1
b2 Pu

12 P
.

To illustrate the use of EVT in practice, let us suppose we wish to 
estimate the one-day, 99.99% VaR level (a roughly one in 40 trad-
ing-year event) and the ES upon exceeding that threshold. We 
used the 300 or so largest values with a threshold, u, of 3% to esti-
mate Q 1u 2  and the parameters b and P of the tail distribution 
with the GPD assumption. Using the ML estimates as true values, 
we compute VaR99.99%5 13.2% and ES99.99%5 17.3%, which can 
be used to ascertain adequate capital levels to manage a modestly 
severe financial storm. 

Figure 7 illustrates how a financial institution might use 
the GDP extreme-value analysis. Shown on the x -axis is the 
expected occurrence rate that corresponds to a level of a for 
which VaRa and ESa can be computed. For each occurrence 
rate, we plot VaRa and ESa from the stock market return data. 
So, for example, if a financial institution desires to weather a 
once in a 100-year market crash, they should stress test their 
portfolio using a minimum 17% return loss with the expected 
loss, in that event, being about 22%. In fact, RM would sug-
gest looking even deeper into the tail of the loss distribution 
so that a conditional survival probability at some acceptable 
level can be determined and capital levels maintained to sur-
vive such an event. What may be surprising to some is the fre-
qu ency of occurrence of extreme events based on the 
empirical data with, for example, a 10% daily decline in the 
stock market not being that rare of an event at all. 

At this point, the reader will have noted that the results 
presented in this section are unconditional methods for esti-
mating tail probabilities. To deal with a more general station-
ary process requires more tact such as estimating the model 
parameters and using EVT on the residuals. More refined 
approaches need to be explored and an exciting area of 
research should include Bayesian estimation of tail probabili-

ties, model selection, and model assessment. We have also not 
covered the case of multivariate risk factors where modeling 
the tail regions and correlations is a more complex problem 
and worthy of future research. 

RISK MANAGEMENT AND SIGNAL PROCESSING
We hope our article leaves no doubt about the abundance of  
problems in RM where SP, and more specifically, the theory of 
estimation, model selection, filtering, system identification, and 
sequential SP can be applied. Recently, Einhorn compared VaR 
to “an airbag that works all the time, except when you have a 
car accident” [8]. This seemingly innocuous statement is actual-
ly a significant deficiency and thereby a challenge in RM. 
Hopefully, the SP community can help in meeting the challenge 
by identifying, quantifying, and correcting this deficiency. 

For RM, we adopt a model and use it to estimate the proba-
bilities of extreme outcomes and the obtained results are con-
ditioned on the validity of the model. How do we quantify the 
uncertainty of the assumed model and incorporate it into our 
risk assessment? How should we choose among different mod-
els and monitor their performance in real time? In a different 
situation, we may use more than one model for computing 
risks and would like to fuse their results in an optimal fashion. 
How should this be done? All of these questions may be 
answered with intricate use of the theories of model selection 
and model assessment. 

We need to strive to improve current risk models and build 
new ones that are more sophisticated and more robust, partic-
ularly with regard to systemic risk. Here, both parametric and 
nonparametric models  are of interest and especially models 
that are based on minimal assumptions. We need to consider 
the long-range dependence of the data both temporally as well 
as across asset classes. For example, could we have used the 
lessons learned from the historical stock market crashes to at 
least have portrayed a potential housing market decline? 

[FIG7] Estimated return losses versus expected occurrence rate 
for the S&P 500 daily returns using the GPD.
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With the advances of SP methods, we can afford to study 
RM with models of high complexities that include nonlineari-
ties and many hidden unknowns. Of particular interest are 
computational methods based on the Bayesian paradigm and 
that employ Monte Carlo sampling (including Markov chain 
Monte Carlo sampling, particle filtering, and population 
Monte Carlo sampling) and that have found extensive use in 
signal and image processing. We hope this article leaves the 
reader with no doubt that the science of SP can add much to 
that of RM. 
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