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Parameter Estimation for Random
Amplitude Chirp Signals
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Abstract—We consider the problem of estimating the pa-
rameters of a chirp signal observed in multiplicative noise,
i.e., whose amplitude is randomly time-varying. Two methods
for solving this problem are presented. First, an unstructured
nonlinear least-squares approach (NLS) is proposed. It is shown
that by minimizing the NLS criterion with respect to all samples
of the time-varying amplitude, the problem reduces to a two-
dimensional (2-D) maximization problem. A theoretical analysis
of the NLS estimator is presented, and an expression for its
asymptotic variance is derived. It is shown that the NLS estimator
has a variance that is very close to the Craḿer–Rao bound. The
second approach combines the principles behind the high-order
ambiguity function (HAF) and the NLS approach. It provides a
computationally simpler but suboptimum estimator. A statistical
analysis of the HAF-based estimator is also carried out, and
closed-form expressions are derived for the asymptotic variance
of the HAF estimators based on the data and on the squared
data. Numerical examples attest to the validity of the theoretical
analyzes and establish a comparison between the two proposed
methods.

Index Terms—High-order ambiguity function, multiplicative
noise, nonlinear least-squares, random amplitude chirp signals.

I. INTRODUCTION

T HIS PAPER is concerned with the analysis as well
as estimation of the parameters of chirp signals with

random time-varying amplitude. This kind of signal arises
in many applications of signal processing, one of the most
important being the radar problem. For instance, consider a
radar illuminating a target. Then, the transmitted signal will
be affected by two different phenomena. First, it will undergo
a phase shift induced by the distance and relative motion
between the target and the receiver. Assuming this motion is
continuous and differentiable, the phase shift can be adequately
modeled as , where the parameters
and are either related to speed and acceleration or range
and speed, depending on what the radar is intended for and on
the kind of waveforms transmitted [1, pp. 56–65]. The second
phenomenon to be accounted for is amplitude distortion caused
either by target fluctuation or scattering of the medium (e.g.,
fading). In either case, this results in a random time-varying
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amplitude that can be viewed as an unwanted parameter
(hence the terminology multiplicative noise often used in the
literature). To summarize, the model to be considered here is
given by

(1)

where denotes additive noise, and is the random
time-varying amplitude. Although considerable attention has
focused on the estimation problem for parts of the model in
(1), the literature is scarce on analysis of the complete model
(1). More exactly, the two following cases have been addressed
thoroughly.

• Constant amplitude chirp signals[i.e., ]: This
problem has been dealt with in [2] using rank reduc-
tion techniques, in [3] by means of phase unwrapping
schemes, and in [4]–[7] using the so-called high-order
ambiguity function (HAF). This scheme has become a
“standard” tool for analyzing constant amplitude chirp
signals since it provides a computationally efficient yet
statistically accurate estimator.

• Exponential signals with time-varying amplitude(i.e.,
) have been studied extensively in the recent years.

Approaches using high-order statistics [8]–[10], cyclic
tools [11], Yule–Walker equations [12], subspace-based
methods [13], and nonlinear least-squares estimators
[14]–[16] have been proposed and analyzed.

Analysis of signals like (1) can be found in [17] and [18] for
the deterministic case (i.e., deterministic) and [19]–[21]
for the random case. In [17], both the amplitude and phase are
assumed to be linear combinations of known basis functions
and maximum likelihood (ML) estimators are derived and
performance compared with the Cramér–Rao bound (CRB).
In [18], it is shown that appropriate use of the HAF provides
consistent and accurate estimates of the chirp parameters when
the amplitude is a deterministic sequence of the form
In [19], is assumed to be a stationary Gaussian process
whose covariance matrix depends on a finite-dimensional
parameter vector and CRB’s are derived. Extensions and
further results on CRB’s and ML estimation can be found
in [21]. A broad class of random amplitudes is studied in [20]
and cyclostationary solutions are investigated. More precisely,
for a chirp signal, use of the cyclic second-order moment is
advocated. It should be noted that, in practice, the estimation
procedure is equivalent to using the second-order ambiguity
function of Peleg and Porat since it amounts to computing a
fast Fourier transform of the sequence
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In this paper, two approaches are proposed. The first relies
on nonlinear least-squares (NLS) estimation of the chirp pa-
rameters, following ideas recently published in [15] and [16].
By minimizing the NLS criterion with respect to all samples of
the time-varying amplitude, it is shown that the NLS estimator
reduces to a 2-D maximization problem over the chirp param-
eters. Since this approach may be computationally intensive
for certain applications, a second approach is proposed that
borrows ideas from the HAF and the NLS estimator. More
exactly, this method consists of sequentially reducing the
order of the polynomial phase using some transformations;
this methodology is the essence of the HAF-based estimator.
At each step of the method, we are left with the problem
of estimating an exponential signal with random time-varying
amplitude for which the NLS approach is recommended.

The paper is organized as follows. In Section II, the NLS
estimator is derived and a formula for its asymptotic perfor-
mance is given. A suboptimum but computationally simpler
algorithm is presented and analyzed in Section III. Numerical
examples are given in Section IV, and our conclusions are
drawn in Section V. Technical derivations are deferred to the
Appendices.

II. NLS ESTIMATION

To begin with, we recall the model to be used and the
hypotheses made. The signal to be dealt with is given by

where we make the follwing assumptions.

AS1) is assumed to be a real-valued stationary mixing
process (not necessarily Gaussian), whose mean is
not assumed to be zero and whose covariance matrix
is unknown. We do not make any assumption about
the structure of ; in particular, it is not assumed
to be an ARMA process.

AS2) is a white complex circular Gaussian process
with zero mean and variance i.e., E

E Additionally,
is assumed to be independent of

Our NLS approach consists of estimating the parameters
as well asall samples of the time-

varying amplitude by minimizing the following criterion:

(2)

where , and
Note that this is not the “true” NLS estimator since the
latter would proceed by minimizing (2) with respect to
and the parameter vector on which would depend.
For instance, if is an autoregressive process,

; then, would
denote the vector of autoregressive parameters. The approach
we propose tacitly considers that the realization of is
frozen and has to be estimated. However, as will be illustrated
below, an estimate of is made available [see

(5)], which can eventually be used to estimateThe next
proposition shows how estimates ofand are obtained.

Proposition 1: The vectors and that minimize (2) are
given by

(3)

angle (4)

Re (5)

Proof: See Appendix A.
Examining (3), it is observed that by minimizing with

respect to (wrt) and not wrt , the problem is reduced
to a two-dimensional (2-D) maximization problem, as far as
parameters and are concerned. Additionally, it should
be emphasized that the present approach does not rely on any
assumed structure for the amplitude; hence, it has the desirable
property of being applicable to a wide class of signals. Before
proceeding to the theoretical analysis of the estimator, a few
remarks are in order.

Remark 1: It can be seen that the NLS estimates of the
phase parameters are decoupled from those of the amplitude
parameters, i.e., the amplitude variations are irrelevant to the
estimation of the phase parameters (however, they do affect
the achievable accuracy; see below). In contrast, the estimates
of the amplitude parameters depend on the phase parameters
since this estimate essentially involves dephasing.

Remark 2: In the constant amplitude case (i.e.,
), the estimate of would be an average, e.g.,

In the time-varying sce-
nario, each sample of is estimated [see (5)], which leads
to the squaring of the data.

Remark 3: It should be emphasized that the estimates of
as given by (3) and (4) are equivalent to those that would have
been obtained by solving the following minimization problem:

(6)

To see this, let us define Since the criterion in
(6) is quadratic in , for any given and , the value of

that minimizes the function in (6) is given by

Substituting into (6), the estimates of and are readily
found to be

(7)

which is exactly (3). Moreover

(8)
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Additionally, since are consistent estimates of , it
can be inferred that [22]

(9)

where E , and is in the mean-square sense.
This implies that Hence, the NLS estimator
“views” the signal as

(10)

where we define Under the assumptions
made on , we have

(11)

Let us examine the mean and covariance sequence of
It is readily verified that, under the assumption that is a
stationary process and is complex circular white Gaussian
noise, is zero-mean, i.e.,E Additionally

E

(12)

where E The
following facts are worth noting:

• The additive noise is no longer Gaussian or white.
• In the case of an exponential signal, is stationary

[since only depends on ], whereas, for
a chirp signal, the additive noise is nonstationary.

Remark 4: Here, we give some consideration to the imple-
mentation of (3) and the associated computational complexity.
Since the maximization problem in (3) does not admit an
analytical solution, we have to resort to numerical procedures
in order to solve this problem. Since the first- and second-order
derivatives are available, algorithms that have a quadratic or
super linear convergence can be used. The authors’ experience
is that the criterion in (3) is a rather “smooth” function
of and , and hence, there should not be problems in
finding the maximum, provided that a good initial estimate is
available. The HAF-based estimator that will be presented in
the next section is an excellent candidate for an initial guess.
Alternatively, a fast algorithm based on the fast quadratic
phase transform [23] can be used to solve (3).

We now analyze the performance of the estimates ofand
as given by (3). The equivalence of (3) and (4) with (6) is

used to obtain the following result.
Proposition 2: The large-sample variances of and in

(3) are given by

var
SNR

SNR

var
SNR

SNR (13)

where SNR

Proof: See Appendix B.
We first note that, similar to the constant amplitude case,

the variances of and are of orders and ,
respectively. We stress that these variance expressions do not
assume that is Gaussian or zero mean. Additionally, it can
be observed that although may be colored, the variance
expression (13) involves only the zero-lag term Finally,
it is of interest to compare the above expressions with the CRB
derived in [19] for the case of Gaussian amplitudes. Although
the exact expression for the CRB is available (see [19, (73)]),
we will use thehigh SNR expression, which is considerably
simpler since it is given by (see [19, (89)] and [21])

CRB
SNR

CRB
SNR

(14)

Comparing (13) with (14), it is seen that the NLS estimator
provides nearly efficient estimates in the Gaussian case.

III. HAF-B ASED ESTIMATION

Although the NLS estimator achieves the CRB in the
Gaussian case, it involves a 2-D maximization problem that
could be too intensive for certain applications. In this section,
we consider a simpler, yet suboptimum approach with a view
to decreasing computational load. It combines the use of the
HAF in order to reduce the order of the polynomial phase and
that of the NLS approach in order to estimate the frequency
of an exponential signal with time-varying amplitude. Before
describing the estimation procedure, we make the following
observations. Consider first the noiseless case. It is readily
verified that

(15)

where is some positive integer Hence,
is an exponential signal with time-varying

amplitude In the noisy case, we obtain

(16)

where

(17)

Hence, is a zero-mean (since ) process with
covariance

E (18)

Therefore, is an exponential signal with random
time-varying amplitude in complex
zero-mean white noise However, the distributions of

and are quite complicated to obtain; hence, an
optimal (e.g., maximum likelihood) approach appears not to be
tractable. Thus, we are naturally led to using a NLS approach
that consists of minimizing the following cost function
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with respect to and Observe that
this estimator is asymptotically efficient in the case of Gauss-
ian amplitude and additive white complex circular
Gaussian noise [15], [16]. Here, no such claim of
optimality can be made since these assumptions are not
satisfied. However, the NLS approach should perform well.
With these preliminaries, we are now in position to describe
the steps involved in the estimation of and

Step 1: For a given , compute
Then, estimate as

(19)

Note that can be obtained via the fast Fourier transform
of

Step 2: Once is available, demodulate to obtain

(20)

where combines the estimation errors in and the effect
of additive noise. Again, is an exponential signal with
time-varying amplitude, and is obtained as

(21)

We note that this HAF-based approach is simpler than the
NLS approach. In the next section, we will examine the
tradeoffs between statistical accuracy of the NLS estimator
and computational simplicity of the HAF estimator. However,
as we mentioned in Section II, the NLS estimator needs to
be initialized, and the HAF-based estimates can provide good
initial values.

Remark 5: It can be readily verified that the estimate in
(19) implicitly relies on a fourth-order transformation of the
data since

(22)

Note that such a transformation has also been proposed in
[24] for the detection of signals in white multiplicative noise.
However, this is to be contrasted with [20], where a second-
order transformation is used. Indeed, it is generally admitted
that the “classical” HAF estimator (i.e., the estimator derived
for constant amplitude chirps) could handle the case of time-
varying amplitudes provided that the process is lowpass
and has a second-order HAF (i.e., power spectral density)
maximum at frequency zero [6, p. 396]. Hence, we should

wonder if it is worth resorting to a higher order transformation.
To clarify this point, first note that [20] estimates as

(23)

To motivate this latter approach, note that

E

E

Hence, the cyclic mean of [or, equivalently, the
cyclic second-order moment of ], which is the generalized
Fourier series expansion of , will peak at

This is because the process
is not zero mean. Additionally, for large, we have from [22]

E

and hence, (23) is a consistent estimate ofThus, it should
be sufficient to use a second-order transformation. However,
this statement should be revisited in light of the following
observations. In [16], it is shown that even if is not zero
mean, the estimate (23) based on the cyclic mean of
does not necessarily outperform the estimate (19) based on
the cyclic variance of Briefly stated, the relative
performance of the two estimates depends on the respective
values of the “coherent” signal-to-noise ratio (SNR)
E var and the “noncoherent” SNR
var var Additionally, it was shown that
for white Gaussian additive noise, if , the estimator
based on the cyclic variance outperforms the estimator based
on the cyclic mean. In the present case, it is readily verified that

, and hence,
is generally greater than 0.5. Although the conclusions

of [16] cannot be directly transposed to the present case
since is not Gaussian and independent of ,
they clearly indicate that superiority of (23) over (19) is not
immediate. A more theoretically sound response on this point
will be given in Proposition 3. Finally, we note that the NLS
approach does not make any distinction between the zero-mean
and the nonzero-mean cases; it leads naturally to the estimate
(19). Additionally, the computational increase compared with
using the classical HAF amounts to multiplications in order
to compute the sequence

Remark 6: It should be pointed out that the present ap-
proach, in its implementation, is equivalent to the classical
HAF estimator with replaced by in the estimation
procedure. Therefore, it tacitly considers that the square of the
data is a constant-amplitude chirp signal. A similar remark has
also been made for the NLS estimator.

Since the HAF-based scheme sequentially estimate
its performance will highly depend on the variance
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of the estimate. Therefore, we concentrate on this parameter
and now derive its asymptotic variance.

Proposition 3: Assuming that the large sample
variance of the HAF estimate of (see (19)) is given by

var (24)

with

(25)

where is the unit step function, and denotes the
th-order moment of , i.e., E

Proof: See Appendix C.
Observe that the variance of the HAF-based estimator

depends on and the fourth- and sixth-order moments of
Hence, derivation of an optimal solely as a function of ,
as in the constant amplitude case, appears not to be directly
feasible. However, the form of (24) suggests than an optimal

should be close to For and in the high SNR
case, onee could readily show that [assuming is Gaussian]

var
SNR

which is approximately 3.2 times the corresponding CRB. The
variance at depends on only through its power

Therefore, although the performance of the estimator
depends on the spectral characteristics of , the variance
(24) should not be too sensitive to it. Finally, we stress that
in contrast with the constant-amplitude chirp case, the HAF
estimator does not provide a nearly efficient estimator.

Remark 7: A similar analysis can be carried out for the
“conventional” HAF estimator, i.e., that based on We
omit the derivations since it follows along the lines of Ap-
pendix C. It can be proved that the variance of’s estimate
is given by

var (26)

with

Numerical evaluation of (24) and (26) clearly indicates that
the variance of the classical HAF estimator is (very) superior
to the variance of the estimator proposed here. This confirms
the ideas of Remark 5. The numerical examples of the next
section will also corroborate this fact.

In the case of a chirp signal withconstant amplitude ,
it can be verified that (26) coincides with the expression
established by Peleg and Porat (see, e.g., [4, (31)]). Addi-
tionally, in the constant amplitude case and assuming terms

in SNR SNR are negligible, it is straightforward to
verify that

var
SNR

var
SNR

(27)

Hence, in the constant amplitude case, the HAF estimator
based on should generally be preferred to the HAF
estimator based on

IV. NUMERICAL EXAMPLES

The aim of this section is threefold. First, we study the
performance of the HAF-based scheme and the validity of the
theoretical analysis. Accordingly, the influence ofon the
performance of the estimator will be emphasized. Next, we
compare the empirical performance of the NLS estimator with
the CRB and verify the validity of the theoretical formulas
for the asymptotic variances. Finally, we compare the per-
formances of the suboptimum HAF-based scheme with that
of the NLS estimator. Additionally, we provide a comparison
with the “classical” HAF estimator based on (which does
not take into account the time variation of the amplitude but is
expected to perform well under certain conditions). Note that
the method of [20] is essentially equivalent to the HAF scheme
based on , and only the results of the latter will be reported.
In all the simulations, the time-varying amplitude is
generated as a zero-mean process, and the additive
noise is complex circular white Gaussian with variance
The SNR is defined as SNR In all simulations,
the chirp parameters are and

The cases of an process with
parameter and of an process with poles at
will be considered. Five hundred Monte Carlo trials were run
to estimate the mean square errors of the estimates.

A. HAF-Based Scheme: Influence of

In this subsection, we study the influence ofon the
performance of the HAF-based estimators. We will refer to
the “classical” HAF-estimator that uses as the HAF
estimator, whereas the new HAF-based scheme proposed here
will be denoted HAF in the sequel. Figs. 1 and 2 display
the theoretical (dotted lines) and empirical variances (“”) of
the HAF estimator as a function of in the case of an

and process, respectively.
It can be observed that the variance begins to decrease

when is increased. Then, a nearly constant variance is
obtained for When becomes large, the
variance tends to increase. As was expected, the optimalis
around However, we can choosein the range

without penalizing the performance of estimation
too much. This is an interesting feature of the method. Finally,
it is observed that the theoretical analysis predicts fairly well
the simulation results, provided that is not too large (note
that the analysis assumes , which is no longer the
case when and ).
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Fig. 1. Influence of� on the performance of the HAF(y2) estimator in the
AR(1) case. Dotted lines: theoretical variance. “+”: empirical variance. solid
lines: CRB.� = 0:95; N = 256; andSNR = 10 dB.

Fig. 2. Influence of� on the performance of the HAF(y2) estimator in the
AR(2) case. Dotted lines: theoretical variance. “+”: empirical variance. Solid
lines: CRB.� = 0:95; f = 0:01; N = 256; andSNR = 10 dB.

B. Comparison Between the NLS and HAF Estimators

We now compare the performance of the NLS estimator with
that of the HAF estimators. In what follows, the amplitude
is either an process with poles at or
an process whose pole modulus is In all
simulations, is chosen as Figs. 3–6 display the
influences of and SNR, respectively, on the performance
of the estimators. Since the theoretical variance of the NLS
estimator is almost indistinguishable from the CRB’s, only
the latter of these are plotted.

The following points are worth noting:

• The NLS estimator is seen to come close to the CRB,
provided that and are sufficiently large (typically

and dB). This validates the
theoretical analysis.

Fig. 3. CRB (solid lines) and mean square errors ofâ1 andâ2 versus number
of samples in theAR(1) case. “*”: HAF(y). Dotted lines: HAF(y2) theory.
“+”: HAF(y2): “�”: NLS. � = 0:95 andSNR = 10 dB.

Fig. 4. CRB (solid lines) and mean square errors ofâ1 andâ2 versus number
of samples in theAR(2) case. “�”: HAF(y): Dotted lines: HAF(y2) theory.
“+”: HAF(y2): “�”: NLS. � = 0:95; f = 0:01; andSNR = 10 dB.

• Using in lieu of in the HAF procedure consid-
erably improves the estimation performance. As a matter
of fact, the HAF estimator outperforms the classical
HAF estimator, whose performance is quite poor. Indeed,
in the case of zero-mean amplitude, the classical HAF
does not provide a consistent estimate: a fact also noted
in [16]. The method of [20] offers a slight improvement
at least for the estimation of [note that it provides the
same estimate of as the HAF estimator that uses ].

• The HAF scheme performs comparably with the NLS
estimator for small or low SNR. In contrast, the NLS
estimator performs better for large or high SNR. The
ratio between the variance of the HAF estimator and
the variance of the NLS estimator is about 3.2 for large,
as predicted by the theory. Hence, the gain in computation
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Fig. 5. CRB (solid lines) and mean square errors ofâ1 and â2 versus
SNR in theAR(1) case. “�”: HAF(y): Dotted lines: HAF(y2) theory. “+”:
HAF(y2): “�”: NLS. � = 0:95 andN = 256:

Fig. 6. CRB (solid lines) and mean square errors ofâ1 and â2 versus
SNR in theAR(2) case. “�”: HAF(y): Dotted lines: HAF(y2) theory. “+”:
HAF(y2): “�”: NLS. � = 0:95; f = 0:01; andN = 256:

of the HAF scheme is counterbalanced by some loss
of accuracy.

• The HAF estimator (and in certain respect the NLS
estimator) exhibits the threshold effect in SNR, which
is inherent to nonlinear transformations and has already
been reported in other studies on the same kind of
algorithms.

Next, we study the influence of the bandwidth of the time-
varying amplitude on the performance of the estimators. To
this end, Monte Carlo simulations were run for the
and cases by varying (the modulus of the AR poles)
and [frequency of the poles]. The results are shown
in Figs. 7–9. As can be seen, the performance remains stable
wrt variations of the amplitude bandwidth and corroborates the
“hierarchy” between the estimators established in the previous
simulations.

Fig. 7. CRB (solid lines) and mean square errors ofâ1 andâ2 versus module
of AR(1) pole. “�”: HAF(y): Dotted lines: HAF(y2) theory, “+”: HAF(y2):
“�”: NLS. N = 256 andSNR = 10 dB.

Fig. 8. CRB (solid lines) and mean square errors ofâ1 andâ2 versus module
of AR(2) poles. “�”: HAF(y): Dotted lines: HAF(y2) theory. “+”: HAF(y2):
“�”: NLS. f = 0:01; N = 256; andSNR = 10 dB.

V. CONCLUSIONS

We addressed the problem of estimating the parameters
of chirp signals with randomly time-varying amplitude. Two
methods were proposed: First, an unstructured nonlinear least-
squares approach was presented and analyzed from a theo-
retical point of view. It was shown that the NLS estimator
achieves the CRB for large Since the NLS estimator
requires a 2-D search for a maximum, an alternative and
simpler approach was proposed. It utilizes the HAF scheme
in order to reduce polynomial order along with the NLS
approach to estimate the remaining component, which is
a complex exponential signal with time-varying amplitude.
Statistical analysis was carried out showing that this estimator
has a variance only 3.2 times greater than the CRB when
the amplitude is a Gaussian process. Closed-form expressions
were derived for the large sample variances of the NLS
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Fig. 9. CRB (solid lines) and mean square errors ofâ1 and â2 versus
frequency of AR(2) poles. “�”: HAF(y): Dotted lines: HAF(y2) theory. “+”:
HAF(y2): “�”: NLS. � = 0:95; N = 256; andSNR = 10 dB.

estimator and the HAF estimators based on the data and
squared data. Simulation results were presented that attested
to the validity of the theoretical analysis. The NLS estimator
was shown to provide slightly better performance than the
HAF-based estimator. Additionally, these two estimators were
shown to outperform the classical HAF estimator, which was
previously proposed to solve this problem.

APPENDIX A
DERIVATION OF THE NLS ESTIMATOR

Let

(28)

where is a real-valued stationary process, and
We will focus on the case , which corre-

sponds to a chirp signal but the results holds for anyThe
NLS estimates of and
are obtained as the minimizing arguments of the following
criterion:

(29)

where Let
and diag

so that the criterion in (29) can be written as

(30)

Differentiating with respect to , we obtain

(31)

Hence, for any given value of, the vector that minimizes
(30) is given by

(32)

Substituting the last equation in (30), we need to minimize

Re (33)

or, equivalently, to maximize

Re

Re

Re (34)

where Re denotes the real part of For any complex
number , the maximum value of Re is and
is obtained for Hence, the parameters
and are given by

angle

(35)

which concludes the derivation.

APPENDIX B
PROOF OF (13)

In this Appendix, we derive the large-sample variances of
the NLS estimates of and First, we show that and

in (3) are consistent. Recall that the NLS estimate of
is obtained as

with and where

To prove consistency, we need to show that
achieves a global maximum at and that

this maximum is unique. Using the results of Dandawaté and
Giannakis [22] and under the assumptions made on and
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, we have

E

(36)

with

and the scalar product is defined as
By the Cauchy–Schwartz inequality,

we have

where equality holds if and only if

Using (36) along with the fact that has a unique global
maximum at , it follows, by a continuity argument, that

achieves its unique global maximum at, which proves
consistency of and Next, we establish an expression for
their asymptotic variances. As was pointed out in Remark 3,
the estimate of in (3) and (4) is equivalent to the estimate
of in (6), i.e.,

(37)

where
, and denotes the element-

wise (i.e., Hadamard) product. We focus on (37) in order to
derive the asymptotic performance of the NLS estimate of

We assume that is large so that we can make use of
a standard Taylor series expansion to obtain the asymptotic
covariance of the NLS estimates. Toward this objective, we
first approximate in (37) by its first-order
Taylor expansion to obtain

(38)

where Noting that
[cf. (10)], we can write

(39)

with and where we define
and for

Differentiating the squared norm of the expression
on the right-hand side of the previous equation with respect
to and equating it to 0 at the estimated
values, we readily obtain

Im (40)

where Im denotes the imaginary part of a complex variable
We normalize the above equation by to get

Im

(41)

for Using [25]

(42)

along with (41), we obtain the asymptotic expression

(43)

where

(44)

Im

Im

Im

(45)

and diag To derive the asymptotic
performance of the NLS estimate, we need to compute the
asymptotic covariance matrix of the random vector

E (46)
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Observing that [see (11)]

Im Im

Im

and noting that Im Im Re Re , the th
element of R is given by

E Im Im

Re (47)

Furthermore

E

E (48)

where we use the fact thatE ,
andE since is a white complex circular
Gaussian noise. Reporting (48) in (47), it follows that

(49)

It should be stressed that it is not required that be a
Gaussian process to obtain the previous equation. The entire
matrix is then found to be

(50)

Finally, the asymptotic covariance of the NLS estimate ofis

E

(51)

The asymptotic variances of and are thus given by

var (52)

var (53)

which are equivalent to the expressions in Proposition 2, where
SNR

Remark 8: Note that this result extends a similar result that
was obtained in [15] and [16] for the exponential case (i.e.,

). Interestingly enough, although the present derivation
and the approach of [15] are conceptually different (the orders
in which derivations and Taylor series expansion are done are
reversed), we get the same type of formula.

APPENDIX C
ANALYSIS OF THE HAF-BASED ESTIMATORS

In this Appendix, we derive the asymptotic variances of
the two HAF-based estimators, i.e., the estimator based on

[referred to as HAF in the sequel] and the estimator
based on [referred to as HAF ]. In order to analyze
their performance, first note that in both cases, the first step
in obtaining the HAF estimate of consists of solving the
following minimization problem:

(54)

with
for HAF
for HAF

In a second step, an estimate ofis obtained as
for HAF and for HAF Next, using the
definition of , it is readily verified that

E E E

(55)

E E

E

(56)

where we use the notation to denote the th-order
moment of at appropriate lags. Assuming that
(e.g. the “effective” number of points is large), it can be
inferred that as given by (54) will be a
consistent estimate of , where

for HAF

for HAF

Similar to the analysis of the NLS estimator, we make use of a
Taylor series expansion to approximate the objective function
in (54) as

(57)

Therefore, it follows that

(58)

with
, and

Differentiating the previous equation with respect
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to and and setting the derivative to zero, we get

Im

(59)

Im

(60)

Solving for

Im Im

Im

Im

Im

(61)

In the sequel, we focus on the analysis of HAF since it
constitutes the main novelty of this paper. Analysis of HAF
could be carried out along the same lines, and only the results
will be stated. Using the definition of for HAF and
recalling that , we can write

Let , where the correspond to
the last eight terms of the previous equation. Then, we have

var

E

(62)

Using the fact that is a white circular noise, the only
nonzero terms inE are

E

E

E

E (63)

The nonzero terms ofE are given by

E E

E E

E

E E

E E

E E

E

E (64)

where we used the notation E Reporting the
previous equation in (62), it ensues that

var (65)

where

(66)

and denotes the unit step function. Finally, the asymptotic
variance of is given by

var (67)

In the case of white Gaussian noise and assuming
is a zero-mean Gaussian process, we have

and expressions for the
higher order moments are given by [26]

Hence, simplifies to
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