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Parameter Estimation for Random
Amplitude Chirp Signals

Olivier Besson Member, IEEE Mounir Ghogho ,Member, IEEE and Ananthram Swamgenior Member, IEEE

Abstract—We consider the problem of estimating the pa- amplitude that can be viewed as an unwanted parameter
rameters of a chirp signal observed in multiplicative noise, (hence the terminology multiplicative noise often used in the

.e., whose amplitude is randomly time-varying. Two methods isaratyre). To summarize, the model to be considered here is
for solving this problem are presented. First, an unstructured given by

nonlinear least-squares approach (NLS) is proposed. It is shown
that by minimizing the NLS criterion with respect to all samples ] .
of the time-varying amplitude, the problem reduces to a two- y(t) = a(t)ei(@tattet) L py  t=0,... N-1 (1)
dimensional (2-D) maximization problem. A theoretical analysis

of the NLS estimator is presented, and an expression for its " ; ;
asymptotic variance is derived. It is shown that the NLS estimator where n(t) denotes additive noise, and(t) is the random

has a variance that is very close to the Crarer—Rao bound. The time-varying amplitgde._ Although considerable attention h"’_ls
second approach combines the principles behind the high-order focused on the estimation problem for parts of the model in
ambiguity function (HAF) and the NLS approach. It provides a (1), the literature is scarce on analysis of the complete model

computationally simpler but suboptimum estimator. A statistical  (1). More exactly, the two following cases have been addressed
analysis of the HAF-based estimator is also carried out, and

. . ’ . thoroughly.
closed-form expressions are derived for the asymptotic variance . . ) . )
of the HAF estimators based on the data and on the squared * Constant amplitude chirp signals.e, a(t) = A]: This
data. Numerical examples attest to the validity of the theoretical problem has been dealt with in [2] using rank reduc-

analyzes and establish a comparison between the two proposed tion techniques, in [3] by means of phase unwrapping

methods. schemes, and in [4]-[7] using the so-called high-order
Index Terms—High-order ambiguity function, multiplicative ambiguity function (HAF). This scheme has become a
noise, nonlinear least-squares, random amplitude chirp signals. “standard” tool for analyzing constant amplitude chirp
signals since it provides a computationally efficient yet

I. INTRODUCTION statistically accurate estimator.

Exponential signals with time-varying amplitudge.,
a2 = 0) have been studied extensively in the recent years.
Approaches using high-order statistics [8]-[10], cyclic

HIS PAPER is concerned with the analysis as well
as estimation of the parameters of chirp signals with

_random time-yarying amplitude. This k_ind of signal arises tools [11], Yule—Walker equations [12], subspace-based
in many applications of signal processing, one of the most i 54s [13], and nonlinear least-squares estimators
important being the radar problem. For instance, consider a [14]-[16] have been proposed and analyzed.

radar illuminating a target. Then, the transmitted signal will Analysis of signals like (1) can be found in [17] and [18] for

be affected by two different phenomena. First, it will underg L . A
a phase shift induced by the distance and relative motig;ne deterministic case (i.ea(t) deterministic) and [19}-[21]

between the target and the receiver. Assuming this motion S the random case. In [17], both the amplitude and phase are

continuous and differentiable, the phase shift can be adequaaslljpzum(;iirt:ut)ne I';E(eelia;]rof)%m(bl\'ﬂngt'zg;n?;tlé?gvg;ebzsgz\jggcgr?gs
modeled asp(t) = ag + a1t + axt?, where the parameterg

and a» are either related to speed and acceleration or rar{)eerformance compared with the CrarRao bound (CRB).

and speed, depending on what the radar is intended for and orgls]’ itis shown that appropriate use of the HAF provides

the kind of waveforms transmitted [1, pp. 56—65]. The secor? nzlri{eﬁgu?jzdisgcg;?;?niisr::gt]i?:tesi oséziggmh%a;axjt\%rs when
phenomenon to be accounted for is amplitude distortion cau§e P . que oL )
A 19], a(t) is assumed to be a stationary Gaussian process

either by target fluctuation or scattering of the medium (eI%Vhose covariance matrix depends on a finite-dimensional

fading). In either case, this results in a random time_varymp%\rameter vector and CRB's are derived. Extensions and
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In this paper, two approaches are proposed. The first rel{@3], which can eventually be used to estimateThe next
on nonlinear least-squares (NLS) estimation of the chirp pproposition shows how estimates @fanda are obtained.
rameters, following ideas recently published in [15] and [16]. Proposition 1: The vectorsa and a that minimize (2) are
By minimizing the NLS criterion with respect to all samples ofjiven by
the time-varying amplitude, it is shown that the NLS estimator

N-1
reduces_to a2-bD maximization problem over the chirp param- 5, 4, = argmax 1 Z y3(t) x et H6t) | (3
eters. Since this approach may be computationally intensive 01,02 o
for certain applications, a second approach is proposed that 1 N—1
borrows ideas from the HAF and the NLS estimator. More o = - angl Z Y2 (1) x ¢mi2(aniFant?) (4)
exactly, this method consists of sequentially reducing the 2 t=0
orQer of the polynomial phase using some transformgtions; a(t) =Re [y(t) x e_i(ao+a1t+a2t2)}_ (5)
this methodology is the essence of the HAF-based estimator. ' '
At each step of the method, we are left with the problem Proof: See Appendix A. ]

of estimating an exponential signal with random time-varying Examining (3), it is observed that by minimizing with
amplitude for which the NLS approach is recommended. respect to (wrt)a and not wrt A, the problem is reduced

The paper is organized as follows. In Section II, the NL® a two-dimensional (2-D) maximization problem, as far as
estimator is derived and a formula for its asymptotic perfoparameters:; andap are concerned. Additionally, it should
mance is given. A suboptimum but computationally simpldre emphasized that the present approach does not rely on any
algorithm is presented and analyzed in Section 1ll. Numericagsumed structure for the amplitude; hence, it has the desirable
examples are given in Section IV, and our conclusions apgoperty of being applicable to a wide class of signals. Before
drawn in Section V. Technical derivations are deferred to tigoceeding to the theoretical analysis of the estimator, a few
Appendices. remarks are in order.

Remark 1: 1t can be seen that the NLS estimates of the
phase parameters are decoupled from those of the amplitude
. . arameters, i.e., the amplitude variations are irrelevant to the

To begin with, we rec_all the model 1o pe _use_d and t stimation of the phase parameters (however, they do affect
hypotheses made. The signal to be dealt with is given by the achievable accuracy; see below). In contrast, the estimates

II. NLS ESTIMATION

y(t) :a(t)ei(ao+a1t+azt2) () t=0,.- N—1 of the arnplitu_de paramete_rs dgpend on the ph.ase parameters
since this estimate essentially involves dephasing.
=5(t) +n(?) Remark 2:In the constant amplitude case (i.e«(t) =
where we make the follwing assumptions. @o), the estimate ofwy would be an average, e.gi =

N-—1 —i(GrtFast? ; .
AS1) «(t) is assumed to be a real-valued stationary mixing/V)I1Zi=o u(t) x ¢ (@1t46:67] In the time-varying sce-

not assumed to be zero and whose covariance mati@xthe squaring of the data. . .

to be an ARMA process. been obtained by solving the following minimization problem:
AS2) n(t) is a white complex circular Gaussian process X N—1

with zero mean and varianc€®, i.e., E{n(t)n(t + {ao, a1, G2, A} = arg min i Z

)} =0, E{n*(t)n(t + 7)} = 026(). Additionally, A0 =0

n(t) is assumed to be independentcefft) () — Ae2@otertte®) 2 (g)

Our NLS approach consists of estimating the parameters ) , 20, o
ao, a1, a» as well asall samples{a(t)},—o.... x—1 Of the time- To see this, Ie_t us defind; = A_e . Since the criterion in
varying amplitude by minimizing the following criterion: (6) is quadratic in4,, for any givend, and6, the value of

A; that minimizes the function in (6) is given by
N-1

1 ; 2 N-1
J(a,a) = — Z ly(t) — O‘(t)cz(ao—l—alt—l—azt )|2 2) _ 1 2 —i2(81t+621%).
N ~—~ Al—N;y(t)xe 1oz
— T — T
wherea = [(0),---,a(N — 1", anda = [ag,a1,a2]" . gypstituting into (6), the estimates of and a, are readily

Note that this is not the “true” NLS estimator since th‘f‘ound to be
latter would proceed by minimizing (2) with respect %0 =

and the parameter vectdx on which a(t) would depend. A 2\ —i2(O1tO5t2

For instance, ifa(t) is an autoregressgv)e process(t) = {ar, 6o} = arg s N > e o
—3P_ aaft — k) + v(t); then, X = [e1,---,¢]* would o

denote the vector of autoregressive parameters. The approdfifh is exactly (3). Moreover

we propose tacitly considers that the realizationagt) is . 1 N
frozen and has to be estimated. However, as will be illustrated A= N
below, an estimate ofc(t)},=o,...,n—1 iS made available [see

t=0

|
—

yQ(t) % C—i?(ﬁ,lt—i—ﬁ,ztz)' (8)

~+
Il
o
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Additionally, sincea; , a» are consistent estimates @f, ao, it Proof: See Appendix B. [ |
can be inferred that [22] We first note that, similar to the constant amplitude case,
N1 the variances ofi; and a, are of ordersl/N® and 1/N°?,
. A 1 &= o 200 _ . 2a0 respectively. We stress that these variance expressions do not
]\lgréo A= Algréo N tz_% a’(t) x &7 =ra(0)e ©) assume that(t) is Gaussian or zero mean. Additionally, it can
- be observed that although(t) may be colored, the variance

wherer,(0) = E {a2(#)}, andlim is in the mean-square sense€xpression (13) involves only the zero-lag terg{0). Finally,
This implies thatA — 7.,(0). Hence, the NLS estimator itis of interest to compare the above expressions with the CRB

“views” the signal as derived in [19] for the case of Gaussian amplitudes. Although
‘ the exact expression for the CRB is available (see [19, (73)]),
Y2 (1) = 1o (0)e22® 1 A(t) (10) we will use thehigh SNR expressiomwhich is considerably
simpler since it is given by (see [19, (89)] and [21])
where we defing(t) = ap+a,t+at?. Under the assumptions 96 1
made ony(t), we have CRB(G1) ~— ——
’ N3 SNR
A(t) = [0 (1) =7a(0)]e?D 12a(t)n(t)e?* D +n?(t). (11) CRB(ii,) ~ ;37_0 ﬁ (14)

Let us examine the mean and covariance sequena&(9f Comparing (13) with (14), it is seen that the NLS estimator
It is readily verified that, under the assumption thdt) is a provides nearly efficient estimates in the Gaussian case.
stationary process antt) is complex circular white Gaussian

noise, A(t) is zero-mean, i.e E{A(¢)} = 0. Additionally . HAE-B ASED ESTIMATION

yalt;7) = E{A* (At +7)} Although the NLS estimator achieves the CRB in the
= [maa(0,7,7) — 72 (0)]6i2[¢(t+‘r)—¢(t)1 Gaussian case, it involves a 2-D maximization problem that

> o “5 could be too intensive for certain applications. In this section,

+207[27a(0) +07]8(7) (12) " we consider a simpler, yet suboptimum approach with a view

to decreasing computational load. It combines the use of the
where myq (0, 7,7) = E{a(t)q(t?a(t +m)alt + 7)) The  aEin order to reduce the order of the polynomial phase and
following faCFSf are vyorth ngtlng. . _that of the NLS approach in order to estimate the frequency
* The additive noise\(t) is no longer Gaussian or white. of an exponential signal with time-varying amplitude. Before
* In the case of an exponential signa(t) is stationary gescribing the estimation procedure, we make the following
[since ¢(t +7) — ¢(t) only depends on], whereas, for gpservations. Consider first the noiseless case. It is readily
a chirp signal, the additive noise is nonstationary. verified that
Remark 4: Here, we give some consideration to the imple- ‘ L
mentation of (3) and the associated computational complexity. 5 (£)s(t +7) = a(t)a(t + 7)™ e 2227 (15)

Since the maximization problem in (3) does not admit Ahere~ is some positive integefr > 0). Hence, sa(#;7) =
analytical solution, we have to resort to numerical procedurezt)s(t + 7) is an exponential signal with ’time7—varying

in order to solve this problem. Since the first- and second-order /s N . ;

derivatives are available, algorithms that have a quadratic o plitudefi(t; ) = a(t)a(t+r). In the noisy case, we obtain
super linear convergence can be used. The authors’ experiencg,(¢;7) = y*(t)y(t +7) = s*(£)s(t + 7) + na(t;7)  (16)
is that the criterion in (3) is a rather “smooth” function

of a; and a», and hence, there should not be problems iwhere

finding the maximum, provided that a good initial estimate is_ ,,. \ % *

available. The HAF-based estimator that will be presented iﬁh(t’ 7) = S On(tET)Fn T (Os(E+r)FnT(On(t+7). (17)

the next section is an excellent candidate for an initial gues$ence, n,(t; 7) is a zero-mean (since >0) process with
Alternatively, a fast algorithm based on the fast quadratigvariance

phase transform [23] can be used to solve (3).

We now analyze the performance of the estimates, aind E {n3(t; T)na(t +r;7)} = [20°ra(0) + 0*]6(r).  (18)
ao as given by (3). The equivalence of (3) and (4) with (6)
used to obtain the following result.

Proposition 2: The large-sample variances @f andas in
(3) are given by

IsI‘herefore, y2(¢;7) is an exponential signal with random
time-varying amplitude3(t; 7) = «(t)a(t + 7) in complex
zero-mean white noisez(¢; 7). However, the distributions of
B(t; 7) andna(t; 7) are quite complicated to obtain; hence, an

N 9% 1 L optimal (e.g., maximum likelihood) approach appears not to be
var(a, ) ~ e ﬁ{l + §SNR_ } tractable. Thus, we are naturally led to using a NLS approach
90 1 1 that consists of minimizing the following cost function
var(dy) ~ ji0 %[1 + §SNW1} (13)

N-1

1 -

N Z lya(t;7) — Bt 7)e 1) |2

where SNR= r,(0)/0?. 3
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with respect to{ 3(¢;7) }+—0 ... n—1, @, andw. Observe that wonder if it is worth resorting to a higher order transformation.
this estimator is asymptotically efficient in the case of Gaus$e clarify this point, first note that [20] estimates as

ian amplitude 8(¢; 7) and additive white complex circular N_1
Gaussian noise:(t;7) [15], [16]. Here, no such claim of  5( — 1 arg max 1 Z vyt +7)e . (23)
optimality can be made since these assumptions are not 27 w N =0

satisfied. However, the NLS approach should perform weJ]L . .
. o . L .To motivate this latter approach, note that
With these preliminaries, we are now in position to describe

the steps involved in the estimation of anda,. moy(t;7) = E {y"(O)y(t +7)} = muy, (t)
Step 1: For a givenr, computeys(t; ) = y*(6)y(t + 7). — E {a(t)alt + T)}emﬁeiazfz i2aztr
Then, estimater, as

. . 2 .
— 7’04(7')6“117-6“127- Cz?azt‘r

N—-1
Go _1 arg min min — Z ly2(t; 7) — B(t; 7)) 2 Hence, the cyclic mean ofi;(¢;7) [or, equivalently, the
27 © By N cyclic second-order moment gf#)], which is the generalized
1 1N ‘ Fourier series expansion efa,(t; 7) = mq,, (¢), will peak at
= arg max —| > y3(t)eR. (19) w = 2ayr. This is because the proces§; 1) = a(t)a(t +7)
2 © N t=0 is not zero mean. Additionally, for larg¥, we have from [22]
Note thatas can be obtained via the fast Fourier transform 1= (s it
of y3(ter) = 3 Byl
Step 2: Onceas is available, demodulatg(¢) to obtain =0 N1
1 )
. .2 . _ E * t t —twt
2(t) = y(t) x etazt? o a(t)GZ(ao-l-alt) +A(t) (20) - N ; W @)yt +71)}e

S,
wherern(t) combines the estimation errorsdn and the effect — 7a(7)eT €T 6(w — 2a,7)

of additive noise. Againg(t) is an exponential signal with and hence, (23) is a consistent estimate-nfThus, it should
time-varying amplitude, and, is obtained as be sufficient to use a second-order transformation. However,
this statement should be revisited in light of the following

= observations. In [16], it is shown that evergift; 7) is not zero
41 — are mi i _ i(wt+e) |2 . ) y T
41 = atg mEn 13,13 N ; #t) =~ alt)e | mean, the estimate (23) based on the cyclic meag, @f 7)
No1 does not necessarily outperform the estimate (19) based on
— arg max — Z 22(£)e=i2t). (1) the cyclic variance ony(t;T). Briefly stated, the relative .
« N = performance of the two estimates depends on the respective

values of the “coherent” signal-to-noise ratio (SNR) =

We note that this HAF-based approach is simpler than tB8{3(t;7)}/var{n.(t;7)} and the “noncoherent” SNR, =
NLS approach. In the next section, we will examine thear{3(t;7)}/var{n.(¢;7)}. Additionally, it was shown that
tradeoffs between statistical accuracy of the NLS estimatfar white Gaussian additive noise, its > 0.5, the estimator
and computational simplicity of the HAF estimator. Howevelhased on the cyclic variance outperforms the estimator based
as we mentioned in Section Il, the NLS estimator needs ¢m the cyclic mean. In the present case, it is readily verified that
be initialized, and the HAF-based estimates can provide go&d = (SN R/2)(1+72(7)/r2(0)/1+0.5SNR~1), and hence,
initial values. R, is generally greater than 0.5. Although the conclusions

Remark 5: It can be readily verified that the estimaigin of [16] cannot be directly transposed to the present case
(19) implicitly relies on a fourth-order transformation of thesince no(¢;7) is not Gaussian and independent @ft; 7),

data since they clearly indicate that superiority of (23) over (19) is not
1 1 immediate. A more theoretically sound response on this point
Gs = 5, Arg max - will be given in Proposition 3. Finally, we note that the NLS
T w

N1 approach does not make any distinction between the zero-mean
. A" —i2wt and the nonzero-mean cases; it leads naturally to the estimate
Z vy Oyt + Tyt + e - (22) (19). Additionally, the computational increase compared with
using the classical HAF amounts 2 multiplications in order
Note that such a transformation has also been proposedtidncompute the sequengg(t).
[24] for the detection of signals in white multiplicative noise. Remark 6: It should be pointed out that the present ap-
However, this is to be contrasted with [20], where a secongroach, in its implementation, is equivalent to the classical
order transformation is used. Indeed, it is generally admittéthF estimator withy(¢) replaced byy?(¢) in the estimation
that the “classical” HAF estimator (i.e., the estimator derivegrocedure. Therefore, it tacitly considers that the square of the
for constant amplitude chirps) could handle the case of timéata is a constant-amplitude chirp signal. A similar remark has
varying amplitudes provided that the procegs) is lowpass also been made for the NLS estimator.
and has a second-order HAF (i.e., power spectral density)Since the HAF-based scheme sequentially estimate
maximum at frequency zero [6, p. 396]. Hence, we should, a1, ag, its performance will highly depend on the variance

t=0
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of thea, estimate. Therefore, we concentrate on this parameterSNR 2, SNR 2, - - - are negligible, it is straightforward to

and now derive its asymptotic variance. verify that
Proposition 3: Assuming thatV —7 >> 1, the large sample . .
variance of the HAF estimate o, (see (19)) is given by GHARG )y o 0
5 Do) vana; ™ ) =y 3SR ¢ 2
,
var(ay) ~ 2 (24) ~HAF(y)\ 3 1
(N —7)3 472m3 _(0,7,7) varn(a, )~ (N = rPSNR X 5 (27)
with ) ) )
) . Hence, in the constant amplitude case, the HAF estimator
Dy (1) =40"mea(0,0,0,7,7) + 20°m4a(0,0,0) based ony(¢) should generally be preferred to the HAF
+ 80 m4q (0,7, 7) + 80°7,(0) + 20° estimator based 0p?(t).
— [402mea (0, 7,7, 27, 27) + 20 mya (0, 27, 27)]
N —27)(N? — 47N + 7?2
( 7)( 3T +7 )1(N— o) (25) IV. NUMERICAL EXAMPLES
- e aim of this section is threefold. First, we study the
(N =) The aim of thi ion is threefold. Fi dy th
where1(.) is the unit step function, angh;.(-) denotes the performance of the HAF-based scheme and the validity of the
kth-order moment ofx(t), i.e., mua (71,72, -, 1) = E theoretical analysis. Accordingly, the influence ofon the
{a®alt +71) - alt + 1)} performance of the estimator will be emphasized. Next, we
Proof: See Appendix C. m compare the empirical performance of the NLS estimator with

Observe that the variance of the HAF-based estimatéte CRB and verify the validity of the theoretical formulas
depends o and the fourth- and sixth-order momentscgt).  for the asymptotic variances. Finally, we compare the per-
Hence, derivation of an optimal solely as a function ofV, formances of the Suboptimum HAF-based scheme with that
as in the constant amplitude case, appears not to be dire@fyfhe NLS estimator. Additionally, we provide a comparison
feasible. However, the form of (24) suggests than an optimith the “classical” HAF estimator based giit) (which does
7 should be close t6.5N. For 7 = N/2 and in the high SNR not take into account the time variation of the amplitude but is
case, onee could read"y show that [assumi(@ is Gaussian] eXpeCted to perform well under certain ConditionS). Note that

988 the method of [20] is essentially equivalent to the HAF scheme
— based ony(¢), and only the results of the latter will be reported.
N>SNR In all the simulations, the time-varying amplitude(t) is
which is approximately 3.2 times the corresponding CRB. Thfenerated as a zero-meabR(p) process, and the additive
variance atr = N/2 depends ornx(t) only through its power noise is complex circular white Gaussian with variance
r+(0). Therefore, although the performance of the estimatghe SNR is defined as SNR 7«(0)/c%. In all simulations,
depends on the spectral characteristicsx0f), the variance the chirp parameters atg = 27 x 0.1, a; = 27 x 0.18, and
(24) should not be too sensitive to it. Finally, we stress thagl, = 27 x 3 x 10~*. The cases of amR(1) process with
in contrast with the constant-amplitude chirp case, the HAfarametep and of anAR(2) process with poles gie2mx/
estimator does not provide a nearly efficient estimator.  will be considered. Five hundred Monte Carlo trials were run

Remark 7: A similar analysis can be carried out for theo estimate the mean square errors of the estimates.
“conventional” HAF estimator, i.e., that based gfx). We
omit _the derivations since it follows algng the Iines_ of App HAF-Based Scheme: Influencerof
pendix C. It can be proved that the varianceagfs estimate
is given by

van(az) - =ns2 =~

In this subsection, we study the influence ofon the
performance of the HAF-based estimators. We will refer to
var(&?AF(y)) ~ 3 Di(7) (26) the “classical” HAF-estimator that usegt) as the HARy)
(N =71)2 m2r3(7) estimator, whereas the new HAF-based scheme proposed here
with will be denoted HAFy?) in the sequel. Figs. 1 and 2 display
1 the theoretical (dotted lines) and empirical variances’)"of
D1 (1) = 0%r,(0) + 504 — o?ra(27) the HAF(3?) estimator as a function of in the case of an
_ 2 2 AR(1) and AR(2) process, respectively.
il 27)(]]\\77 43TN+T )1(N— 27). It can be observed that the variance begins to decrease
(N —7) when 7 is increased. Then, a nearly constant variance is
Numerical evaluation of (24) and (26) clearly indicates thatbtained forr € [0.2N,0.5N]. When 7 becomes large, the
the variance of the classical HAF estimator is (very) superigariance tends to increase. As was expected, the optinel
to the variance of the estimator proposed here. This confiraund0.4N — 0.5N. However, we can choosein the range
the ideas of Remark 5. The numerical examples of the ndft2N, 0.5N] without penalizing the performance of estimation
section will also corroborate this fact. too much. This is an interesting feature of the method. Finally,
In the case of a chirp signal witbonstant amplituded, it is observed that the theoretical analysis predicts fairly well
it can be verified that (26) coincides with the expressiame simulation results, provided thatis not too large (note
established by Peleg and Porat (see, e.g., [4, (31)]). Adthat the analysis assumés— 7 >> 1, which is no longer the
tionally, in the constant amplitude case and assuming tergese whenr ~ 0.7N and N = 256).
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Fig. 1. Influence ofr on the performance of the HAK?) estimator in the

AR(1) case. Dotted lines: theoretical variance-" empirical variance. solid
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Fig. 2. Influence ofr on the performance of the HAK?) estimator in the

AR(2) case. Dotted lines: theoretical variance-" empirical variance. Solid
lines: CRB.p = 0.95, f = 0.01, N = 256, and SNR = 10 dB.

B. Comparison Between the NLS and HAF Estimators

We now compare the performance of the NLS estimator with
that of the HAF estimators. In what follows, the amplitude

is either anAR(2) process with poles ab.95¢127*0-0L or
an AR(1) process whose pole modulus gs= 0.95. In all
simulations,r is chosen as = 0.4N. Figs. 3—6 display the
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1024

128 256
Number of samples

1024

Fig. 3. CRB (solid lines) and mean square errorg0éndas versus number
of samples in thed R(1) case. “*": HAF(y). Dotted lines: HAFy?) theory.
“+" HAF (y2). “0”: NLS. p = 0.95 and SN R = 10 dB.

"
64 128 256
Number of samples

1024

Fig. 4. CRB (solid lines) and mean square errorgoénda> versus number
of samples in thed R(2) case. %”: HAF (y). Dotted lines: HAFy?) theory.
“+" HAF (y2). “o” NLS. p = 0.95, f = 0.01, and SN R = 10 dB.

* Usingy2(t) in lieu of y(¢) in the HAF procedure consid-
erably improves the estimation performance. As a matter
of fact, the HARy?) estimator outperforms the classical

influences of ¥ and SNR, respectively, on the performance
of the estimators. Since the theoretical variance of the NLS
estimator is almost indistinguishable from the CRB'’s, only

the latter of these are plotted.
The following points are worth noting:

« The NLS estimator is seen to come close to the CRB,

provided thatV and SN R are sufficiently large (typically
N > 256 and SNR > 10 dB). This validates the
theoretical analysis.

HAF estimator, whose performance is quite poor. Indeed,
in the case of zero-mean amplitude, the classical HAF
does not provide a consistent estimate: a fact also noted
in [16]. The method of [20] offers a slight improvement
at least for the estimation ef; [note that it provides the
same estimate af; as the HAF estimator that use&)].

The HAF%?) scheme performs comparably with the NLS
estimator for smallV or low SNR. In contrast, the NLS
estimator performs better for larg€ or high SNR. The
ratio between the variance of the H&F) estimator and
the variance of the NLS estimator is about 3.2 for laige

as predicted by the theory. Hence, the gain in computation
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of AR(2) poles. %": HAF (y). Dotted lines: HAFy?) theory. “+”: HAF (y?).
“o" NLS. f = 0.01, N = 256, andSNR = 10 dB.

Fig. 6. CRB (solid lines) and mean square errorsagf and as versus
SNRinthe AR(2) case. %": HAF(y). Dotted lines: HAFy?) theory. “+":
HAF(y?). “o”: NLS. p = 0.95, f = 0.01, and N = 256.

of the HAF(3»2) scheme is counterbalanced by some loss V. CONCLUSIONS

of accuracy. We addressed the problem of estimating the parameters
* The HAK(3?) estimator (and in certain respect the NLSf chirp signals with randomly time-varying amplitude. Two
estimator) exhibits the threshold effect in SNR, whiclethods were proposed: First, an unstructured nonlinear least-
is inherent to nonlinear transformations and has alreadyjuares approach was presented and analyzed from a theo-
been reported in other studies on the same kind gitical point of view. It was shown that the NLS estimator
algorithms. achieves the CRB for largeV. Since the NLS estimator
Next, we study the influence of the bandwidth of the timeequires a 2-D search for a maximum, an alternative and
varying amplitude on the performance of the estimators. Bimpler approach was proposed. It utilizes the HAF scheme
this end, Monte Carlo simulations were run for tHg?(1) in order to reduce polynomial order along with the NLS
and AR(2) cases by varying (the modulus of the AR poles) approach to estimate the remaining component, which is
and f [frequency of theAR(2) poles]. The results are showna complex exponential signal with time-varying amplitude.
in Figs. 7-9. As can be seen, the performance remains stabtatistical analysis was carried out showing that this estimator
wrt variations of the amplitude bandwidth and corroborates thas a variance only 3.2 times greater than the CRB when
“hierarchy” between the estimators established in the previoile amplitude is a Gaussian process. Closed-form expressions
simulations. were derived for the large sample variances of the NLS
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0 T T y T y T — Substituting the last equation in (30), we need to minimize
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10 0 0.005 0.01 0015 0.02 0.025 0.03 0.035 0.04 1 y y — — Re {yTHQ*y} (33)
TN 2N
10% T T - T . L
. s s * or, equivalently, to maximize
*
* * * * *
& 1 T2+
%10‘5— J N Re {y H y}
E 1 N-1
: _ 27\ —i2v(t)
+ = —Re t)e ¥
R A S U S S R N {;y“ }
L] 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 ]\r— 1
Frequency of AR(2) poles 1 Y o " )
. o A A - _Re Z yQ(t)e—sznzlent > 6—2100 (34)
Fig. 9. CRB (solid lines) and mean square errorsagf and ds versus N ot

frequency of AR(2) poles.#": HAF (y). Dotted lines: HAFy2) theory. “+-”:
HAF(y2). “o™ NLS. p = 0.95, N = 256, and SNR = 10 dB.
where Rdz} denotes the real part of. For any complex

numberz = pe'?, the maximum value of Rece=%} is p and
estimator and the HAF estimators based on the data ggtbptained fory = 6. Hence, the parametefsi,, -, ay;}
squared data. Simulation results were presented that attegig o, are given by ' '
to the validity of the theoretical analysis. The NLS estimator
was shown to provide slightly better performance than the N 1
{41, -,Gp = arg max —
HAF-based estimator. Additionally, these two estimators were 01,0 N

shown to outperform the classical HAF estimator, which was N-1
previously proposed to solve this problem. IREG exp{ <Z 6, t") H
t=0

APPENDIX A ag = 1 angle
DERIVATION OF THE NLS ESTIMATOR 2 N1
Let ~{Z 0 exp { (Z t) }}
- id(t) —0.---.N— t=0
y(t) = a(t)e'* +n(t) t=0,---,N—1 (28) (35)
where «(t) is a real-valued stationary process, apd) = _ o
»M . a,t™. We will focus on the casé/ = 2, which corre- Which concludes the derivation.
sponds to a chirp signal but the results holds for afiyThe
NLS estimates of{a(t)}1—o....n—1 anda = [ag,--,ap]* APPENDIX B
are obtained as the minimizing arguments of the following
criterion: PrROOF OF (13)
N1 In this Appendix, we derive the large-sample variances of
{&,a) = arg mm = Z ly(t) — x(t) iu’;(t)|2 (29) the NLS estimates of; anda,. First, we show that;; and

as in (3) are consistent. Recall that the NLS estimate of

_ A T - .
M n T a = [a; a2]! is obtained as
wherey(t) = XM 6,t". Lety = [y(0), -+, y(N-1)]*, x =

[2(0), -, z(N — 1)]¥, and H = diage™(© ... »(N-1))

U ) a = arg max |fx(0)]
so that the criterion in (29) can be written as 6

1 — ¢
J(x,0) = +lly — Hx]|*, (30) with & 2 [6, 6.]7 and where
Differentiating with respect tx, we obtain ] Nt
g 2 —i2(61t+621%).
aJ 1 . = In(0) = v Z Yy (t)e
Hence, for any given value @, the vectorx that minimizes To prove consistency, we need to show that(0) =
(30) is given hy limy_o |fn(8)] achieves a global maximum atand that

this maximum is unique. Using the results of Danda@nand
={Hy" + HYy}. (32) Giannakis [22] and under the assumptions madex@n and
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n(t), we have where ¢(t) = ao + ait + axt>. Noting that y?(t) —
| N ro(0)e2¢® = A(t) [cf. (10)], we can write
(DY — 1 = 2 —i2(01t+62t%) - -
Algrclw In(@®) Algréo N tz_% v (te yoOy—Aé=A—(A—rq(0))e
B 2
N—-1
o1 2/ 26461 —2ira(0) Y (ar — ar)[t* ©e] (39)
= N tz_% Bl ®)ie k=0
] Nl ‘ , with e = [1,¢2¢W) ... 26(N-U|T and where we define
— Alli)rcl)o N Z 7,@(0)612(a1t+azt ) tO — [1’ 1’ e 1]T and tm = trn—l ® [0’ 1’ . ',N _ 1]T for
‘ t=g m > 1. Differentiating the squared norm of the expression
e 2O+t on the right-hand side of the previous equation with respect
=74(0) lim gn(0) (36) 10 ay,, m =0,---,2, and equating it to O at the estimated
N=oo values, we readily obtain
with )
Im{(t™ ®e)TA} —2r, ar —ar)(t™)TtF =0 (40)
on(8) = (sx(1:0), sx (1) (Eroea) -2 3, @
_ 1
sn(t;0) = \/—Neﬂ“’l”"?t ) where Im{z} denotes the imaginary part of a complex variable
z. We normalize the above equation By *1/2 to get
and the scalar product is defined as(t),g(t)) = 1 = t\" —2i(t)
»NL o f*(t)g(t). By the Cauchy-Schwartz inequality, Z Im {(N) A(t)e }
we have N1
_ R Ta(0) t\™"
N @I < 1= |gn (@) = N2 (0 — a0) = §3<N>
t=0
where equality holds if and only if N_1 mtl
_ n _ . +N3/2(&1 _ al)Toz(O) Z 1
lax (®)] = lox(@)] & sx(1:0) = Ksn(:3) N 2 \N
< 6 =a ' N——l m+2
_ 52, Ta(0) t
Using (36) along with the fact thaty (@) has a unique global + N (az — az) N z_: N (41)
maximum ata, it follows, by a continuity argument, that ) =0
f-0(8) achieves its unique global maximumatwhich proves for m = 0,1,2. Using [25]
consistency ofi; anda.. Next, we establish an expression for N=bo/pn K 1
their asymptotic variances. As was pointed out in Remark 3, lim — Z <_> = k=0,1,2,--- (42)
the estimate of in (3) and (4) is equivalent to the estimate ¥~ N t=0 N k1
of a in (6), i.e., along with (41), we obtain the asymptotic expression
N-1
. - 1 i on A o1 -1
{57 A} = arg mip J(é, A) _ N Z |y2(t) _ A612¢(t)|2 KN(a— a) ~T, (O)A £ (43)
a,A —
. t=0 where
= arg min [ly oy - Aé|l” (37) (1 1/2 1/3
A, A=|1/2 1/3 1/4 (44)
where d)(tz = E?L:O ~a/ntna y = [y(o)’ T y(N - 1)]Ta _1/3 1/4 1/5
é=[1,e20) ... 2¢(N-U|T and® denotes the element- r N-1 N , 7
wise (i.e., Hadamard) product. We focus on (37) in order to Z Im{A(t)em 2 (eotarttaztt)y
derive the asymptotic performance of the NLS estimate of
a. We assume thaiv is large so .that we can make use of. e — Z Im {A(t)e —z2(a0+a1t+a2t2)}
a standard Taylor series expansion to obtain the asymptotic :
covariance of the NLS estimats:s. Toward this objective, we 2 .
first approximatede’2(@ot+ait+azt") in (37) by its first-order — Z <N> Im {A(t)e#2(aotarttast’)y
Taylor expansion to obtain 2\/_ 0

) (45)
2(4) — AP ~g2(4) — 700 2 .
v (@) Y (34 ) (©) i26(0) andK y = diag N/2, N3/2 N°/2), To derive the asymptotic
— c ra(0))e i20(1) performance of the NLS estimafe we need to compute the
— 2ir4(0)(Go — ao)e asymptotic covariance matrix of the random veator
—2itro(0)(ar — ay)e2®)

‘ R. = lim E {ee’}. 46
— 2it%7,(0) (a2 — a2)e’**®  (38) <= i, Elee’} (46)
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Observing that [see (11)] APPENDIX C
Im {A(£)e 240} = Im {2a(6)n(f) + n2(E)e 240 ANALYSIS OF THE HAF-BASED ESTIMATORS
2 m ()} In this Appendix, we derive the asymptotic variances of
the two HAF-based estimators, i.e., the estimator based on
and noting that Ifu]im[b] = 3 {Relab*] —Relab]}, the (k, £)th  y(t) [referred to as HAFy) in the sequel] and the estimator
element of R is given by based ony?(t) [referred to as HAFy?)]. In order to analyze
Nolosank o their performance, first note that in both cases, the first step
R.(k,£) = lim Z <—> (—) in obtaining the HAF estimate of, consists of solving the
t,5=0 following minimization problem:
- E{Im[a@)]im[n(s)]} | Nl
m o > (5) () (Ado} =arg pin & 30 Js(tir) - AP
= hm —= -~ ~ o t=0
N BN 2= \N/) \N (54)
Re(E{A(A" (s)} - Ea®A(s)}). @47)
Furthermore oy = wET) =y Byt + 1), for HAF(y)
E {a(®)n"(s)} = 4ra(0)028(t — 5) + 20*6(t — 5) #67) = {y%(t;f) =y (ty*(t+ 1), for HAF(y?).
E {a(t)a(s)} =0 (48) Inasecond step, an estimatesgfis obtained ag, = &/(27)

for HAF(y) and a. = &/(47) for HAF(%?). Next, using the

% _ 4 _
where we use the fact thi{n®(t)n"*(s)} = 20°8(t — 5), definition of y2(¢; 7), it is readily verified that

andE{n?(t)n?(s)} = 0 sincen(t) is a white complex circular

Gaussian noise. Reporting (48) in (47), it follows that E {w(t;7)} = E {s(t)y (t+¢)} = E {s*(t)s(t+ 1)}
k44 :mQ(y( )ezal‘r zaz‘r 2m2t‘r (55)
R.(k,¢) = lim < ) {47,(0)0? + 20*}
N—oo 8N Z E {3t} = E{y" ()" Oyt + )yt +7)}
PR T S = E {57(0)5" (Bt + 7)ot + 1)}
—5[“1( )O’ + 0.0 ] NIAI)ICl><> N ; N :m4a(077_77_)62m17-62m27- 64za2t‘r (56)
1 where we use the notatiom,.(-) to denote thenth-order
——————[ra(0 0.50* 49 na
(k + £+ 1)[ a(0)o” +0.507] (49) moment ofa(t) at appropriate lags. Assuming thst—7 >> 1
It should be stressed that it is not required that) be a (€.g. the “effective” number of points is large), it can be
Gaussian process to obtain the previous equation. The enierred thatd = [A ¢,¢]7 as given by (54) will be a
matrix R. is then found to be consistent estimate @, = [Ag, ¢o, wo]”, where
1 1/2 1/3 [maa(T) @17 + aar?  2a27]7
R. = [ra(0)0” +0.50" |1/2 1/3 1/4 o — for HAF(y)
1/3 1/4 1/5 7 [maa(0,7,7) 2(ar7 4 aa7?)  4agr]”
= 1ro(0)o? + 0.504A. (50) for HAF(y?).

Finally, the asymptotic covariance of the NLS estimate: s Similar to the analysis of the NLS estimator, we make use of a
Taylor series expansion to approximate the objective function

KN E {(é — a)(é — a)T}KN in (54) as
—2 —1 —1
~7,7(0)A "R A (t;7) — A i(wt+e)
- lr?(o)[r (0)0? +0.50] A7, Gy T
) 2 - “ ’ '_ ~ 2(t;7) — Agetlwatteo)
The asymptotic variances ef and ZQ are trlus given by _ ei<‘°‘0t+¢0>(A ~ ) — iAoei(“"OH'%)((/) — o)
R 96 ra(0)o” +0.50 it A wottd)
Var(al) ~ ﬁ W (52) . LtAOC (w wo)' (57)
X 90 7,(0)0? + 0.50% Therefore, it follows that
var(dg) o = o T (53) Ne1or
N?° 7@(0) f(A ¢ CU) _ i Z |Z(t T) _ Aei(wt+q5)|2
which are equivalent to the expressions in Proposition 2, where o N pyr ’
SNR = 7,(0)/0?. 1 '
Remark 8: Note that this result extends a similar result that = 716 = (A= Ao)e —iAo(¢ — ¢o)

was obtained in [15] and [16] for the exponential case (|._e., ce —iAg(w — wo)(t: @ e)|? (58)
az = 0). Interestingly enough, although the present derivation

and the approach of [15] are conceptually different (the ordeséth § = [6(0;7),---,§(N' — 1;7)]7, e = [ei®0, eilwotdo),

in which derivations and Taylor series expansion are done are, (e *1>wo+¢o)]T 8(t;7) = 2(t;7) — Agetotte0) and
reversed), we get the same type of formula. N’ = N —r. Differentiating the previous equation with respect
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to w and ¢ and setting the derivative to zero, we get The nonzero terms dE {{(t;7)E%(s;7)} are given by
Im{(t" © e)" 8} ~ Ag($ — go)(t")"t" E {11t 7)I7 (si7)} =7van E {a*(H)}6(2, 5)
+ Aog(& — wo)(t") Tt (59)  E{D(t)I5(si7)} =van E {a()}é(t, s)
Im{ef8} ~ N'Ag(¢ — o) + Ao(& — wo)(t4)T¢°. E {Ts(t; 7)T3 (s;7)} =71,6(t, 5)
60)  E{Ta(t )T (s;m)} =dvan E {a* (D)’ (t +7)}6(E, s)
Solving for w E {T5(t; )15 (557)} =472 E {e?(t)a*(t +7)}6(t, )
Ag E {T6(t; 7)T5 (5;7)} = 1693, E {o®(H)a®(t+7)}8(¢, s)
N6 — wo)
12 . . E {T7(t; 7)T7 (s;7)} =4v2nYanm2a(0)6(t, s)
L where we used the notation., = E{|n(¢)|*}. Reporting the
1 — t il previous equation in (62), it ensues that
= Im —&(t; i(wot+eo)
/N7 ; N/ ( T)C Var((j) W ) N 12 DQ(’F) (65)
N1 YW = ? w07 )
1 — il where
_ Im Z 8(t; e i(wot+eo)
2y N’ t=0 DQ(T) = 4’72an0( (07 07 07 7, T) + ’74nm4a(07 07 0)
, 1
N -1 2 4 1.2
-y “ N2t ryemient o 8% maa(0,7,7) + B2 vanmza(0) F 3 %in
VN’ — N — [Y4nm4a(0, 27, 27) + 4vy2,me0 (0, 7,7, 27, 27)]
2 2
(N _ 7_)3 ( T) (66)

In the sequel, we focus on the analysis of HAP since it

constitutes the main novelty of this paper. Analysis of HAF ) NS
could be carried out along the same lines, and only the resufff'ance ofay s given by
will be stated. Using the definition af(¢; 7) for HAF(?) and var(&gyz)) ~_ 3 Dy(7) . (67)
recalling thatwot + ¢o = 2[¢(t + 7) — ¢(¢)], we can write (N —7)® 4r2mi,(0,7,7)
2(t; 7)ot o) In _the case of white Gal_153|an noisg¢t) and assuming
a(t) is a zero-mean Gaussian process, we haye = o2,

and1(-) denotes the unit step function. Finally, the asymptotic

2 2 2 2 —i2¢(t+T 4
= a*()a’(t + 1) + o (B’ (¢ + ) 20T Yan = 20*, maa(0,0,0) = 3r2(0) and expressions for the
+ @ (t + )% ()¢ higher order moments are given by [26]
02 (e et i (0,7,7) =72(0) + 213(7)
+ 202 () a(t + T)n(t + 7)e 1T M6 (0,0,0,7,7) =3r3(0) + 1274 (0)r2(7)
+ 2a(t)a®(t + T)nt (£)ee® Mea(0,7,7,27,27) =75(0) + 2ra(0)r3(7)
+ da(t)a(t + TYn* (B)n(t 4 7)e” P o) + 41 (1) [ra(0) + 2ra (27)].
+ 2a(t)n2(t + 7)n* (t)e M e () Hence, Dy(7) simplifies to
+ 20t + TN () (t + )20 e mio0+). Dy(7) =40”[3r3,(0) + 12r (0)r3(7)]
Let &(¢;7) = 8_, Ty(t; 7), where theTy(t; 7) correspond to + 204773 (0) + 8r2(7)]
the last eight terms of the previous equation. Then, we have + 860°%74,(0) + 20°
A N3 varo — wp) — [20*[2(0) + 272 (27)]
144 + 402mga (0,0, 7, 7,27, 27)]
N’ —1
1 T <t—N’/2><s—N’/2> (N_zf)(N2_4TN+T2)1(N o)
4N’ Bt N/ N/ (N — 1) T)
x E{&(tm)E (s7) +&(s: ) (85 7) REFERENCES
— &5 7) — & (B 7)E (s 7)) (62) [1] A. W. Rihaczek, Principles of High-Resolution Radar New York:
i i i i i McGraw-Hill, 1969.
Using the fact .tha'fn(t) is a white circular noise, the only [2] R. Kumaresan and S. Verma, “On estimating the parameters of chirp
nonzero terms irE {{(t;7)&(s;7)} are signals using rank reduction techniques,”Aroc. 21st Asilomar Conf.
. . Pacific Grove, CA, 1987, pp. 555-558.
E{Ti(s;m)Ta(t;)} [3] P. Djuric and S. M. Kay, “Parameter estimation of chirp signalEEE
T LA .S h, Si I P i 38, pp. 2118-2126, Dec.
= yan E {a2(s)a®(s +20)}6(t, s+ 7) lga;r;)s coust., Speech, Signal Processimg. 38, pp ec
E {T4(S'T)T5(t'7’)} [4] S. Peleg and B. Porat, “Linear FM signal parameter estimation from
’ ’ discrete-time observations/EEE Trans. Aerosp. Electron. Systiol.
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