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approach to adaptive filtering in subbands is also described, where 
an expected improvement in convergence speed is observed. Some 
practical aspects of the subband implementation are also briefly 
discussed. 
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Order Selection of Autoregressive Models 

Petar M. DjuriC and Steven M. Kay 

Abstract-This correspondence addreskes the problem of order de- 
termination of autoregressive models by Bayesian predictive densities. 
A criterion is derived employing noninformative prior densities of the 
model parameters. The form of the obtained criterion coincides with 
that of Rissanen in 1161. Simulation results are presented which dem- 
onstrate the good performance of the criterion, and comparisons with 
four other popular approaches verify its superiority in many cases. 

I. INTRODUCTION 

It is a common practice in various scientific and engineering dis- 
ciplines to represent observed discrete-time random processes by 
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autoregressive (AR) models. The determination of the order and 
the estimation of the parameters of the models is then of major 
interest. Usually, the parameter estimation is carried out by least 
squares or maximum likelihood procedures. For model order de- 
termination, there exists a long list of approaches, ranging from 
the classical ones based on the estimated residuals of the fitting 
model [5] to those founded on information [3] and coding theory 
[I41 or Bayesian analysis [13], [17]. 

In this correspondence we derive a criterion that is based on 
Bayesian predictive densities according to models and data [SI. 
From a decision theoretic point of view, when the errors for under- 
or overparametrization of a model have equal costs (importance), 
this approach under certain additional assumptions will yield a cri- 
terion that will minimize the overall probability of error. Nonin- 
formative priors of the model parameters will be employed in the 
derivation to account for the lack of knowledge regarding the model 
parameters and to allow “the data to speak for themselves.” It 
should be noted that Rissanen has come to basically the same result 
using the concept of stochastic complexity [16]. The criterion is 
checked by Monte Carlo simulations and compared to other ap- 
proaches which are common in the recent literature. 

11. ORDER SELECTION 

Consider the sequence of samples y f , ~  = [ y[ lIy[21 . . * y[N I1 
generated according to the AR model 

Y b l  = -al,Y[n - 11 - a2,y[n - 21 

- a,,y[n - PI + e b l  - . . .  

wherep is the order of the model, alp, a*,, . . . , U,, the coefficients 
of the model, and e[n]  a Gaussian random variable. The coeffi- 
cients of the model and the order p are unknown. In addition, we 
assume that 

where E( . ) is the expectation operator, 6,, the Kronecker delta 
function, and u2 the unknown noise variance; and 

A(Z) = I + alpz + a2,z2 + . . . + ap,,zp + 0, Jz( 5 I .  

The problem is to select the optimal AR model. Optimality will be 
defined according to the overall probability of selection error. If it 
is assumed that the cost for incorrect selection is one and for correct 
selection zero, and the a priori probabilities of the considered 
models are all equal, then the error is minimized when the selection 
is carried out according to the predictive densities of the models. 
These densities are defined as densities of “future” data, condi- 
tioned on the assumption that the examined model is true [2]. Since 
the parameters of the model are usually unknown, they are esti- 
mated only from “past” data. If we formally write the predictive 
density of y[n] a s f (  y[n]l y,,”- ,, k ) ,  wherey,,,- I is the vector of 
the past data, and k the order of the assumed model, the criterion 
will take the form 
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where P is the maximum model order. Note that the model with 
zeroth order is included in the set of models. 

We first outline the derivation o f f (  y[n])y, , ,_ I, k) for k > 0 
using the Bayesian approach. Namely, 

u l y l , n -  I ,  k > 0) plugged into (2), the integration yields 

f(Y[nllYl,n-l> k > 0) 

r (F) 
1 IH:[n - 2]H,[n - 2]11/2 -- - 

,& J H l [ n  - llHk[n - 11)1/2 n - 2k - 1 
I r (  2 ) f (y [n l ly l .n - l ,  > O) = 1, f(Y[nllyl ,n-l ,  ak, 0 ,  k )  

( n  - 2k - 1)/2 . f(ak* 0 1  Y l . n - l ,  k)  dak (2) (y l+ I , n  - 1 ~ :  [n - 2 ~ ~ k  + I , n  - I 

2  

andf(a,, U /  y l ~ n -  I ,  k) is the apos te r ior i  density of the parameters 
up and U aftery,,,- I has been observed. Clearly, we are unable to 
write (3) for n 5 k because we do not know the values of y[O], 
y[-11, y[-21, etc., of the AR process. This entails that the exact 
evaluation of (2) will be impossible. Therefore, our ultimate goal 
is to find a reasonable approximation of (2). Since we are reluctant 
to assume anything about the unobserved samples, we consider 
y[l] ,  y[2], * * * , y[k] to be initial conditions for the kth model. 
Moreover, in the derivation off (y[n] ly , , ,  - I ,  k) we assume that n 
> 2k + 1 ,  for reasons that will become clear below. In order to 
carry out the integration in (2), we need to find the form o f f ( a k ,  
U lyl,n- I ,  k ) .  According to Bayes' theorem and our assumptions 

wheref(ak, U Ik > 0) is the a priori  density function of the param- 
eters, and 

n > 2 k + 1  

where 

1 > 2k 

Pi[1] = I - H,[l](H:[1]H,[l])-'H:[l] 
and r(x) is the gamma function defined by 

r ( x )  Ef lm t i - '  exp { - I }  dr, x > 0. 

Equation (7) is the form of the predictive density that is substituted 
into (2) to obtain the criterion for the model of order k when k > 
0. The evaluation of (7) is only possible for n > 2k + 1 and the 
summation in (2) runs from n = 2 to N. A discussion of how to 
approximate the first 2k terms will be given below. 

If k = 0, the procedure for obtainingf(y[n]ly,.,_,, k = 0) is 
similar. The result is 

- - 
f ( Y k + l , n - l l Y l , k >  a!,, 0, k > 0)  JG (+) ( Y F , r l . n ) ( n ' 2 )  

n > 1. (8) 

Clearly, when k = 0, the summation in (1) runs from n = 2 to n 
= N, i.e., 

1 - - 
- I - k / 2  

N 

J~ = - C ~ n f ( y [ n ~ I y , , , - ~ ,  k = 0). (9) 

This reflects our unwillingness to write the predictive density of 
the next sample unless we have a minimum number of samples 

n = 2  

+ azky[j - 21 + . . . + a M y [ j  - k])'] . ( 5 )  

(observations) to estimate the parameters of the model. Since fork  
= the only unknown is u 2 ,  it follows that the procedure may start 
from = 2. 

and u 2 ,  We 
deduce that three observations is the least number of samples nec- 

The a priori  density function of the parameters should reflect our 
state of knowledge about these parameters. When very little is 
known about them, a usual route is to employ the noninformative 
priors [ l l ] .  For our problem [19, ch. 71 

The first order AR model has two unknowns, 

essary to make a unique estimate of these parameters. Thus n = 4 
is the time index of the first sample for which we can write the 

conditions to allow the derivation of the predictive density of y[n] 
for n < 4. If we had proceeded with those assumptions, it would 

(6) 

When ( 5 )  and (6) are substituted into (4), and the resulting f (ak ,  

1 
f ( U k ,  u p  > 0)  0: -. 

U predictive density. Again, note that we did not assume zero initial 
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have entailed the use of different amounts of U priori information 
for different models, an approach which for short sequences might 
affect the selection procedure significantly. So f o r k  = 1 we write 

also used [l].) A clear distinction must be made between the pre- 
dictive density used in (2) and the quasi-likelihood predictive den- 
sity in (13). The former has been shown to be better for discrimi- 

N nation purposes than the latter [ 11. (13) can be rewritten as 
N-1 J i  = - C I n f ( ~ [ n l I ~ l , n - l ,  k = 1). (10) 

The comparison between (9) and (10) is not appropriate because 
the two criteria have predictive density functions for different num- 

p = arg [ min ( c (In 3:[n1 + - n = 4  

k e ( o ,  I . .  . .P) n = k +  1 

where 
bers of samples. A natural solution to this inconvenience is to 
change (10) to 

3 

51 = - C 1nf(y[nlIyl,n-I, k = 0) 
n = 2  

N 

i , [n ]  = y[n] + ci,& - l]y[n - 11 

+ * . . + &[n - l]y[n - k]. 

In the predictive least squares (PLS) criterion the probabilistic 
assumptions about the data are relaxed. The criterion is based on 

- c 1nf(y[nllyl,n-I, k = 1). accumulated squared prediction errors [ 151, or 
, N  \ \  

n = 4  

We proceed in a similar fashion with the AR models of higher or- p = arg min ( (y[n] - j $ [ n ] ) 2 ) )  (14) 
der. For example, f o r k  = 2 we have k e { O ,  I , '  ' ' .P) n =  ' 

where 

j g n ]  = -ci& - 1]y[n - I] - ri2& - l]y[n - 21 

-&[n - l]y[n - k]. (15) - . . .  
Finally, we want to introduce a criterion similar to (14). Instead 

N of validating the model by accumulated squared prediction errors, 
we shall employ the accumulated absolute values of the prediction 
errors, or 

Needless to say, the evaluation of Jk can be camed out recursively 
in time. )] (16) 

- ~ n f ( ~ [ n l I ~ l , n - l >  k = 2). 
n = 6  

111. BRIEF REVIEW OF OTHER APPROACHES 

Akaike [3] used the same assumptions employed in the deriva- 
tion of (7) and (8) and suggested the following model selection 
criterion: 

where 8; is again the maximum likelihood estimate of the noise 
variance U * .  With the increase of k, the first term in (1 1) will mono- 
tonically decrease, but the second term will increase to account for 
the increase in variance due to the estimation of extra parameters. 
Similar in philosophy is the minimum description length (MDL) 
criterion given by [ 141, [ 171 

It can be shown that for large N a n d  using asymptotic approxima- 
tions, (1) becomes identical to (12). 

A third criterion that falls into this category of criteria is the 
predictive minimum description length (PMDL) [16]. It is similar 
in form to ( l ) ,  i.e., 

~ h e r e f ( y [ n I l y , , ~ - , ,  (ik[n - 11, &[n - 11, k)  is the quasi-likeli- 
hood predictive density of the data [lo], and &[n - 11 and &Jn - 
11 are the maximum likelihood estimates of ak and U from the first 
n - 1 samples. (In the statistical literature the terms maximum 
likelihood plug-in forecast density [7] and estimative density are 

where jk[n] is given by (15). We shall refer to (16) as the predictive 
least absolute value (PLAV) criterion. The parameters hk can be 
estimated by employing the least absolute value criterion [4], or 
the least squares criterion using lattice filters [ 1 8 ] ,  [9]. In the sim- 
ulations presented in the next section, the latter approach was used. 

IV. SIMULATION RESULTS 

In this section the results of eight Monte Carlo experiments are 
presented. The performance of the six methods was assessed on 6 
different autoregressive processes: 

y[n] = 0.5y[n - 11 + e[n] 

y[nl = 0.7y[n - 11 + e[n] 

y[n] = 1.8y[n - 11 - 0.97y[n - 21 + e[n] 

y[n] = 1.37y[n - 11 - 0.56y[n - 21 + e[n] 

(19) 

(20) 

y[n] = 1.352y[n - 11 - 1.338y[n - 21 

+ 0.662y[n - 31 -0.240y[n - 41 + e[n] (21) 

and 

y[n] = 2.760y[n - 11 - 3.809y[n - 21 

+ 2.654y[n - 31 - 0.924y[n - 41 + e[n]. (22) 

Equations (17) and (18) were used in [18] and [12, eqs. (21) and 
(22)]. The noise variance was always cr' = 1 except in the last 
experiment when it was u 2  = 0.1. The maximum model order P 
was 8. Each experiment was repeated 1000 times. The number of 
samples was varied between 20 and 100. 

Table I shows the results obtained from the analysis of (17) with 
N = 40. MDL performed the best and PLS the worst. In [18] much 
better results were reported for PLS, even for sequences that had 
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TABLE I 

SAMPLES 
COMPARISON RESULTS FOR EXAMPLE (17). THE SEQUENCES H A D  40 

TABLE I1 
COMPARISON RESULTS FOR EXAMPLE (17). THE SEQUENCES HAD 100 

SAMPLES 

p = 1, a , ,  = 0.5, u2 = 1, N = 40 p = 1 ,  a , ,  = 0.5, u 2  = 1, N = 100 

k PDC PLAV PLS AIC MDL PMDL k PDC PLAV PLS AIC MDL PMDL 

222 
747 
28 

3 
0 
0 
0 
0 
0 

3 60 
602 
33 

5 
0 
0 
0 
0 
0 

389 31 107 
592 622 805 

16 I24 57 
3 58 19 
0 40 5 
0 32 4 
0 34 2 
0 28 1 
0 31 1 

324 
627 
33 
14 

1 
0 
1 
0 
0 

~ 

0 10 
1 969 
2 18 
3 3 
4 0 
5 0 
6 0 
7 0 
8 0 

~~ 

111 
857 
30 
2 
0 
0 
0 
0 
0 

189 0 
798 702 

12 127 
1 63 
0 30 
0 24 
0 18 
0 17 
0 19 

1 
955 
37 
5 
1 
1 
0 
0 
0 

93 
873 
30 
4 
0 
0 
0 
0 
0 

fewer samples. The reason for PLS’s better performance was the 
absence of the zeroth order model in the examined set of models. 

In the second set of experiments, the same process was used 
except that the sequences had N = 100 samples. Now PDC yielded 
the correct order most often. Table I1 shows the results. In these 
two experiments PLAV slightly outperformed PLS. 

Table 111 gives the results obtained from the analysis of (18) on 
sequences N = 40. Again, the highest percentage of correct selec- 
tions was achieved by PDC. AIC had the fewest correct selections, 
but also the fewest underparametrizations. 

In Tables IV-VI the results of the analysis of second-order pro- 
cesses are shown. Table IV shows the performances obtained from 
sequences N = 40 and generated according to (19). We see that 
this time PLS and PLAV outperformed the MDL criterion. Tables 
V and VI give the corresponding results from sequences generated 
by (20) with N = 40 and N = 80, respectively. Comparing Tables 
V and VI, we deduce that with an increase in the number of sam- 
ples, the performance rankings of the criteria may quickly change. 
In Table VI we see that the only criterion which did not underes- 
timate the model order was AIC. 

Finally, in Tables VI1 and VI11 we can see the results obtained 
when the criteria were applied to sequences generated according to 
(21) and (22). The processes (21) and (22) have broad-band and 
narrow-band spectral characteristics, respectively. In the broad- 
band case only, AIC, MDL, and PDC made correct selections in 
more than 50% of the cases. When the narrow-band process was 
analyzed, satisfactory performance was achieved only by PDC and 
PLAV. Note also the difference in performance between PLAV and 
PLS . 

We have to be very careful in the interpretation of these results 
and not overemphasize their significance. We have investigated the 
performance of the criteria when the sequences represented finite 
low-order autoregressive processes. In practice, unfortunately, the 
orders might be finite and large or even infinite. However, certain 
guidelines are necessary, and simulation results similar to ours may 
provide useful information about the characteristics of the exam- 
ined methods. We have drawn the following conclusions from the 
experiments. 

1) The best performance was achieved by PDC when the se- 
quences represented narrow-band processes, or their lengths were 
big enough (how big depended on the nature of the process; the 
more narrow-band the process, the shorter the sequence length re- 
quired to outperform the rest of the methods). 

2) For wide-band processes, MDL yielded the best results. 
3) PLAV outperformed PLS in every experiment. 
4) AIC had the lowest number of underparametrizations. 
The performance of PMDL was quite mediocre. Such a perfor- 

TABLE I11 
COMPARISON RESULTS FOR EXAMPLE (18) 

p = 1,  a, ,  = 0.7, u 2  = 1, N = 40 

k PDC PLAV PLS AIC MDL PMDL 

0 
1 
2 
3 
4 
5 
6 
7 
8 - 

25 103 184 1 5 112 
950 855 795 682 91 1 819 
22 35 21 103 58 50 
2 6 0 59 11 9 
1 1 0 36 7 6 
0 0 0 28 2 2 
0 0 0 29 2 2 
0 0 0 25 2 0 
0 0 0 37 2 0 

TABLE IV 
COMPARISON RESULTS FOR EXAMPLE (19) 

p = 2, a , ,  = 1.8, a2, = 0.97, U *  = 1, N = 40 

k PDC PLAV PLS AIC MDL PMDL 

0 0 
1 0 
2 969 
3 28 
4 3 
5 0 
6 0 
7 0 
8 0 

7 
12 

929 
51 

1 
0 
0 
0 
0 

26 
24 

916 
32 
2 
0 
0 
0 
0 

0 
0 

613 
150 
81 
49 
42 
28 
37 

0 
0 

863 
90 
32 
9 
2 
1 
3 

5 
10 

800 
I16 
38 
20 
5 
3 
3 

TABLE V 
COMPARISON RESULTS FOR EXAMPLE (20). THE SEQUENCES HAD 40 

SAMPLES 

p = 2, aI2  = -1.37, azz = 0.56, u2 = 1, N = 40 

k PDC PLAV PLS AIC MDL PMDL 

0 
136 
840 
21 
2 
1 
0 
0 
0 

5 
307 
65 1 
36 

1 
0 
0 
0 
0 

39 
373 
573 

15 
0 
0 
0 
0 
0 

0 0 
10 39 

647 872 
114 60 
79 13 
46 10 
41 4 
25 2 
38 0 

29 
272 
623 
53 
9 
7 
3 
1 
3 

1 ~- -I- - 
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TABLE VI 
COMPARISON RESULTS FOR EXAMPLE (20). THE SEQUENCES HAD 80 

SAMPLES 

k PDC 

0 0 
1 7 
2 973 
3 19 
4 1 
5 0 
6 0 
7 0 
8 0 

PLAV PLS AIC MDL 

6 36 0 0 
12 1 238 0 1 
839 713 700 946 
31 13 112 44 
3 0 56 5 
0 0 48 2 
0 0 35 2 
0 0 24 0 
0 0 25 0 

PMDL 

10 
92 

849 
41 
3 
2 
2 
1 
0 

TABLE VI1 
COMPARISON RESULTS FOR EXAMPLE (21) 

p = 4, U14 = -1.352, a24 = 1.338, ~3~ = -0.662 
aM = 0.240, U’ = 1, N = 100 

k PDC PLAV PLS AIC MDL PMDL 

0 
0 

100 
386 
505 

8 
1 
0 
0 

21 
25 

407 
325 
214 

8 
0 
0 
0 

99 
96 

452 
233 
118 

2 
0 
0 
0 

0 
0 
5 

114 
625 
120 
57 
31 
48 

0 
0 

28 
324 
613 

31 
3 
1 
0 

11 
11 

104 
407 
405 
42 
12 
6 
2 

TABLE VI11 
COMPARISON RESULTS FOR EXAMPLE (22) 

p = 4, a14 = -2.760, a24 = 3.809, a34 = -2.654 
a44 = 0.924, u 2  = 0.1, N = 20 

k PDC PLAV PLS AIC MDL PMDL 

0 0 
1 0 
2 0 
3 3 
4 940 
5 44 
6 7 
7 3 
8 3 

2 
2 

185 
7 

752 
42 
9 
1 
0 

18 
27 

617 
11 

307 
19 
1 
0 
0 

0 
0 
0 
0 

90 
60 

359 
296 
195 

0 
0 
0 
1 

158 
75 

416 
243 
107 

8 
1 

12 
19 
71 
83 

26 1 
232 
313 

mance stems from the nature of the quasi-likelihood predictive den- 
sity. This density does not precisely penalize for overparametri- 
zation since it does not take into account that the parameters of the 
model used to determine its form are not true, but rather are esti- 
mated from data. 

As a final note we emphasize that the comparison between PLAV 
and PLS with the rest of the methods is not fair because the un- 
derlying assumptions for their use are different. To employ PLAV 
or PLS we do not require knowledge of the probability density 
function of the data, while for the other approaches this informa- 
tion is of fundamental importance. 

V. CONCLUSION 

A criterion for order selection of AR models has been derived 
based on Bayesian predictive densities. Its performance was as- 
sessed by extensive simulations and compared to other methods. 
The simulations show that this approach often yields better results 
than its competitors. Also, as an alternative to the PLS approach, 
the PLAV criterion was introduced. In the numerical simulations 
it systematically outperformed PLS. 
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