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Abstract 
Three new techniques for frequency measurement are pro- 
posed in the paper. The first is a modified zero crossing 
method using curve fitting of voltage samples. The second 
method is based on polynomial fitting of the DFT quasi- 
stationary phasor data for calculation of the rate of change 
of the positive sequence phase angle. The third method o p  
erates on a complex signal obtained by the standard tech- 
nique of quadrature demodulation. All three methods are 
characterized by immunity to reasonable amounts of noise 
and harmonics in power systems. The performance of the 
proposed techniques is illustrated on several scenarios by 
computer simulation. 

Keywords: Phase measurements, frequency measure- 
ments, power system stability, power system harmonics. 

1 Introduction 
The problem of determination of accurate frequency in 
power networks has grown more complex in the recent 
past. There are multiple reasons for this. The dynamic 
balance between load and generation, which is a prerequi- 
site for stable power system operation, has become more 
difficult to maintain because the expansion of the trans- 
mission network does not follow the growth of the system. 
The direct consequence is that the security margins are 
generally smaller, and quite often power systems operate 
at the brink of instability, possibly resulting in a blackout. 
Such operating practices imposed by the practical reasons 
are further aggravated due to the effects of deregulation. 
Non-utility generation and wheeling may reduce the sta- 
bility margins of a normally secure system. It is therefore 
very important for utilities to develop means to monitor 
and control the dynamics of the power system. 
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The hardware which allows tracking of very fast system 
dynamics is emerging from new technologies such as GPS 
satellite receivers (which provide the required lps accu- 
racy for system-wide measurement synchronization), faster 
computers for processing of system data (parallel architec- 
tures), and efficient communication nhtworks (dedicated 
fiber optic, or digital telehone network, enhanced with data 
compression for increased information throughput). Di- 
rect measurement of the system state and frequency is a 
very important component of such a system. The hard- 
ware platforms are already developed and are undergoing 
extensive field testing. Some of the underlying principles 
and most obvious applications are described in [l] 121. 

Some of the solutions for the newly created situation are 
giving rise to new problems. The increased application of 
power electronics in power systems have allowed leaps for- 
ward in transmission capacity (such as HVDC) and flexible 
control of the system dynamics (such as FACTS elements). 
But those devices are generators of harmonics, which are 
corrupting the purity of the 60 Hz sine waves that should, 
in theory, be the only frequency component in the power 
networks. In addition, many industrial customers are cre- 
ating harmonics by using power electronics equipment, arc 
furnaces, etc. Harmonics, which used to create problems 
in distribution networks only, are becoming a big nuisance 
in transmission networks, so that some utilities are already 
building harmonic measurement systems for transmission 
networks [3]. 

Among the first techniques for frequency measurement 
were those based on zero crossing. They were gradually 
abandoned due to their sensitivity to noise, presence of DC 
components in the signal, and harmonics. However, their 
inherent simplicity cannot be matched by any other tech- 
nique. As will be shown in this paper, when combined with 
a data smoothing technique, zero crossing may produce 
surprisingly good performance. A variation of the same 
method involves frequency multiplication of the measured 
signal using PLL, which reduces the measurement time, 
but does not have very good resolution or dynamic proper- 
ties. Phadke et al. [2] propose the Discrete Fourier Trans- 
form of the voltage samples to be used recursively for calcu- 
lation of a stationary phasor, and positive sequence phasor 
rotation to be used for measurement of the frequency. The 
algorithm is inherently insensitive to harmonics because of 
the application of the DFT, but as proposed in [Z], i t  is vul- 
nerable to noise, and requires long measurement windows 
when frequency deviation from nominal is s m d .  Girgis 

0885-8977/93$03.00 0 1993 IEEE 

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on April 30,2010 at 16:07:55 UTC from IEEE Xplore.  Restrictions apply. 



481 

et al. [7]-[8] have proposed to treat the frequency as a 
stochastic signal and have applied a two-stage algorithm 
based on a combination of an adaptive extended Kalman 
filter and an adaptive linear Kalman filter. The objective 
is to use the measurement as an underfrequency load shed- 
ding relay. Although the noise performance of the method 
is good, it is not meant to be insensitive to harmonics in 
the measured signal. Sachdev and Giray [5]-[6] propose 
the the use of a least squares technique after the approx- 
imation of the measured signal with the truncated Taylor 
expansion. Due to the combined effects of approximations, 
the method may be sensitive to the presence of harmonics 
and noise in the signal. Kezunovic et al. [9]-[10] propose 
two new techniques based on digital signal processing and 
quadratic forms of sample data. The authors claim good 
noise performance of the algorithm, but not immunity to 
harmonics. Kamwa and Grondin [12] have proposed re- 
cursive least squares and recursive least mean squares for 
dynamic estimation with an objective to track both volt- 
age phasor and bequency. They utilize band-pass filters to 
tune out DC and harmonics from the signal. &kart et al. 
[4] propose a definition of the instantaneous frequency as 
angular velocity of the rotating voltage space phasor, sim- 
ilar to the scheme proposed earlier for a positive sequence 
voltage phasor by Phadke et al. [2]. They utilize four 
connected FIR-filters to suppress the effects of noise and 
harmonics and linear observer to extract the electrome- 
chanical component of frequency deviation. The obtained 
results are good, but the proposed scheme is very complex. 

Three new techniques will be investigated in this paper. 
They differ in complexity and accuracy, but a l l  can be 
considered for implementation, depending on the measure- 
ment requirements. The first is a modified zero crossing 
technique based on curve fitting of voltage samples to en- 
hance noise immunity. The second technique is based on 
the positive sequence voltage phasors obtained by DFT 
[2], smoothed via minimum least square polynomial fitting 
of the quasi-stationnary phasor data. The third technique 
emerged from a recently proposed method for measurement 
of the phase angle by demodulation and filtering (141, [15]. 

2 Definitions of Frequency 
Let us assume that the measured signal consists of a fun- 
damental and harmonics 

00 

u(t) = V, cos(nw0t + 6,(t)) (1) 
nil 

where WO is a synchronous frequency, V, are magnitudes 
of harmonics, t is time, n harmonic order, and 6,(t) are 
the time varying phase angles of the harmonics. Consider- 
ing that 6, : R w R is a function of time, instantaneous 
frequency deviation may be defined as 

1 a61 
fl = -- 

2% at 

Various disturbances, such as transient oscillations and 
subsynchronous resonance, may modulate 61 ( t ) ,  which is 
both the way to represent them in simulations and the 
reason we are seeking to estimate them from voltage mea- 
surements. In the more general case, additive noise c(l) 
may.be added to (1) to model the corruption of the signal. 
Its statistical properties are E { c ( t ) }  = 0 and E { e 2 ( t ) )  = 

4 + b I u(t )  I, according to [2], where 4 and b are constants, 
and u(t) is the actual magnitude of the measured voltage. 
This noise model will be used in the simulations. In the 
explanation of the proposed algorithms, we will omit the 
noise, since we do not deal with it in an explicit fashion. 
In the steady state, the frequency is defined as the inverse 
of the 8hortert time interval T = f" between two instants 
when the function takes on the same value for all times 

(Vt)(u(t) = ~ ( t  - T) = ~ ( t  - f-')) (3) 

Since 6( t )  # const., (3) cannot be used in general, but 
whenever the change of 6 ( t )  is small enough with. respect 
to the synchronous frequency, (3) can be utilized (6 a WO). 
In fact, we will use (3) as a definition of frequency for 
modified zero-crossing technique. 

3 Modified Zero Crossing Tech- 
nique 

Let us assume that the voltage waveform has been sampled 
and that a sample u[k] is defined as 

W 

~ [ k ]  = ~ ( k A t )  = Vn cos(nw0kAt + 6n(kAf)) (4) 
n=l 

We can then define a measurement wipdow V[k] as a set 
of M consecutive samples such that 

V[k] = [ u p  + 11 u p  + 21 * . U[k +MI 3' (5) 

The triggering of the measurement will be initiated every 
time the counter determines that exactly one half of the 
samples are with positive sign (assuming M is an even 
integer). Let us fit the I-th degree polynomial PI : R w R 

I 

p l ( t )  = (10 + al t  + a2t2 + *art1 = c o l t . '  (6) 
J'O 

using the least squares techique. The solution is obtained 
from the overdetermined system of linear equations 

1 ( k + l ) A t  ... (k+l) 'At'  

1 ( k + 2 ) A t  . - -  ... (k+2)'At1 ] [ ;] =V[kl [ 1 ( k + M ) A t  - - a  (k+M)'At'  
(7) 

(8) 

(9) 

K - a = V[k] 
or 

which can be solved using the least squares technique 

a = (x'K) -' K'V[~I 

The solution (8) does not require the inversion of K'K, 
but only one forward and back substitutions. It is there- 
fore quite possible to apply it in real-time, especially when 
the degree of the polynomial is reasonably small (to avoid 
influence on the accuracy of the results due to stability rea- 
sons, the polynomial should be of second, or third degree). 
In the next step, we find the roots of p1 

pl(il) = 40 + alii +. - - + = O (10) 

When the window is moved across the waveform, the 
times il will correspond to the approximate zero crossings 
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of the waveform. The difference between every two odd, or 
even subscripted solutions will represent an integer number 
of periods of a quasi-steady state waveform 

The continualiration of the discrete set of estimated fre- 
quency (11) may be accomplished by piecewise linearizk 
tioq with surprisingly good results. The smoothing (poly- 
nomial fit) very efficiently suppresses noise, and harmon- 
ics could have an impact on the results only when their 
phase angles are fluctuating. It is possible t o  obtain the 
frequency information using this technique every half cycle, 
which is reasonably fast. The method performs very well 
under steady state conditions, and tracks frequency sur- 
prisingly well under transient conditions, as will be shown 
in the simulations. One potential problem is maitivity 
of the method to switching transients in the signal, which 
may deteriorate its performance for up to 30 cycles follow- 
ing the transient. For steady state frequency measurments 
and non-switching transients, the method offers remarkable 
performance. 

4 DFT Method with Polyno- 
mial Fitting 

Given the measurment window (4,5), we calculate the pha- 
sor by a recursive Discrete Fourier Transform [l] (assuming 
non-varying phase angles in (4)) 

N 

3{f i [k]}  = Ksin61 = - x v [ k +  2 j ] s i n ( v )  N 
j=l 

or, in matrix notation 

R { R } = V[k]' * C[k] 

3 {PI} = V[k]T * S[k] 
and 

where the vectors C[k] and S[k]  are defined as 

C[k] = [ cos( 'qp=)  . . . c o s ( q q  1' 
and 

s [~I=  [ in(-) ... sin(-) 1' 

vi = M[kIT * C[k] + jM[k]T e S[k] = V l P ,  

producing the stationary phasor 

The procedure is an effective filter for +manics present 
in the signal. When all three phasors KO[k], &b[k], and 
fi,[k] (obtained from single phase measurements) are avail- 
able, the positive sequence phasor is calculated as 

Ql[k] = %o[k] + a%b[k] + a2fic[k] (19) 

1 + a + a 2 = o  (20) 
where 

We calculate the phase angle 6[k] as the argument of fi [k] 
6[k] = arg { fi[k]} (21) 

and construct the sliding data window 

D[k] = [ 6[k + 11 6[k + 21 - 6[k + M] 1' (22) 

We now fit the polynomial (6) using the least squares tech- 
nique (7,8,9) and obtain the following continuous approxi- 
mation of 6 ( t )  

1 

6(t) = a0 + alt  + - - + act' = ajt' (23) 
j-0 

The instantaneous frequency f(t) b then calculated using 
(2) 

1 aqt )  1 
f(t) = -- = -(ai + 202t + - - + lait'-') (24) 2 r  dt 2% 

and discretized again to represent the time tagged result 
a t  the instant t = k a t  

1-1 

j P 0  

The discrete frequency is evaluated at the end of the data 
window to provide the most recent estimate of the instan- 
taneous frequency 

1-1 

f[k + M] = & c j a j  [(k + M)At]'-l (26) 
jss0 

The attractive simplicity of this method makes i t  very 
easy for implementation in real-time. The noise and har- 
monics suppression is very good, as will be shown in sim- 
ulations. Among the interesting properties of the method 
are: 

e 

e 

e 

e 

5 

The continuous approximations of the instantaneous 
frequency are possible and logical. 

The instantaneous frequency prediction may be pos- 
sible within reasonable range, by extrapolating the 
polynomial outside the data window. 

DFT efficiently suppresses harmonics. 

The least squares method smooths the effect of noise. 

Demodulation Technique 
We now briefly describe the frequency estimation by de- 
modulation. This technique was recently examined in [14]. 
Note however that once we obtain the complex signal, we 
pursue a different approach. 

Let one phase of the voltage waveform be 

44 = Acos(wok + #]) + 
where 4 k ]  represents higher harmonics and noise. The 
quantity that we estimate (the deviation from 60 Hz of 
the fundamental instantaneous frequency) is defined by 
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where the phase d [ k ]  is expressed in degrees, and f. is the 
rampling frequency in Hz. Rom 2 [ k ]  we form two new 
signals 

and 
Yl[k] = z[k]coa(wok), 

= - 4 k l  &(wok). 
yl[k] and yz[k]  carry the information about the instanta- 
neow frequency in a high (around 120 Hz) and a low fre- 
quency signal components (around 0 Hz). We remove this 
redundancy and filter out the high frequency Bignal com- 
ponent by an appropriate lowpass filter. The filter yields 

and 
A 

*z[k] = y &(d[kl) + E&], 

where E1 [k] and ZZ [k] represent the filtered noise from y1 [k] 
and n [ k ] .  In the next step consider the complex signal 

i [ k ]  = il[k] +JSZ[k]. 

It can be shown that for high signal-tctnoise ratios g[k] can 
be approximated by [l] 

where &[k] is phase noise. Now let 

u[k] = $[k + 1]3*[k - 11 
= ~ [ k ]  + juz[k] 

~ e # ~ [ k t l ] - ~ k - l ] t ~ ~ [ k t l l - ~ ~ [ k - l ] )  

From the above expression, we deduce that we can estimate 
the difference d[k  + 11 - ~$[k - 11 by 

Therefore, 

We can find Af[k] from each phase of the signal. If the 
noise around 60 Hz in the three phases are independent, a 
reasonable estimate of the instantaneous deviation is the 
mean of the three estimates. 

The procedure can easily handle any number of harmon- 
ics present in the measured data. In addition, low f r t  
quency components u e  also insignificant because they are 
filtered out. The only component that distorts the esti- 
mates is the noiee at  and around the fundamental fre- 
quency. This procedure b not computationally demand- 
ing. The filtering can be implemented by finite (FIR) or 
infinite impulse response (IIR) filters [15]. For accurate es- 
timation these filters must have constant group delays at 
low frequences. FIR filters are easily designed to have this 
property for all frequencies. It turns out that there are IIR 
filters with this property too. Bessel filters have maximally 
flat group delays for low frequencies [13). Their advantage 
is that we can achieve significant attenuations with very 
low order filters. 
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6 Simulation Results and Dis- 
cussion 

The three methods discussed in sections 3-5 have been 
tested by computer simulation. Several scenarios have been 
tried, and their performance documented. Whenever the 
term true frequency is used, it refers to the quantity (2) 
obtained from the signal, which is represented in the form 
(1). Simulated transients are disturbances of the waveform 
represented by the equation (l), with the following modu- 
lations and disturbances added: 

The tracking abilities need to be tested under tran- 
sient conditions. A 1 Hz swing was modulated on 
the nominal frequency, with the maximum value of 1 
rad/=. 
Various amounts of measurement noise, modeled ac- 
cording to [2], were added to the signal. Typical val- 
ues of standard deviation are of the order of 1 percent. 

Quantization noise was added to the samples. It cor- 
responds to the 12-bit A/D converters used in the 
phasor measurement system. The sampling rate was 
1440 Hz (24 samples per cycle), which allows for 12 
harmonics to be present in the signal without aliasing 
effects. 

A subsynchronous d a t i o n  of 6 Hz was modulated 
on top of the transient swingof 1 Hz. Even though this 
type of d a t i o n  is not very common, it would test 
the tracking performance of the proposed methods in 
that important frequency region. 

e Various amounts of harmonics were used in the signal. 
Three scenarios are presented in the paper: 5 percent 
3rd harmonic, 5 percent distortion from the harmonics 
(3,5,7,9,11), and 25 percent distortion from the same 
group of harmonics. 

The term estimated frequency relates to the results of ap- 
plication of the three proposed techniques for assessment 
of the true frequency (2,3). The estimated frequency is 
represented by formulae (11,26,27). 

The results are shown in Figures 1-9. All the methods 
track the modulated swing very well, and only minor devia- 
tions have been observed in all scenarios with harmonic lev- 
els up to 25 percent. More pronounced was the noise sen- 
sitivity, especially when the modified zero crossing method 
(Figures 1-4) was used. This method is very good for fre- 
quency measurements of stationary waveforms, but cannot 
cope with large amounts of noise in the signal. Both DFT 
with least squares fitting and demodulation techniques suc- 
cessfully deal with large amounts of noise and harmonics, 
and could be used for dynamic frequency tracking under 
very difficult conditions. As expected, longer data sets 
used for fitting in DFT method produce better immunity 
to noise and harmonics. The best performance was ob- 
tained with 1 cycle DFT window for phasor calculation 
and 80 sample long window for quadratic polynomial fit- 
ting (Figures 5-8). It should be noted that $ cycle phase 
shift observed on all estimates based on DFT is due to one 
cycle measurement window - the estimates correspond to 
the middle of the measurement window, but they can be 
calculated only when the whole window is available. 
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Noise:O.Ol 
Fit ordec 2 

60 Fit window 3 

8 I 
ai a2 a3 0.4 0.5 

59.5; 

Figure 1: l l u e  and estimated frequency during the 
simulated transient (see text): modified zero crossing 
method: signal with 5 percent of the 3rd harmonic. 

Zero Crossing 

Fit window 3 

59So 1 

0.1 0.2 0.3 0.4 

Figure 2: ' h e  and estimated frequency during the 
simulated transient (see text): modified zero crossing 
method: signal with 5 percent spread over odd har- 
monics (3rd- 1 1 t h) . 

Zero Crossing 

61.5 

61 

60.5 

60 

59.5; I I I d I 
0.1 0.2 0.3 0.4 0.5 

Figure 3: 'Due and estimated frequency during the 
simulated transient (see text): modified zero crossing 
method: signal with 25 percent spread over odd har- 
monica (3rd-11th). 

Zero Crossing 
61.5 I I 1 

Noise:0.05 
Fit order: 2 
Fit window 3 

I I 

0.1 0.2 0.3 0.4 0.5 

Figure 4: T h e  and estimated frequency during the 
simulated transient (see text): modified zero crossing 
method: signal with 5 percent noise, no harmonics. 

Recursiw DFT 
61.5 

61 

60.5 

60 

I b 
I 1 v 

0.5 0.2 0.3 0.4 0 0.1 

Time (s) 

Figure 5: T h e  and estimated frequency during the 
simulated transient (see text): DFT method with 
polynomial fit: signal with 5 percent 3rd harmonic. 

Recursive DFT 
61.5 - I I 

Fit window 40 

I , I 1 , I 
0 0.1 0.2 0.3 0.4 0.5 

Time (s) 

Figure 6: l l u e  and estimated frequency during the 
simulated transient (see text): DFT method with 
polynomial fit: signal with 5 percent noise, no har- 
monics. 
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w :it order: 3 
Fit window 40 
1 qck DW 

I I I I I I 
0 a1 a2 a3 a4 as 

Time (8)  

Figure 7: IItue and estimated frequency during the 
simulated transient (see text): DFT method with 
polynomial fit: signal with 5 percent harmonics (3rd- 
11th). 

Recursive DFT 
61.5 1 1 1  

NokO.01 
Fit order. 3 
Fit window 80 
1 cycle DFT 

I I I 
59.5; 0.1 0.2 a3 a4 0.5 

Time (s) 

Figure 8: D u e  and estimated frequency during the 
simulated transient (see text): DFT method with 
polynomial fit: signal with 25 percent harmonica (3rd- 
11th). 

Some improvement is possible by using advanced extrape 
lation techniques, which is subject of the ongoing research. 
The demodulation technique (Figure 9) does not require 
long measurement windows and reaches excellent perfor- 
mance with a careful design of filters. The accuracy of 
the estimates is practically independent of the number of 
harmonics and their magnitudes. 

7 Conclusions 
Three algorithms for frequency measurement and tracking 
were proposed and tested - one is based on traditional zero 
crossing, modified by addition of curve fitting to suppress 
noise; the second is the Discrete Fourier 'hansform based 
method, also reinforced by polynomial fitting; the third is 
based on phase demodulation and subsequent filtering of 
the frequency deviation. 

6lb I 
61.41 

612 - 
61 - 

60.8 - 
8 606- 

60.4 - 

602 - 
60- 

9.8 - 

A 

Figure 9: IItue and estimated frequency during the 
simulated transient (see text): demodulation method: 
signal with 25 percent spread over odd harmonics (3rd- 
11th). 

The first algorithm, traditionally considered inaccurate 
and unreliable, produced surprisingly good tracking per- 
formance, and was particularly insensitive to the large 
amounts of harmonics in the measured signal, but has 
somewhat poor noise performance. Both DFT- and 
demodulation-bad frequency tracking are capable of 
transient performance expected for monitoring of the real- 
time power system dynamics. Further improvements are 
possible with thorough analysis of the flkring options of 
the demodulation method. 

The proposed techniques can be implemented on a phasor 
measurement system [1][2], which is centered around a 32- 
bit microproceasor, and utilizes GPS satellite receivers to 
provide accurate synchronization signals to the measure- 
ment computers. A configuration consisting of multiple 
p h m r  measurement units represents a distributed multi- 
processor system with a potential for parallel processing 
of real-time data. Although PMUs are dedicated data ac- 
quisition units, careful utilization of the time windows be- 
tween samplings, and optimization of the communication 
between measurement units would allow allocation of 20- 
30 percent of their time to custom data processing, such as 
the proposed frequency measurement techniques, thus cre- 
ating an opportunity for real-time monitoring and control 
of rystem dynamics. 
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