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Detection and Estimation of DOA’s of 
Signals via Bayesian Predictive Densities 

Chao-Ming Cho, Member, IEEE, and Petar M. DjuriC, Member, IEEE 

Abstract-A new criterion based on Bayesian predictive den- 
sities and subspace decomposition is proposed for simultaneous 
detection of signals impinging on a sensor array and estimation 
of their direction-of-arrivals (DOA’s). The solution is applicable 
for both coherent and noncoherent signals and an arbitrary 
array geometry. The proposed detection criterion is strongly 
consistent and outperforms the MDL and AIC criteria, partic- 
ularly for a small number of sensors and/or snapshots, and/or 
low SNR, without increased computational complexity. When 
the prior of the direction-of-arrival is a uniform distribution, 
the Bayesian estimator for the directional parameters coincides 
with the unconditional maximum likelihood estimator. Simulation 
results that demonstrate the performance of the proposed solution 
are included. 

I. INTRODUCTION 

N the area of array processing, the most popular approaches I for the detection of the number of signals are based on the 
Akaike’s information criterion (AIC) [ l ]  and the minimum 
description length (MDL) principle [2], [3]. For noncoherent 
signals, the number of signals is determined from the “mul- 
tiplicity” of the smallest eigenvalue of the sample covariance 
matrix without estimating the directional parameters [4]-[6]. 
When the signals are coherent, this approach is not applicable 
since the rank of the signal covariance matrix is reduced. 
Preprocessing techniques such as “spatial smoothing” [7] and 
“frequency smoothing” [8] provide a partial solution to this 
problem, however, their applicability is limited to uniform 
linear arrays and wide-band signals, respectively. 

Recently, Wax and Ziskind [9], [IO] have proposed a 
subspace decomposition approach for detection and estimation 
of coherent signals based on the AIC and MDL criteria and 
the maximum likelihood method. The solution is applicable 
for arbitrary array geometry. However, the AIC criterion 
suffers two drawbacks. It tends to asymptotically overes- 
timate the number of signals, and its probability of error 
cannot reach zero even at a high signal-to-noise ratio (SNR). 
On the other hand, the MDL criterion is consistent, but 
it performs poorly at low SNR and/or a small number of 
snapshots. Unfortunately, most frequently it might be that 
the energy of the signals impinging on an array is low and 
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the number of snapshots is limited. Under those circum- 
stances, the MDL criterion usually underestimates the number 
of signals. 

In our paper, a new criterion is proposed for simultane- 
ous detection of coherent or noncoherent signals impinging 
on a sensor array, with arbitrary geometry, and estimation 
of their directional parameters. The approach is based on 
Bayesian predictive densities (BPD) [ 1 11 and a subspace 
unitary decomposition [9]-[ 111. Within the framework of 
Bayesian inference, the predictive distribution of the observed 
data and the a posteriori distribution of the signal parameters 
of interest are found, and by maximizing these distributions, 
the number and the directional parameters of the signals 
are estimated. The proposed DOA estimator coincides with 
the unconditional maximum likelihood (ML) estimator when 
the priors of the nuisance parameters‘ are chosen by using 
Jeffreys’ invariance theory [ 131. The detector is strongly 
consistent in detecting the number of signals and is less 
sensitive to variations in the prior of the parameters. Further- 
more, the proposed detection criterion outperforms the MDL 
and AIC criteria, especially in cases where the number of 
snapshots is small and/or the SNR is low. This improvement 
is achieved without increased computational complexity. The 
key to the improved performance is that the penalty term for 
the nuisance parameters is derived without using asymptotical 
assumptions. 

The presentation is organized as follows. The problem is 
formulated in Section 11. The Bayesian predictive density 
criterion for detection and a marginal maximum a posteriori 
(MAP) estimator are derived in Section 111. In Section IV 
simulation results are included, and comparisons with the 
MDL and AIC criteria are made. Finally, the conclusion is 
given in Section V. 

II. PROBLEM FORMULATION 

Consider that the far-field sources emit narrow-band wave- 
fronts (signals) centered at a known frequency, W O ,  which 
impinge on the sensors in a planar manner. The number of 
superimposed signals is q, the number of sensors is N ,  where 
q < N .  The locations and the directional characteristics of the 
sensors are allowed to be arbitrary. For simplicity, the sources 
and the sensors are assumed to be located in the same plane. 
Therefore, the only parameter that characterizes the location 
of the source is its direction-of-arrival. 

’ In this paper, the nuisance parameters include the covariance matrix of the 
signal vectors and the variance of the noise only, but not the DOA parameters. 
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The observed data at the pth sensor and the ith snapshot are 
expressed by the complex envelope representation as 

where L = 1.2. .  . . . M ,  and p = 1.2. .  . . ,N:Bl is the 
directional parameter (DOA) of the Ith signal, assumed distinct 
from the other signals; ~ ~ ( 0 , )  denotes the propagation delay 
between the reference point and the pth sensor to a wavefront 
impinging from direction 81. s,,l is the complex amplitude of 
the 1th signal as received at the reference point, and M denotes 
the number of snapshots. The n,+ is the additive complex 
noise at the pth sensor. 

The model for the ith snapshot can be compactly described 
by the following vector notations: 

with 

where D(B(,)) is an N x q matrix consisting of q steering 
vectors d(&), 1 = 1,. . . . q,  and a(,) = {Qll 0 2 . .  . . ,e,}. Any 
q distinct steering vectors from the array manifold are linearly 
independent. yz is an N x 1 observed data vector, s ,  is a q x 
1 signal vector, and n, is an N X  1 noise vector. T denotes 
transpose operation. 

We assume that the signal sample vectors s , .  i = I ,  2, . . ., 
M ,  are statistically independent zero mean complex Gauss- 
ian random vectors. The noise samples are zero mean 
complex Gaussian random variables uncorrelated across both 
i and p ,  with uncorrelated real and imaginary components, 
each with variance c i / 2 .  Furthermore, they are assumed to 
be uncorrelated with the impinging signals. The covariance 
matrix of the observed data is then given by 

where R,3,3 is a q x q unknown signal covariance matrix. 
The signals may be uncorrelated (noncoherent), partially cor- 
related, or fully correlated (coherent). When the signals are 
coherent, one signal might be a scaled and delayed version of 
the other, e.g., in multipath propagation. H denotes conjuga- 
tion and transposition. 

When the above assumptions hold, the problem can be 
stated as follows. Given the observed data samples, it is 
desired to simultaneously detect the number of the coher- 
ent and noncoherent signals and estimate their directional 
parameters (DOA's). 

111. PROPOSED SOLUTION 

In the sequel, a method based on Bayesian theory is used to 
solve the above problem. Let %k denote the hypothesis that 
the number of signals is I C ,  and IC E (0.. . . , N - l}. Under 
the hypothesis % k ,  the data are modeled by 

y, = D(O(k,)sL + n, .  1 = 1 . 2 . .  . . . M .  ( 5 )  

We adopt the MAP criterion [3], [ 141 to find the estimates 
of q and 8,  denoted by y and e. They are determined from2 

q = arg min { -  log f ( % k  I y)} 
k € { O , . , . , N - l }  

and 

(7) 

where f ( X k  I y) is the posterior distribution of the hypothesis 
% k .  0 is the "field of view" (i.e., -7r < 81 5 T ,  1 = 1, 2, 
. . . , q ) ,  and f ( 8  I y , % k )  is the posterior distribution of 8 
under ' H k .  From Bayes' rule, the posterior distribution of 8 is 
found according to 

f ( e  1 % k )  (8) 

where f (y  I 0, % k )  is the marginal likelihood function (MLF) 
of 6 which is obtained from the marginalization of the likeli- 
hood function (LF), f ( y  I 4,8, ' F l k ) .  The nuisance parameters 
4 include the unknown covariance matrices of the signal 
vectors and the noise variance, R,, and ~ 2 ,  respectively. 
f ( 8  I % k )  is the prior distribution of 8.  f(4 1 a,&) is 
the conditional prior of 4 given 8.  Commonly, it is assumed 
that the knowledge of 8 is not related to the knowledge of 
4. This implies f ( 4  I 0,%) = f (4  I % k ) .  f ( y  I % k )  is 
the marginal distribution of y under the hypothesis ?-&. For 
given y1 f ( y  I % k )  is a constant, and if the prior f ( O  1 % k )  

is locally uniform, the criterion (7) amounts to maximization 
of the MLF f ( y  I 8 , ' F I k ) .  

Similarly, the posterior distribution of %k in (6) can be 
obtained from 

f ( % k )  (9) 

where , f (y I Xk) is the MLF of % k ,  f (8 ,4 1 % k )  is the prior 
distribution of 8 and 4 under the hypothesis Xk, and f ( % k )  

is the prior of the hypothesis ' H k .  When the probabilities 
of all hypotheses %k are equal, the criterion (6) amounts to 
maximization of the MLF f ( y  1 %k). 

'It should be noted that, from a Bayesian point of view, this is not strictly 
and 6 simultaneous detection and estimation. However, we shall see that 

may be obtained from one equation only. 
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The prior distributions of 0 and q5 have to be chosen 
carefully. Unless the priors are supported by satisfactory 
physical or logical arguments, we prefer to use noninformative 
priors because they reflect our ignorance about the parameters. 
However, such priors are usually improper3 and therefore 
proportional to arbitrary constants 1201, [21]. Although they 
are convenient for representation of vague prior knowledge 
in the estimation problem, because of the arbitrary constants 
they are inappropriate for the use in the detection problem 
[171, [191. 

We circumvent this deficiency by using a Bayesian pre- 
dictive density (BPD) criterion [ l l ] .  The BPD criterion for 
estimating q is given by 

In order to deal with the marginalizations of the nuisance 
parameters in (8) and (14), the observed data space will be split 
into the two complementary subspaces [lo], [12], [15], [161. 
The subspace spanned by the columns of the matrix D(B(k)) 
is referred to as the signal subspace, and the orthogonal space 
to the signal subspace is referred to as the noise subspace. 
According to this decomposition, the observed data vector y 
is then split into two subspace vectors by 

where xs denotes the k x 1 signal subspace vector, and x, 
denotes the ( N - k )  x 1 noise subspace vector. G ( B ( k , )  denotes 

,j = arg { - log f(tz 1 tl. B~)} (10) an N x N unitary coordinate transformation matrix which is 
k€{o , l ,  ..., N-1} given by 

where t1 = {YI,. . . , Y L ) ,  t2 = { Y L + I ,  . . . ? Y M } ,  and 1 < 
L < M .  The selection of L will be discussed later. The 
function f ( C z  1 el, Xk) is called a Bayesian predictive density 
of t2 according to t1 and the hypothesis % k .  

Note that the original criterion (6) under the current as- 

GP(k) )  = [US(~(k)).U1L(~~k))I. (16) 

It satisfies the following identities: 

sumptions can be rewritten as 

i = arg mi11 { - l o g f ( t z  I t l , % ) - l o g f ( t l  I & ) ) .  
k € { O , l ,  ..., N-1} 

P ( @ ( k ) )  = V ( k )  ) ( D H  P ( k )  )D(fl(k))) - l D H ( o ( k ) )  
= US(fl(k))U3@(k)) (17) 

(11) and 
The difference between (IO)  and (11) is the absence of 
- logf(t l  I I H k )  in (10). The reason for the absence is that 
the data t1 are used for finding proper density functions of 
the model parameters (recall that the model selection can be 
carried out only if proper density functions for the model pa- 
rameters are used). Thus, by using (10) for model comparison, 
we lose the information that might have been gained from tl. 
Instead, we exploit t1 to obtain information about the model 
parameters and, thus, make the Bayesian procedure insensitive 
to the uncertainties in the parameter priors. 

Using the Bayes’ rule, the BPD function can be expressed as 

where y ( ~ )  = {tl) and y(hf) = {t1.t2}. The function 
f (8  I t1, ‘I&) is the prior distribution of B conditioned on 
the data t1 and the model ‘ H k .  As before, 4 = {R,,, m T z }  
is the nuisance parameter vector. From (1 2)-( 14) we observe 
that the use of improper priors will not cause problems any 
more, because in obtaining the Bayesian predictive densities 
the arbitrary constants cancel out [ 1 I], [ 171, [ 181. 

’Improper priors are not regular probability densities. They do not integrate 
to one. 

U,(8(k) )  and U,(B(k)) are N x k and N x ( N  - k )  matrices, 
respectively, whose columns represent sets of orthonormal 
vectors that span the signal and noise subspaces, respectively. 
The matrices P(8(k)) and P1(8(k)) are two complementary 
projection matrices which project onto the signal and noise 
subspaces, respectively. To simplify the notation, we use P(k) 
and P&, instead of P(8(k)) and P1(B(k)). 

Since the transformation (15) is linear, the two subspaces 
are orthogonal, and the noise is white, the signal and noise 
subspace vectors are independent zero mean Gaussian. The 
nuisance parameter 4 are also split into two nuisance pa- 
rameters sets, c$s and &, that belong to the complementary 
subspaces. The parameter set q5s denotes the nuisance pa- 
rameters of the signal subspace vector. Similarly, the set 
& represents the nuisance parameters of the noise subspace 
components. Therefore, the numerator of (14) can be modified 
using 

where J ( x , ,  z,; y) denotes the Jacobian of the transforma- 
tion (15), and it  is equal to I .  The denominator of (14) is 
manipulated in the same way. 
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From the assumptions in Section I1 and (1.5). i t  follows 
that the unknown signal subspace vector x, is modeled as 
a complex Gaussian process with zero mean and an unknown 
covariance matrix Ess. The distribution of x , ~  is given by 

(20) 

where dei,(.) denotes determinant. For the white noise model, 
x, is an ( N  - I ; )  x 1 complex Gaussian random vector with 
zero mean and a covariance matrix E,,,, = (T:I, i.e., 

1 
.f(xri,(j~~) I uTl.  8 .  E~tk) = ( 7i(T; ) ( .Y - k ) 1 I 

(21) 

and +, , (=U, , )  are 
independent of 8. Since information about E,q, and (T,~ is not 
available, we will choose noninformative prior distributions 
for Ess and u , ~  by using Jeffreys' invariance theory 1201. 
According to this theory, the Jeffreys' noninformative priors 
are derived by requiring invariance of inference under parame- 
ter transformation, which entails that the noninformative prior 
distribution for a set of parameters is proportional to the square 
root of the determinant of the Fisher's information matrix. It 
can be shown that for Ess and err, their Jeffreys' priors are 
given by [23] 

( 2 2 )  

Assume that the priors of +,,(= 

.f(Ess I %) x [det(E,,)]-k 
1 

0 1 1  

f(O71 I X k )  -. ( 2 3 )  

After substituting (20) and (22) into the signal subspace 
integral of (19), the integration can be carried out by changing 
variables of the complex Wishart distribution [24]. As shown 
in Appendix A, it results in 

f(xs.(Ar) I 8.  ' F l k )  = M--""det(C,,~.(.,I))1-~" 
k-1  

k ( k - 1 ) / 2  n r[Lbf - 11 
i=O 

(24) 

where 

, = I  

and r[.] is the gamma function. Similarly. the MLF of the 
noise subspace vectors is given by 

where tr denotes trace of a matrix, and 

. .?I 

( 1 y - i,)-.ll(.v-k) 7 l  k , ( k . - 1 ) / 2  

k-1 

where 

The data term C'( (8(k ) )  can be directly obtained from the 
ob\erved data samples. AF Fhown in [IO].  we get 

C ' ( & k ) )  = det(p(k)k,y ( Z I ) P ( k j  

where 

Furthermore, C J ( A , ~ ) ( 8 ( k j )  can also be computed in terms of the 
eigenvalues of the matrices involved. Using the well-known 
invariance properties of the unitary transformation, it becomes 

where the Xj")(8(kj)'s are the k nonzero eigenvalues of the 
rank-X matrix P(k)gvyP(k) and the X ~ 7 " ( 8 ( k ) ) ' s  are the 
( N  - A:) nonzero eigenvalues of the rank-(N - I C )  matrix 

To find the MAP estimator of 8,  we need to choose a 
noninformative prior for 8. We shall adopt f ( 8 )  3: const. [21], 
[ 2 2 ] .  This is not the Jeffreys' prior, but it is mathematically 
tractable and justifiable for large number of snapshots (see 
also Appendix B). Then the Bayesian MAP estimator of 
8 is obtained by minimizing C(~II)(8(k)) with respect to 8 
according to (8) and (28). This solution coincides with the ML 
estimator derived by Bohme [25], Jaffer [26], and Wax [IO].  
As expected. the Bayesian estimator yields the same result as 
the so-called unconditional ML estimator [ 131. This estimator 
has been shown to be asymptotically unbiased (consistent) 
and statistically efficient, i.e., the estimation error covariance 
attains the CramCr-Rao bound asymptotically [27], [28]. 

pr'k j 2Y Y pi7, j . 
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Now we continue with the derivation of the BPD function 
( 1  2 )  for the detection problem. To carry out the marginalization 
in (14), we need the form f ( ~ ( ~ )  I 8,7&). From (28) we 
deduce that 

Thus, substituting (28) and (33) into (13), the distribution 
f ( t 2  I tl,e,xk) is given by 

where y(M, L,  N, k )  is a function of M ,  L ,  N ,  and IC only. 
Note that for the BPD criterion we need to determine the 
function f ( t 2  1 tl, from (14). Since the equation (34) can 
not be integrated with respect to 0 analytically, a maximum 
likelihood approximation method will be used [17], [20]. The 
derivation is shown in Appendix B and the result is expressed 
in a logarithmic form as 

( 3 5 )  
k A 4  
2 L  

- LN log L7r + - log - 

for 1 5 k < N .  When k = 0 

Note that L has to be greater or equal to the dimension of 
the signal subspace vector to satisfy the minimum number of 
degrees of freedom in a complex Wishart distribution [16]. 
Furthermore, we know that L should be selected as small as 
possible to reduce the overall information loss since we only 
use M - L snapshots of data for model comparison [ 1 11, [ 181. 
Therefore, we choose L = N - 1 to allow for the maximum 
possible q .  The final BPD criterion is thus expressed as 

(37) 

2 t - - ‘  ’ 

.,. MDL M-23 

BPD. hi-’2.5 

AIC. M-’2.5 

MDL. M-7! 

BPD, M-15 

.::_.- 
._____L------ 3 e--------- 4 5 AIC, M-222 

k 

Fig. 1. 
criteria for = 6.  

Comparison of the penalty functions of the BPD, AIC, and MDL 

where T ( k )  is a penalty function given by 

T ( k )  = M N l o g  (I - ;) - MIClog(N - I C )  

111 r [ ( N  - 1)(N - IC)]r[MN] 
r [ M ( N  - Ic)]r[N(N - l)] 

Note that we have calibrated the penalty function so that there 
is no penalty when k = 0, i.e., T(0)  = 0. 

Under the same assumptions in Section 11, the MDL and 
AIC criteria are [lo] 

1 
MDL(IC) = min{M log ~ ( ~ ~ 1  ( 8 ( k ) )  + z k ( ~ +  1) log M )  (39) 

k 

and 

Clearly, the BPD criterion has the same data term, but a 
different penalty function. 

Unlike the AIC criterion, the BPD criterion is strongly 
consistent, such that q -+ q as M -+ CO with probability 
one (see Appendix C). When compared to the rate of change 
of the MDL criterion’s penalty function with model order, that 
of the BPD criterion is smaller, and is also a function of the 
number of sensors. We know that the MDL criterion performs 
very well for large M .  However, it usually underestimates 
the number of signals in cases of low SNR and/or small M 
due to its overpenalization. When M is small, the relative 
penalty function of the BPD criterion comes close to that 
of the AIC. When M increases, it approaches to the MDL’s 
penalty function. Indeed, as shown in Appendix C, the BPD 
and MDL criteria become equivalent when A4 + 30. TO 
illustrate these relations, in Fig. 1 we compare the penalty 
functions ( T ( k ) / M )  of the three criteria for the case when 
N = 6, and M is equal to 25, 75, and 225. 
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_______ ----- ____--- 
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0.9 - 

0.85 - 

0 20 40 60 80 100 
0.7 L 

M 

Fig. 2. Comparison of detection probabilitieh in terms of the number of the 
snapshots. Two equal power (SNR = 0 dB) coherent signals with 90" phase 
difference, located at 1.5' and 2O0, impinge on a linear array with six sensors 
(S = 6). 

0.8 

0.7 
P 
a 

0.6 

0.5 

0.4 

MDL' 

0 20 40 60 80 100 
M 

Fig. 3. Comparison of detection probabilities in terms of the number of 
snapshots. Two equal power (SNR = 0 dB) uncorrelated signals. located 
at 1 5 O  and 20°, impinge on a linear array with six sensors (.Y = 6). 

0.3 

The three criteria have the same data term and their penalty 
functions can be precalculated. Hence, their computational 
complexities are the same. The computation of the DOA 
estimator based on (37) is complicated since a nonlinear 
and multimodal k-dimensional maximization has to be imple- 
mented. In order to efficiently solve this problem, reduce the 
computation load, and improve the convergence in the optimal 
search, we may use the altemating maximization technique 
[lo], [29] or other numerical approaches 1301. 

IV. SIMULATION RESULTS 
To examine the performance of the BPD criterion, eight 

simulation experiments were performed, each with 100 Monte 
Carlo runs. The detection performance was obtained by count- 
ing the number of correctly estimated q in 100 runs. The 
experiments compared the detection performance of the BPD 
with the AIC and MDL criteria proposed by Wax in [ I O ]  ((40) 
and (39)) for two cases, coherent and noncoherent signals. 

1 

0.9 

0.8 

2 0.1 

0.6 

0.5 

MDL 

4 -2 0 2 4 
SNR(dB) 

0.4 
d 

Fig. 4. Comparison of detection probabilities in terms of the SNR. Two 
equal power coherent signals with 90" phase difference, located at 1.5' and 
20'. impinge on a linear array with six sensors (.Y = 6). The number of 
snapshots is S O .  

U 
a 

1 

0.8 

0.6 

0.4 

0.2 

I 
-4 -2 0 2 4 6 

SNR(dB) 

Fig. 5 .  Compari5on of detection probabilities in terms of the SNR. Two 
equal power uncorrelated signals. located at 15' and 20°, impinge on a linear 
array with six sensors (S = 6). The number of snapshots is SO. 

Each case was examined in terms of M ,  SNR, and N .  The 
altemating maximization technique was used for estimating 
the DOA parameters. 

Figs. 2 and 3 show the comparisons of the detection perfor- 
mance in terms of the number of snapshots for two equal 
power coherent and noncoherent signals, respectively. We 
observe that the BPD criterion outperforms the AIC and 
MDL criteria in both experiments, especially when M is 
small and the signals are uncorrelated. When M is large 
enough, as predicted by our analysis, the performances of 
the BPD and MDL criteria are the same. Next, we compared 
the performance of the BPD, AIC, and MDL criteria for 
various SNR's. The results are shown in Figs. 4 and 5.  We 
observe that the BPD outperforms the MDL criterion when 
the SNR is small. Although the AIC criterion yields better 
performance when the SNR is very small, i t  is inconsistent as 
the SNR increases. Moreover, we observe that the criterion 
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BPD 
AIC 

3057 

I 

0 1 0  0 100 0 0 
0 1 0  0 96 3 1 

1 

0.8 

0.6 
5 
P 

0.4 

N 

Fig. 6.  Detection performance in terms of the number of sensors. Two 
equal power coherent signals with 90' phase difference, located at IOo and 
2O0,impinge on a linear array with .V sensors. The SNR is -3  dB and the 
number of snapshots is 50. 

i i i i i io ii 1'2 
N 

Fig. 7. Detection performance in terms of the number of sensors. Two equal 
power uncorrelated signals, located at 10' and 20°, impinge on a linear array 
with jV sensors. The SNR is -3  dB and the number of  snapshots is 50. 

performance for low SNR is better for coherent than for 
noncoherent signals. 

There is another issue of interest. It is the performance of the 
detection criteria as functions of the number of sensors. Figs. 6 
and 7 show the performance in terms of N when M = 50 and 
the SNR = -3  dB. 

Finally, we investigated the case of three signals. The 
numerical results that present the comparison among the 
criteria are given in Table I(a)-(d). 

The computer simulation results show that the gain in the 
detection performance of the BPD approach is larger in cases 
of small M, SNR, and N .  In addition, the gain is greater 
when the signals are noncoherent. 

Since the Bayesian estimator (29) coincides with the un- 
conditional ML estimator, its estimation performance is not 
examined here. It has been shown that this estimator out- 
performs the conditional ML estimator when the signals are 
uncorrelated or fully correlated. 

TABLE I 
COMPARISON RESULTS FOR THE CASES OF THREE EQUAL POWER SIGNALS 

LOCATED AT 15'. 20' AND 30'. PHASES OF THE SIGNALS ARE 
Oo,  45', AND No, RESPECTIVELY. 21 = 50, AND = 6. 

(a) COHERENT SIGNAL CASE, SNR = 3 dB; (b) NONCOHERENT 
SIGNAL CASE, SNR = 3 dB; (c) COHERENT SIGNAL CASE, SNR 
= -3 dB; (d) NONCOHERENT SIGNAL CASE, SNR = -3  dB. 

I IC l O l l l 2 l  3 1 4 1 5 1  

(4 

V. CONCLUSION 

In this paper, we have applied Bayesian inference tech- 
niques to detection and estimation of coherent and noncoherent 
signals. The solutions are obtained by maximization of the 
posterior distributions of E,+ and e(,+). When compared to 
the AIC and MDL criteria derived under the same signal 
model, the BPD criterion has the same data term (the DOA 
estimator), but a different penalty term. In the derivations 
of the AIC and MDL criteria the asymptotical assumption 
(the maximum likehood approximation) is used for all the 
free parameters. Therefore, their penalty functions are less 
accurate when the total number of free parameters involved 
is large relative to the sample size. In contrast, the BPD 
criterion is derived using the likelihood approximation only for 
a subset of the unknown parameters, i.e., 8. The penalization 
for the nuisance parameters obtained from the marginalization 
is more accurate. This entails a remarkable property of our 
criterion, that is, the BPD preserves the good performance 
of the AIC and MDL criteria for small and large number 
of data snapshots, respectively. As expected, the improved 
detection performance is more emphasized for small M . N ,  
and low SNR. Furthermore, we have shown that the BPD 
and MDL criteria are asymptotically equivalent. Unlike the 
AIC criterion, they are strongly consistent for estimating the 
number of signals. 
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APPENDIX A with the number of parameters, I C ,  and that the prior f ( B )  is 
locally uniform in the neighborhood Of ~ ( M L ) .  Then [ 171, [20] In this appendix, we derive the MLF’s (24), (26). The MLF 

(B-1) 
I L(AI)(e) A L(hI)(e)exP - y ( e  - e)TJ(M)(e - e) i M  of the M signal subspace vectors in (19) is rewritten as 

f(xs,(Al) I 6, K k )  

where J(Ar) is defined as = 1 f(xs,(Al) I Ess’.e.xk)f(Ey: I x k ) d E i :  
:: 

If XI.  x2> . . . , xhI are M complex sample vectors from a 
k-variate zero mean complex Gaussian distribution, then the 
joint distribution of the distinct elements of the matrix A with 

1=1 

is called a complex Wishart distribution [24]. It is defined by 

fll.(A) = {[det(A)]”‘-k/IU.(E,)} exp{-tr(E,’A)} 
(A-3) 

where Er is the covariance matrix of x,, and 

k-1  

Itc(Xz) = 7rk(lc- l ) ’*  [det(X:,)]“ n I‘(M - 1 ) .  (A-4) 
/ = ( I  

‘Vo denotes the gradient operator w.r.t. 8. 

numerator of (13) is then rewritten as 
With this approximation and substituting (28) into (13), the 

Under the condition for which the approximation (B- 1) holds, 
a reasonable noninformative prior for B is taken to be propor- 
tional to an unknown constant C k .  Then, 

. I  
I- 

( N  - I C ) - A f ( N - k )  
Let A = E;’ and E;’ = M . kss.(.,f) in (A-1). Since the 

integration of (A-3) w.r.t. A equals 1, the MLF of the signal k - 1  

subspace vectors results in (24). 

from 
Next, the MLF of the noise subspace vectors is obtained 

= l,, (,)(’- an 2 ( Y - k ) AI 

(A-5) 

Using the identity [20] 

where U > 0. v > 0, for (I = A4 . t r (E ILn , (Aj~) )  and v = 
2 ( N  - k ) M ,  we get (26). 

APPENDIX B 

k - 1  

x r [ M ( N  - k)] n r [ M  - 11 . [det(M . J ( ~ l ) ) ] - f .  
/ = O  

(B-5) 

Note that the result (B-5) is an approximation of (B-4) because 
we assumed that the DOA 0s may extend from --M to m, 
instead of extending between finite limits determined by the 
“field of view.” However, the approximation is reasonable 
whenever the assumption (B-I) holds [21]. Similarly to (B-5), 
we get 

Let the hypothesis of the number of signals be ‘ H k  and k - 1  

assume that the likelihood L(.,I)(Q)(= f ( Y ( A f )  I e)) is normal x r [ L ( N  - I C ) ]  n r [ L  - 11 . [det(L. J(L))]-f  (B-6) 
in the parameters, i.e., that the sample size is large compared /=0 
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where J(L) is defined as (B-2) by changing M to L. After 
substituting (B-5) and (B-6) into (13), we get 

f ( t 2  I (1, Xk) 
- - . [C(L) ( i ) lL (L7dLN 

[ C ( M )  (4)l” (Mr)“IN 

03-71 

Assume now thatA the approximations in (B-5) and (B-6) are 
around the same 0, and C,,)(b)  A C(,)(O) and det(J(M)) A 
det(J(,)). With these assumptions, (35) follows. At a first 
glance, it may seem that these approximations imply re- 
linquishment of the obtained information from the first L 
snapshots. This is not the case, for it  turns out that the 
gained information is already reflected in the resulting penalty 
function of the criterion. In general, the vaguer this information 
is, the more stringent the penalty for more complex models, 
and vice versa. Also, these approximations will significantly 
reduce the computational complexity of our criterion, make our 
criterion independent of the particular t1 set of data snapshots, 
and statistically improve the criterion’s detection performance 
[16]. A general form for this likelihood approximation is 
derived by O’Hagan and Atkinson [18], [19]. 

APPENDIX C 

In order to prove the consistency of the BPD criterion, we 

Lemma C.1: Any information criteria given by 
use the lemma: 

1 
I C ( k )  = M l o g c ( , I ) ( e ( k ) )  + 21C(IC + l)ru(M) (C-1) 

is strongly consistent if a ( M ) /  log log M + x and r u ( M ) / M  
- - , O a s M + c c .  

Proof: See [6] and [lo]. 

T ( k )  in (38). T ( k )  is rewritten as 
To apply this lemma, first we find the asymptotical form of 

where 

M 
( N  - 1) 

log ~ 

M 
( M  - N + 1) 

Tj = (C-7) 

Using the asymptotical relationship 

iogr(z) N (:. - i) logz - :. as z -+ o3 (c-8) 

when M + 30, we obtain 

T3 + M N l o g N  - M ( N  - k ) l o g M ( N  - k )  
+ M k  log M - M k  (C-9) 

(C-10) 
k2 

T4+ - l O g M + M k - M k l O g M  
2 

and 

(C-1 1) 
k 

Tj --t - log M .  
2 

Summing up (C-3), (C-4), (C-9), (C-lo), and (C-1 l), we get 

T ( k )  + I k ( k  + 1) log M as M + 00. (C-12) 
2 

Therefore, 

a ( M )  -+ log M as M + CO (C- 13) 

and a(M) / log logM -+ cc and a ( M ) / M  -+ 0;) as M + CO. 

According to Lemma C.l ,  the BPD criterion is shown to be 
strongly consistent. Furthermore, we also showed that the BPD 
and MDL criteria are asymptotically equivalent. Q.E.D. 
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