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Model Selection Based on Bayesian Predictive 
Densities and Multiple Data Records 

Petar M. DjuriC, Member, IEEE, and Steven M. Kay, Fellow, IEEE 

Abstract- Bayesian predictive densities are used to derive 
model selection rules. The resulting rules hold for sets of data 
records where each record is composed of an unknown number of 
deterministic signals common to all the records and a stationary 
white Gaussian noise. To determine the correct model, the set of 
data records is partitioned into two disjoint subsets. One of the 
subsets is used for estimation of the model parameters and the 
remaining for validation of the model. Two proposed estimators 
for linear nested models are examined in detail and some of their 
properties derived. Optimal strategies for partitioning the data 
records into estimation and validation subsets are discussed and 
analytical comparisons with the information criterion A of Akaike 
(AIC) and the minimum description length (MDL) of Schwarz 
and Rissanen are carried out. The performance of the estimators 
and their comparisons with the AIC and MDL selection rules are 
illustrated by numerical simulations. The results show that the 
Bayesian selection rules outperform the popular AIC and MDL 
criteria. 

I. INTRODUCTION 

ODEL selection is an important problem in a vari- M ety of scientific and engineering disciplines. In signal 
processing it is equivalent to the detection of the number of 
signals in a multichannel time series [34]; the determination 
of a filter order in adaptive estimation [6]; pole retrievement 
of a system from its natural response [20]; speech, image and 
biomedical data compression [7], [22], [27]; segmentation of 
time series and digital images [29]. In classical statistics this 
problem is addressed by multiple hypotheses testing, which 
often cannot be handled easily since it requires the choice 
of a number of dependent significance levels. In addition, 
the multiple hypotheses testing may suffer from inconsistency 
and intransitivity [ 151. Recently instead, the model selection 
problem has been pursued by using approaches founded on 
information theoretic [3], Bayesian [ 161, [28], and coding 
theoretic [25] reasoning. 

In the paper we derive Bayesian model selection rules from 
multiple data records. The rules rest on the use of predictive 
densities according to the examined models and one portion 
of the observed data [l] ,  [26]. The main idea is to partition 
the data into two subsets. One is used for determination of 

Manuscript received June 24, 1992; revised September IO,  1993. The 
associate editor coordinating the review of this paper and approving it for 
publication was Prof. Douglas Williams. This work was supported by the 
University of Rhode Island under graduate student Fellowship and the National 
Science Foundation under Award No. MIP-9110628. 

P. M. Djuric is with the Electrical Engineering Department, State University 
of New York at Stony Brook, NY 11794 USA. 

S. M. Kay is with the Electrical Engineering Department, University of 
Rhode Island, Kingston, RI 0288 I USA. 

IEEE Log Number 9401290. 

the density function of the model parameters and the other for 
validation of the hypothesized model. The partitioning may 
be repeated, and the results of the estimation-validation steps 
appropriately combined. The approach is related to the cross- 
validation principle [3 11 or the predictive sample reuse method 
[ 111. The difference is that we exploit an additional assumption 
about the data, that is, their probabilistic structure. 

First we briefly discuss why we resort to estimation- 
validation. Then we derive selection rules for linear nested 
models. These rules turn out to be similar in form as the 
two most popular criteria for model selection, the AIC and 
MDL. They are represented by a sum of data and penalty 
terms. The penalty term is a function of the total number 
of data records, M ,  and the number of estimation data 
records, L. We prove several propositions for conditions under 
which the selection rules become consistent. In addition we 
prove that the probability of overparametrization is minimized 
when we use only one data record for estimation and the 
rest for validation. On the other hand, the probability of 
underparametrization is minimized when M - 1 data records 
are used for estimation, and one for validation. Since these 
are conflicting requirements, we develop a strategy of how 
to partition the data records. We find upper bounds of 
the probabilities of over-and underparametrization which 
can serve to determine an optimal strategy for estimation- 
validation. The results suggest that the optimal L is a function 
of the signal-to-noise ratio (SNR). The lower the SNR, the 
larger the value of L for improved performance. In a very 
broad range of SNRs, the optimal L is equal to one. Moreover, 
we show that the probability of overparametrization is not 
a function of the SNR. In the paper we also prove that 
asymptotically the Bayesian rule becomes equivalent to the 
AIC when L = M - 1. If L = 1, our rules are similar to the 
MDL, but they are not equivalent. All the theoretical results 
are supported by computer simulations. The comparisons with 
the AIC and the MDL show that the Bayesian rules, when 
optimal L is chosen (usually L = I), produce best results. 

The paper is organized as follows. First the problem will 
be stated. Then the two-data-record case will be examined, 
emphasizing the characteristic steps in deriving the predictive 
densities and the selection rule therefrom. Two model order 
estimators of special interest will be defined: the symmetric 
and the sequential. In Section IV these two estimators will be 
derived when there are M data records, L of them used for 
obtaining a proper distribution for the model parameters, and 
the remaining M - L data records for validating the model 
through the derived predictive density. The question of how to 
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partition the data set into two subsets, L and A4 - L,  and the 
question of consistency of the estimators will be discussed in 
Section V. Finally, relations to other model selection schemes 
and concluding remarks will be given in Sections VI and VII. 

11. PROBLEM FORMULATION 

We suppose that a linear system S of unknown order rri has 
generated M independent sequences according to 

y3 = H,B, +e, j = 1 , 2  . . . . .  M ,  (1) 

where H, is an N x m deterministic matrix, em is an 
711 x 1 vector of unknown deterministic system parameters, 
and e3 N N ( 0 , a 2 1 ) .  We shall assume that a' is known. 
The data sequences have the same number of samples N .  
Further, we suppose that there is a set of hierarchical models 
M I ,  M P , .  . ' ,  M ,  described by 

y3 = H k Q k + e 3  I c = l , Z , . . . , q ;  , j =  1 . 2 , . . . . M  . 
(2 )  

where q 2 711, and HI, for Ic = m in (2) is identical 
to H, in (1). In essence, one of the models in the set 
M = { M l , M 2 , . . .  . M 4 }  is identical to the true system S .  

The problem is to estimate the order of the system. 

111. THE TWO-DATA-RECORD PASTE 

We suppose that there are two independent sequences y1 
and y2 generated by the same system S given by (1). Using 
the two sequences, we shall derive several estimators based 
on predictive densities. 

Predictive densities are defined as marginal densities of 
observed data according to a model. For example, if the data 
vector y1 has an assumed density given the model and its 
parameters, f ( y 1  l e k ,  M I , ) ,  and the prior density of the model 
parameters is f(01, IMI,) ,  then the predictive density according 
to the model M I ,  is obtained by 

f (Y1IMk)  = lk f ( Y l l ~ ~ , M ~ ) f ( ~ ~ l M ~ ) d B k  ( 3 )  

where 01, is a Ic-dimensional parameter space specified by the 
model. If p ( M ~ , l y l )  is the posterior probability that the model 
M I ,  is correct given the data sequence y1, Bayes' theorem 
yields 

(4) 

where  MI,) is the a priori probability of the model M I ;  and 
f ( y l )  the marginal density of the data. 

If our criterion for model selection (or model order esti- 
mation) is the posterior probability of the model MI,  after 
observing the data y1,  MI, lyl) ,  the best model maximizes 
(4). This criterion minimizes the probability of selection error 
P, when the loss function is chosen such that it equals one 
for incorrect and zero for correct model selection [15]. Since 
f ( y 1 )  is common for all the models, we are basically looking 
for the maximum of p(Mk) f ( y1 IMk) .  If we further assume 
that the a priori probabilities of the models are equal, then we 
choose the model which maximizes (3). 

A major difficulty in using (3) is the quantification of the 
prior density f ( 0 1 ,  [ M I , ) .  If we decide to choose a noninforma- 
tive prior,' then the posterior probabilities of the models may 
lead to arbitrary selections [4]. In the linear case, for example, 
the noninformative prior is an arbitrary constant which does 
not disappear while evaluating (3 ) ,  necessarily leading to an 
arbitrary selection criterion [ 101. On the other hand, if we use 
proper priors - for instance, conjugate priors*-then we have 
additional problems with assigning values to the distribution 
parameters, and these values for short data records may affect 
the selection [lo]. 

We prefer to use the noninformative priors since they 
introduce minimal information. To alleviate the problem of 
arbitrariness we shall 

1) use a noninformative prior to obtain a posterior density 
of HI, using the first sequence y l , f ( H ~ , [ y l , M ~ , ) ,  which 
is proper; and 

2) use f(01,Iyl .  M I , )  as a prior in (3) to obtain the pre- 
dictive density of y2 according to the model M I ,  and 
Y1. 

Thus, the first sequence is used for determining a proper 
prior for the model parameters, which allows us to obtain 
the predictive density of the data y2 avoiding the arbitrary 
constants from the noninformative priors. Therefore, this is 
now a predictive density not only according to the model, but 
also to one portion of the observed data. Since the second 
data record y2 is also known, it can be substituted in the 
predictive density expression, yielding a measure of prediction 
accuracy of the examined model-i.e., validating it. For further 
convenience, the data records used for obtaining proper priors 
will be called estimation, and the remaining ones, validation 
data records. 

Technically, the procedure is implemented as follows. We 
may write 

Jor 

where f ( y2  Iy1, M I , )  is the predictive density of y2 according 
to the data y1 and the model M I , .  The predictive density as 
defined in ( 5 )  will be determined for every model in the set 
M .  We choose the model that maximizes (5) .  

For the linear models in ( 2 )  the noninformative priors are 
defined by [ 5 ]  

f (01, lM1,)  c( const. 

It is readily shown that the posterior distribution becomes [5]  

. exp { -& ( H I ,  - dp))TH;H~ (H I ,  - d p ) ) }  (6) 

' Noninformative priors are defined by f ( H k I , M k )  x I l ( O , ) l g  - i.e., they 

* Parametric priors which yield posterior densities that belong to the same 
are proportional to the determinant of Fisher's information matrix. 

family of prior densities are called conjugate priors. 
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where 

8F) = (H:H~)-’H:~~.  

Note that 

When (6) and (7) are substituted into (3, the nuisance pa- 
rameters 6’1, integrated out, and the irrelevant terms (which are 
identical for every IC) dropped out, we obtain 

where 

pI, = H~(H:H~)-’H; (9) 

is a projection operator. From (8) we propose the following 
estimator for m 

+ Y T P ~ Y ~  + 2ka2 h a ) }  (10) 

which is equivalent to selecting the model that maximizes 
(8). The index 211 denotes that the sequence y2 was used 
for validation and y1 for estimation. 

Clearly, we might have used the sequences in the opposite 
order and obtained a similar estimator 

h 1 1 2  = argmin{ ( - 2 y T ~ k y 1 -  yTPky1 

+y;~ky2 + 2 1 ~ 2 1 n 2 ) ) .  ( 1 1 )  

Now we have two estimators which may yield different 
estimates using the same pair of sequences. Which estimator 
should be used then, or how should they be combined to obtain 
a unique estimate m? (10) seems to be a natural choice if the 
data records are ordered in time. Otherwise, the following two 
alternatives seem to be reasonable choices 

(12) &,in 1 min (7j2112, *211) 

and 

I 
The estimator (12) is motivated by the principle of parsimony. 
We want to choose the simplest model allowed by the data, so 
we choose the simpler model from the two already selected by 
(1 0) and (1 1). The index “sym” in (1 3) stands for symmetrical 
because the form of the estimator is symmetrical with respect 
to y1 and y2 (each sequence is used as an estimation sequence 
and the remaining for validation). It is motivated by the desire: 

1 )  to impose equal role to each of the sequences available for 
processing and 2) to decrease the variance of our estimates 
(note that (13) is based on the geometrical mean of all the 
predictive probability density functions that can be constructed 
from the data records.) 

It is interesting that these estimators have similar formats 
like other model selection criteria (see Section VI). They 
have two terms, a data term and a penalizing term. For 
example, in (13) the data term represents the crosscorrelation 
of the observed vectors y1 and y2 in the signal subspace 
represented by the projection operator Pk. The second term is 
the penalizing factor which monotonically increases when the 
order of the model and the observation noise variance increase. 
This will entail the choice of simpler models whenever the 
crosscorrelations of y1 and y:! in the signal subspaces defined 
by the higher and lower dimension models are approximately 
equal. 

Another interesting characteristic of the estimators (IO)-( 13) 
is that their penalty term is not a function of the data record 
length N .  This will certainly imply that when N --$ CO, 

these estimators will not be consistent, which means that the 
probability of incorrectly selecting higher order models will 
remain finite. 

The most stringent of the four estimators (10)-(13) in 
penalizing overparametrization is & m i n .  This can be shown 
analytically (omitted here) and by simulations. We have tested 
the estimators on 1000 trials using the following data model 

a 
yt = A, cos(27~ f i t  + $z) + e t ,  t = 1 , 2 , .  . . , N (14) 

2=1 

where Al = 1.89, A2 = 1.41, A3 = 1.06, AI, = 0 for 
IC = 4, 5, 6, 7, 8, and o2 = 1 (the correct model was 3). Note 
that now 0; = [ A I A ~ .  . .Ak]. The rest of the parameters are 
given in Table I. The data record lengths were N= 20 and 50. 
The results are presented in Table 11. The performance of the 
symmetric estimator has not improved with the increase of the 
data record lengths. The best performance (largest number of 
correct selections) achieved f h m i n .  Even so, we conjecture that 
for the most part it may be overly conservative, notably for 
short data records or low SNRs. This was verified by many 
simulations. The results shown in Table 111 illustrate how the 
estimates obtained by &,in deteriorated when the SNR was 
decreased compared to the case given in Table 11. The same 
model was used as in (14) with identical parameters as before, 
except that A3 = 0.795. In 25 cases the estimate was even 
hmin = 1, thus missing the two sinusoids at frequencies 
f2  = 0.15 and f3 = 0.28. When there are M sequences, 
this will be much more emphasized. Although parsimony is 
desirable, consistent underparametrization in many problems 
is much less acceptable than overparametrization. Therefore, 
this estimator will not be considered in the ~ e q u e l . ~  

As already mentioned, we shall be interested primarily in 
deriving model selection criteria when there are more than 
two sequences. Two estimators will be analyzed. The first 

It should be noted, however ,  that the tendency of underparametrization 
can be reduced by impos ing  higher c o s t s  for underparametrization than for 
overparametrization. 
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0.32 

f5 
0.44 

1.0 0.15 1.7 0.28 -0.4 0.10 2.1 

6 S  f6 66 f7 "7 f8 6 3  
-1.1 0.05 -2.4 0.21 0.9 0.38 1.3 ~ ( Y ~ ~ H ~ . Y z , Y I , M ~ )  has a form similar to ~ ( Y I ( & , Y z , M ~ )  

TABLE I1 
COMPARISON OF ESTIMATORS WHEN THE DATA RECORDS HAD 20 AND 50 

SAMPLES; THE VALUES SHOW THE NUMBER OF TIMES THE MODEL ORDER k 

SNR FOR THE THIRD SINUSOID IS -2.5 d B ;  THE CORRECT MODEL ORDER IS 3 
WAS CHOSEN IN 1000 REALIZATIONS BY THE RESPECTIVE ESTIMATORS; THE 

M = 2 .  N=20 II M = 2 .  N=50 

TABLE 111 
COMPARISON OF ESTIMATORS WHEN THE DATA RECORDS HAD 20 SAMPLES; THE 
VALUES SHOW THE NUMBER OF TIMES THE MODEL ORDER k WAS CHOSEN IN 

1000 REALIZATIONS BY THE RESPECTIVE ESTIMATORS; THE SNR FOR 
THE THIRD SINUSOID IS -5 dB; THE CORRECT MODEL ORDER IS 3 

M = 2 ,  N = 2 0  
k I &ynl I h Z l l  I f i l l 2  I k i n  

108 105 209 
732 557 546 645 
104 115 135 72 

27 36 39 
8 17  32 35 2 

is the symmetric estimator, ,hSym(M. L ) ,  where M denotes 
the total number of available data records, and L the number 
of estimation data records. (For instance, when M = 2 and 
L = 1, 7^n,,,(2. 1) is given by (13).) The other estimator will 
be the sequential estimator, k S e q ( M . L )  (When M = 2 and 
L = 1, 7hseq(2. 1) is given by (lo).) 

Iv. THE GENERAL-DATA-RECORD CASE 

When there are more then two data records, we have 
different possibilities in partitioning the data set into estimation 
and validation subsets. This partitioning is very important and 
deserves special attention. It will be investigated in Section V. 

Before addressing the general case of M data records, we 
consider the problem when there are only three sequences y1, 

yz, and y3. To find f(y31y~,y1.Mk), we write as before 

f ( Y 3 1 Y Z r Y 1 , M k )  

f ( Y 3 l o k .  Y z ,  Y I ,  Mk) . f ( e k l y z ,  y i .  Mk)dQk 
= I ,  

where 

Thus, from ( 1  5 )  we deduce that the sequential estimator is 

After symmetrization, i.e., taking each possible combination 
of data records for estimation and validation, the following 
estimator is obtained 

r7L,ym(3. 2) = arg rnin (-2yFPkyZ - 2 y y ~ k y y  

3 
2 

{ k  

- 2y;pkyS + 6ka2  In -) }. (17) 

Next, we derive the expression for f(y3, y21y1, Mk). Note 
that 

f ( Y 3 .  Y21Y1, Mk) = f ( Y 3  IYZ, Y 1 ,  M k ) f ( Y 2 1 Y 1 ,  Mk). 

Since the two terms on the right-hand side have already been 
evaluated, we easily find that 

Therefore 

and 
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In a comparison of (16) and (18) it is not easy to see the 
difference between the two estimators, while in comparing 
(17) and (19), we notice that the estimators differ only in the 
penalizing term. The data terms in ( 1  7) and (19) represent all 
the combinations of crosscorrelation between the data records 
in the signal subspace, while the autocorrelations are excluded 
as before. 

For a given M > 3 we may construct M - 1 different sym- 
metric and sequential estimators, depending on how many data 
records will be used for estimation and validation4 In general, 
the derivation closely follows the lines of reasoning for the 
two- and three-data-record cases. It is given in Appendix A. 
It is shown that 

where 

M 

Another form of this estimator that will be convenient for 
later use is 

A n  Y 

j = l  

An interesting and obvious property of msym(M, L )  is the 

Property I: The data term is not a function of L. 
Another property that is related to the penalization term, 

following: 

M ( M  - 1) M 
a2 In  - 

L 
P ( M ,  L )  = k 

M - L  

is 

M decreases monotonically with L. 
Property 2: The penalization function P ( M ,  L )  for fixed 

This property can be proved readily using the inequality 

l n z  < z - 1, z > 1. 

Thus, the most stringent penalization for overparametriza- 
tion will be obtained if L = 1, and the weakest for L = 
M - 1. This implies that when fewer sequences are used for 
determining the initial proper prior distribution of the model 
parameters, higher model order estimates will be less likely, 
and vice versa. 

' Actually the total number of different sequential estimators is 
Cy=<' 6. But if the data records are ordered (in time, for example), 
and we suppose that they will be processed in that order, then there will be 
.II - 1 different sequential estimators. 

1689 

Now we turn the attention to the sequential estimator. In 
Appendix A it is shown that its form is 

M M + - y (QTPLy(L)  L + kMa21n -)}. L (21) 

The corresponding properties of this estimator are the follow- 
ing: 

Property 1: The data term is a function of L. 
Property 2: The penalty term decreases monotonically as 

L increases. 
When compared to the penalty in (20), we deduce that the 

penalty term in (21) is less stringent for L > 1, while for 
L = 1, they are identical. This subject will be discussed further 
in the next two sections. 

v .  STRATEGY FOR ESTIMATION-VALIDATION 

There are two important questions to be addressed concern- 

1)  Are these estimators consistent when the number of data 
records M increases? 

2) For fixed M ,  how do we choose L? 
The answer to the first question is given by the following 

Proposition 1: If the assumptions in Section I1 are true, L 

ing estimators (20) and (21). They are 

two propositions: 

is fixed, and M ---f 00, then the estimator (20) is consistent. 
Proof See Appendix B. 

Proposirion 2: If the assumptions in Section I1 are true, 
A4 - L is fixed, and A4 + 00, then the estimator (26) is not 
consistent. 

Proof The proof closely follows the proof of Proposition 
1. 

It can be shown that under the conditions stated in Proposi- 
tion 2 the probability for underparametrization P(h < m) -+ 

0 as M + CO, while the probability for overparametrization 
P(& > v i )  remains finite. 

Analogous propositions can be stated for the sequential 
estimator. 

In Table IV some results are shown which agree with 
Propositions 1 and 2. The symmetric estimators 7jLSym(M, 1) 
and fiSym(M, M - 1) were examined on data generated as 
in (14). M was varied from 10 to 80. The performance of 
T&,~(M, 1) improved monotonically as M increased, while 
that of ~ L ~ \ , ~ ( M .  M - 1) did not. 

Now we address the strategy of estimation-validation, i.e., 
the issue of selection of number of data records for estimation. 
Consider first the symmetric estimators. Let 

Then (20) can be rewritten as 

We state the following proposition: 
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5 18 12 
6 2  3 
7 4  0 
8 0  0 

TABLE IV 
COMPARISON OF PERFORMANCE OF SYMMETRIC ESTIMATORS; 

Note that the left hand side of the inequality is not a function 
of L,  while the right hand side is a monotonically increasing 
function of L (see Property 2 of the symmetric estimator). It 
clearly implies 

THE VALUES SHOW THE NUMBER OF TIMES THE MODEL 
ORDER k WAS CHOSEN IN loo0 REALIZATIONS BY THE 

RESPECTIVE ESTIMATORS; THE CORRECT MODEL ORDER IS 3 

_ _ _  .__ _ _  ___  ~~ ~~ 

4 0 68 58 61 67 
1 0 24 44 33 34 
0 0 19 20 33 35 
0 0 23 21 26 22 

I "  

3 11 668 I 869 I 968 I 986 I 627 I 711 I 752 I 716 
4 II 42 I 36 I 20 I 14 I 121 I ixn I PF, I 126 

Proposition 3: The probability of overparametrization, 
P,(L), is minimized when L = 1, and the probability of 
underparametrization, P,(L), is minimized when L = M - 1. 

Proof: For the first part of the proof it will be enough 
to show that 

P,(L) I P,(L + 1). 

Define the events E I , ~ ( L )  and EI,(L) according to 

EI ,~ (L) :  Jk(M, L )  < J l ( M , L ) ,  IC > m,l I m 

and 

&I,@) = Et&) n E I , ~ ( L ) .  . . n EI , , (~)  
= nZ1Ekl(L), k > m. (23) 

The event of overparametrization &,(L) is then the union of 
events Ek(L), for IC > m, i.e. 

E,(L) = &,+l(L) U &m+2(L). . . U E,(L) 
(24) - 

- UP,=,+, EdL) .  

First we need to show that 

E I , ~ ( L )  c E I , ~ ( L  + I), k > m,l I m. 

From (23) we have 
M 

j = 1  

or 

M ( M  - 1) M 
L 

o'ln-,  IC > m , l s  m < (1 - I C )  M - L  

h ( L )  E k l ( L  + I), IC > m,l 5 m. 

Secondly, this relationship entails 

' fk(L)  = nl",l fI , l(L) Ek(L f 1) 

= nZl E ~ ~ ( L  + 1) IC > m. (25) 

Consequently, for the event defined by (24), and using (25), 
we can write 

E,(L) = 3 EI,(L) c E,(L + 1) = U;=,+, Ek(L + 1) k=m+l 
or 

P,(L) = P(E,(L)) I P(E,(L + 1)) = P,(L + 1). 

The last expression implies the claim of the first part of the 
proposition. The proof for the second part follows the same 
lines as for the first part. 0 

Clearly, we have two conflicting conditions on L for mini- 
mization of the probabilities of under- and overparametrization 
when the minimization is carried out independently. By con- 
trast, we would like to choose L when the two types of errors 
are considered simultaneously. Therefore, we want to find the 
probability of error, Pc, defined by 

P, = P, + Pu, (26) 

and examine for which L it is minimized. It turns out that the 
determination of the exact form of P, is very difficult because 
we have to work with correlated random variables defined by 
y'P~,yj, i # j ,  whose density functions are unknown. For 
this reason we settle for less and try to determine the upper 
bound of the probability of error. Without loss of generality let 
m > 1. To simplify the mathematics, we have three additional 
assumptions 

P ( h  = IC > m) = P(J,+l(M,L) < J m ( M , L ) )  
P ( h  = IC < m) = P(Jm-l (M,  L )  < J,(M, L ) )  

(27) 
(28) 

and 

P((J I , (M,  L )  < Jm(M1 L ) )  n ( J l ( M ,  L )  < J,(M, L ) ) )  = 0 
(29) 

for IC > m, and 1 < m. All these assumptions will be true if 
Jk(M, L )  as a function of k has only one minimum when IC 
varies from 1 to q.  The performance analysis of the information 
theoretic criteria was carried out with similar approximations 
in [17], [33], and [35]. 

The following random variables are now of particular in- 
terest 

M 

T,  = -y(M)Tp,+ly(M) + CYTPm+lY, 
j=1 

where 

Pkl = PI, - Pl. 
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Now according to assumptions (27) and (29) 

and 

In order to make any progress, we need to know something 
about the statistics of r ,  and r,. It turns out that we can 
determine their moments. To find them, we represent ro and 
r,  as quadratic forms, viz. 

and 

Tu = -yTP,y + yTP,,,-1y 
= y T P , y  

where 

/ o  P, . * '  P, 

\P, P, ' . .  0 

and 

Po = P,+1- p, 

Proposition 4: The expected values of r ,  and r,  are given 
by 

E@,) = 0 

and 

Proo$ The results follow from the identity 

E(xTAx) = tr(AC) + pTAp 

where p = E(x), and C is the covariance matrix of x. o 
In addition, we shall use the following result: 
Proposition 5: The 1-th cumulant of r, and r ,  is given by 

K( = 2 y 1  - I)! a2' tr (P) l  

where P is equal to P, and Po, respectively. 

that the Ith cumulant of xTAx is given by [18], [30] 
Proof: The result follows from a theorem which states 

Kl = 2'-l(l  - l)!(tr(AC)' + lpTA(CA)'-'p). 

0 

Now we are ready to state the following two propositions: 
Proposition 6: The Cantelli upper bound of the probability 

of overparametrization, Po, is given by 

Proof: The bound is obtained by using Cantelli inequal- 
ity [24], which for the random variable X states that 

(32) 
0 2  P(X - /L 5 -A)  5 ___ 

cr2 + A 2 '  
X > O  

where p and o2 are the mean value and the variance of X .  
In our case from Proposition 4 we have E(r,) = 0 and from 
Proposition 5 

K2 = 2a4M(M - I). 
A I (  M - 1 )  This implies that c:o = 20'M(M - 1). Since X = 

a2 In F, we easily determine (3 1)  from (32) using the obtained 
mean value and variance of r,. 0 

Proposition 7: The Cantelli upper bound of the probability 
of underparametrization, P,, is given by 

where q is a "partial" SNR defined by 

Y 2  

(T2 
r ] =  -. 

where 

s2 = B;,H;P,H,,o,, 

P, = P, - P,-1. 
and 

P, = P, - P,-l. 

Next we state the following proposition: 0 
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-0 10 20 30 40 50 60 70 80 W 100 

L 

Fig. 1 
function of L when 171 = 100. 

Cantelli upper bound of probability of overparametrization as a 

Proof: The proof is similar to the previous one. We want 
to determine a bound for P,(T, < A). This is equivalent to 
P,(T, - p < X - p),  where ,LL = E(T,). We can use Cantelli 
inequality if ,LL > A. From Propositions 4 and 5 we find that 

= M ( M  - 1)02 

and 

and the final result directly follows. 
From (31) we can conclude that 
1) The upper bound of Po is not a function of the SNR; 
2 )  For fixed L,  the upper bound of Po is a monotonic 

decreasing function of M ;  and 
3) For fixed M ,  the upper bound of Po is a monotonic 

increasing function of L. (The minimum is achieved 
when L = 1.) 

0 

When 77 > s, from (33) we deduce that 
1 )  The upper bound of P, is a function of the partial SNR, 

77, and it decreases as rj increases, 
2) For fixed L, the upper bound of P, is a monotonic 

decreasing function of M ;  and 
3) For fixed M ,  the upper bound of P, is a monotonic 

decreasing function of L. (The minimum is achieved 
when L = A4 - 1.) 

In Figs. 1 and 2 we show the Cantelli upper bound of Po as 
a function of L and M respectively. Likewise, in Figs. 3 and 
4 we show the upper bound of P,. In Fig. 4 several curves are 
plotted, each corresponding to a different partial SNR. When 

then L basically does not affect the upper bound of P,. It 
can easily be shown that this upper bound becomes negligible 
when compared to the bound of Po. From the example in 
Fig. 4, when L > 120, the bound becames smaller than 

0.7 , I 

I x 10-3. divergence [ 191. Although the selection of L according to the 

P K ..I\ 

50 100 150 m 250 300 

M 

Fig. 2 
function of Af when L = 1. 

Cantelli upper bound of probability of overparametrization as a 

1 I 

L 

Fig. 3 Cantelli upper bound of probability of underparametrization as a 
function of L when .If = 100, and various SNR’s (solid line: 111 = 0.05; 
dashed line: 112 = 0.06; dotted line: 713 = 0.07; dash-dot line: 714 = 0.1). 

In Fig. 5 we show the upper bound of the probability of error 
as a function of L for several partial SNR’s. It was obtained by 
adding the upper bounds of over- and underparametrization. 

The analysis of the bound of P, entails the following result. 
When the partial SNR is greater than a particular threshold, y, 
the best choice of L according to the upper bound is L = 1. 
y itself as a function of M decreases when M grows. As the 
SNR decreases and is below 7, the optimal L that minimizes 
the upper bound of P, grows. 

A similar analysis can be carried out for the sequential 
estimator. It should be noted that there are other approaches 
that may be tried to find an optimal strategy for estimation- 
validation. One of them, for example, could be based on 
examination of distances among the constructed predictive 
densities. The idea is to find how close these densities are 
to each other as a function of L and fixed M .  Intuitively, 
we expect that if they are further apart, it will be easier to 
discriminate the appropriate model. As a familiar measure of 
“distance” (discrepancy) between two densities we tried the 
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11, I TABLE V 

0.4 

0.3 

B 0.2 

COMPARISON OF PERFORMANCE OF SEQUENTIAL AND SYMMETRIC 
ESTIMATORS; THE VALUES SHOW THE NUMBER OF TIMES THE 

MODEL ORDER k WAS CHOSEN IN 1000 REALIZATIONS BY THE 
RESPECTIVE ESTIMATORS; THE CORRECT MODEL ORDER IS 3 

0 
50 100 I50 200 250 300 

M 

Cantelli upper bound of probability of underparametrization as a Fig.4 
function of .If when L = 1 and SNR 111 = 0.7. 

Ill 

I 
0 10 20 30 40 50 60 70 80 90 100 

L 

0.1 ' 

Fig. 5 Upper bound of the probability of error as a function of L when 
.If = 100 and various SNR's (solid line: 111 = 0.06; dashed line: 1p1 = 0.06: 
dotted line: 113 = 0.07; dash-dot line: 114 = 0.1). 

maximum divergence, would not imply that the probability 
of incorrect model selection PE would be minimized [14], it 
is a reasonable criterion and has been used in the literature. 
For example, in [2] the divergence was similarly employed to 
judge which approach was better in estimating a probability 
density function, the predictive or the estimative. In pattern 
recognition, for instance, it is a common practice to use the 
divergence as a class separability measure in feature selection 
problems when the overall probability of misclassification is 
of primary interest [ 121. In addition, if the divergence can 
be determined, it can be used to find the upper bound of 
the probability of error. When two hypotheses are based on 
Gaussian densities, then [ 131 

p € - 2  <I(.)-+ 4 

where J is the divergence between the densities. 
The analysis based on divergence will not be presented here. 

The reason is twofold: 1) it is extensive, and 2) the conclusions 

are the same as given here. For details, however, the interested 
reader is referred to [SI. 

We checked the derivations in this section by simulations 
using several symmetric and sequential estimators. Tha data 
model was the same as in (15) with the same parameters as 
in Table I. The vector 88 was 

19: = [0.795 0.447 0.251 0 0 0 0 01. (34) 

There were M = 50 data records, each N = 20 samples 
long. Table V shows the results obtained by the various 
symmetric and sequential estimators in 1000 trials. Best results 
yielded ~ h ~ ~ ~ ( 5 0 . 1 )  and f iseq(50, 1). On the other hand, 
the performance of fi,,,(50.49) was extremely poor. By 
extensive simulations we verified that for improved model 
selection performance it was better to keep the number of 
estimation sequences small and validation sequences large. 
When the SNR ratio was very low, as predicted by the analysis, 
the performance varied with L such that the lower the SNR, 
the larger the L for the estimator with best performance. 

In conclusion, from what seemed to be a subjective choice 
(the number of estimation sequences), there is not much left. 
The theoretical arguments and the simulation results suggest 
that L should be kept small. Although, in a small range of 
partial SNRs L = 1 is not the best choice, it is recommended 
for use. 

VI. RELATION TO OTHER MODEL SELECTION SCHEMES 

It will be interesting to compare the model order estimators 
from this paper to others derived using different principles. 
Akaike developed a criterion (AIC) exploiting information 
theoretic arguments. This criterion basically maximizes the 
expected log-likelihood of a model determined by the method 
of maximum likelihood [3], and is based on 

where 6, is the maximum likelihood estimate of 0 k ,  and k is 
the dimension of the model. Applied to our linear regression 
problem, this principle will yield the following estimate 

(35) 

It is interesting to note that it is identical to Mallows' C, 
conditional mean square error prediction criterion [23]. 
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Rissanen [25] and Schwarz [28] came up with a selection 
rule with identical functional form using different approaches. 
Schwarz took the Bayesian route using asymptotic expansion 
of the posterior probability of the model,5 while Rissanen set 
up the problem as a minimization of the bit representation of 
a signal under different models (minimum description length 
(MDL) criterion.) Their selection rule rests on [34] 

n e  distribution of + e T P e ~  IS  . xf. Thus 

E CeTPe,  = hilc2. (,yl 1 
This is the expected value of the difference in “penalization” 

k induced by yTPky, between two successive models 
for IC 2 m. Going back to (37) and substituting the term 2 

~ i ~ ~ ~ )  = - In f(y1. y2. . . . , yM 18,) + - In M .  

When this criterion is applied to our problem, it yields 
M yTPky, by the expected penalization, we find that 

-y(hl)TPky(nl) + kMa2 1n M I } .  

(36) 
Now we shall establish an interesting asymptotic relation- 

ship between the AIC and the symmetric estimator. If L = 
M - 1, the symmetric estimator (20) becomes 

fiSym(hil. M - 1) = arg 

For large M 

1 1 
= In (1 + - M 

In - M - 1  M - l ) = E  

This is identical to (35) ,  the AIC estimator. Consequently, for 
large M we would expect that fisym(M, M - 1) and  LAIC 
should yield statistically comparable results. When the two 
estimators were compared by extensive simulations, this was 
indeed the case. This result is analogous to Stone’s [32],  where 
he showed that asymptotically the cross-validation criterion 
and the AIC were equivalent. Note, however, that our setting 
is different from that in [32]. 

If in (20) and (21) we substitute L = 1, we find that 

Next we want to substitute the second term in (37) by its ex- 

models, Mk+l and Mk, and k 2 m, we can write 

h S e q ( M ,  1) = arg min - Y ( ~ ) ~ P ~ Y ( ” )  
pected value due to overparametrization. For two consecutive { k  ( 

+ MyTPl;yl+ kMa2 In M )  }. (39) 

M M 

j=1 j=1 

where P is a projection matrix defined by 

P = Pk+l - PI, 

Note that it is related to PI, by 

Since 

B:H;PH,B, = o 
we have 

j=1 ,=1 

51t should be pointed out that Kashyap [16] and Leonard 1211 did a 
somewhat more general derivation than Schwarz. 

Since the penalty for overparametrization obtained from the 
second terms in (38) and (39) is always positive (on average 
lcMo2), it is clear that the overall penalties of these estimators 
will be more stringent than the penalty of the MDL estimator. 
We expect, therefore, that the lowest order model will be 
chosen more likely by 7izSym(M, 1) and f i s e q ( M ,  1) than by 
the MDL estimator. Moreover, from a comparison of (38) and 
(39) we would expect that the symmetric and the sequential 
estimator will have similar performance. 

In Tables VI-VIII, simulation results are presented that 
illustrate the performance achieved by all these estimators. 
The same model was used as in (14) with parameters given 
in Table I and (34). The number of sequences M and L 
was varied. Best results were obtained by rizsym(M. 1). It 
outperformed the AIC and MDL rules in all the simulations. 
Note also that, as anticipated, the difference between the ~ . L J C  

and f i l sym(M,  M - 1) was statistically insignificant. In addi- 
tion, ~‘?L,,~(M, 1) performed almost as well as rizsym(M, 1). 
The results achieved by h s e q ( M ,  M - 1) were completely 
unreliable. 
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TABLE VI 
COMPARISON AMONG ESTIMATORS; THE VALUES SHOW THE NUMBER OF TIMES THE MODEL ORDER k WAS 

CHOSEN IN REALIZATIONS BY THE RESPECTIVE ESTIMATORS; THE CORRECT MODEL ORDER IS 3 
M = 10, N = 20 

TABLE VI1 
COMPARISON AMONG ESTIMATORS; THE VALUES SHOW THE NUMBER OF TIMES THE MODEL ORDER k 

CHOSEN IN 1000 REALIZATIONS BY THE RESPECTIVE ESTIMATORS; THE CORRECT MODEL ORDER IS 

M = 4 0  N = 2 0  

W A S  
3 

TABLE VI11 
COMPARISON AMONG ESTIMATORS; THE VALUES SHOW THE NUMBER OF TIMES THE MODEL ORDER k W A S  

CHOSEN IN 1000 REALIZATIONS BY THE RESPECTIVE ESTIMATORS: THE CORRECT MODEL ORDER IS 3 

1695 

M = 4 0  N = 4 0  

VII. CONCLUSION 
In this paper, model (order) selection criteria were derived 

based on Bayesian predictive densities and multiple data 
records. In their derivation, the underlying principle was to 
measure the models’ performances only by data which were 
not used for their estimation. Several important issues were 
addressed, such as consistency and choice of estimation and 
validation data records. It was proved that the selection rules 
are consistent when the set of data records for estimation is 
fixed and the number of data records for validation tends 
to infinity. On the contrary, when the set of validation data 
records is fixed, and the number of estimation data records 
tends to infinity, the rules are inconsistent. In addition, it was 
shown that the probability of overparametrization is minimized 
when the number of estimation data records is equal to one. 
On the other hand, the probability of underparametrization is 
minimized when the number of validation records is equal 
to one. Upper bounds of these probabilities are derived. 
These bounds suggest that it is better to keep the number of 
estimation data records low. The asymptotical analysis shows 
that the Bayes selection rule becomes equivalent to AIC if 
only one data record is used for validation. In addition, if 
one data record is used for estimation, the Bayes rule has a 

more stringent penalty than the MDL. Extensive simulation 
results are presented. They support the theoretical analysis in 
the paper. Moreover, they show that the Bayesian selection 
rules have better performance than the AIC and MDL criteria. 

To allow mathematical tractability and insight into the 
problem, we analyzed a set of nested linear models in a fairly 
restrictive scenario. Most of these restrictions, however, can 
be removed, and selection rules can be derived along the same 
lines for more realistic cases. This is possible due to the 
coherency of the Bayesian theory. For instance, the case of 
nested linear models and unknown g 2  can be handled readily 
(see [SI). Selections from more complex sets of models will 
be presented in a follow-up paper. It should also be clear that 
the same idea can be used to derive selection rules for the 
most often encountered case in practice-when only one data 
record is observed. If the data sequence is segmented in A4 
disjoint subsequences, we are back to the multiple-data-record 
case [91. 

APPENDIX A 

Derivation of the General Symmetric and Sequential Estima- 
tors: First the symmetric estimator is derived. Suppose that 
we have two independent sequences with lengths N I  and N2, 
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generated by Thus, 

and 

respectively, whose ranks are equal to m. (Note that we 
use N1m and N2m as indices of H to emphasize that the 
dimensions of the two matrices are not necessarily identical as 
they were before. If it is clear that the H matrices are identical, 
we shall use as an index the number of their columns only.) 

Let the parameter vectors 0, in (A-1) and (A-2) be identical. 
Now if we write the predictive density of y 2  according to y 1  
and the model M I ,  as 

f(YZIY1,Mk) = 1, f ( Y 2 1 s k , Y 1 , M k ) f ( e k l Y l l M k ) ~ e k  

we obtain 

where 

and 

Now, suppose there are M sequences, each N samples long. 
If L of them are used for estimation, then using (A-3) 

where 
M 

y ( M )  = c y i .  

y E p i k y L  = y ;yL  - -y (L)  p k p )  

y(L)  = c y i .  

i=l  

Moreover, 
1 T  
L 

where 
L 

i= l  

Now, the predictive density from (A-4) can be rewritten as 

M 1  T 

L M y  In ~ ( Y M - L ~ ~ L ,  M k )  = C + ka2 In - + - ( M )  

. P k y ( M )  - - y ( L ) T P k y ( L )  1 (A-5) 
L 

where G is a constant independent of k.  
We are interested in determining the number of crosscorrela- 

tion terms y'Pkyj for fixed i and J' in (A-5). Since there are 
Ch combinations of choosing the estimation and validation 
sets of data records, where 

M !  cL - 
- ( M  - L ) ! L ! '  

the term y ( M ) T P k y ( M )  will yield the crosscorrelation 
yTPky, ,  Cb times. The same crosscomelation product will 
occur in Chyz2 times for L 2 2.  After the 
symmetrization, all the terms of the form yTPkyz  will drop 
out. Therefore, the selection rule will rest on 

where Y M - L  and Y L  are formed by concatenating the vali- 
dation and estimation sequences respectively. Similarly, Y M  
represents all the sequences y1, y2,' . . , Y M  stacked in one 
vector. The matrices H M ~  and H L ~  are special M x 1 and 
L x 1 block matrices whose blocks are identical to H k .  The 
projection matrices P h k  and Pik are then M x M and L x L 
block matrices respectively, whose diagonal blocks are equal 
to I-  &Pk and I-  i P k  respectively, and off-diagonal blocks 
are &Pk and * P I .  respectively. 

Next, note that 

I f i G k f i ~ k l =  IMHTHk( 

This may be simplified to 

Since the estimator chooses the model with minimum 
Jk ( M ,  L) ,  we finally obtain 

and 
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we have with 

The general form of the sequential estimator is easily found 
from (A-4). It is 

APPENDIX B 

Proof of Proposition I: Let 

j=1 

where 
hf 

Note that 

We will show that 

Thus 

A,Jk = ( k  - 

M 

+ Z(M - l)B2HzPfk J=l e, 

h l  

+ M ( M  - l)B~H~Pk,H,,O, AI 

+ 2(M - l)Q;H;P$, e3 + e;Pkke,. 
M 

1 ,=1 
,=l .-#, 

Now we shall show that 

1 
p 1 i n i T A J k  M > 0. 

Using Slutsky's theorem 
15 L 5 M - 1.  

where F ( M )  is a suitably chosen function of M such that 
F ( M )  > 0, which implies that the symmetric estimator 
is consistent, since JI, achieves a minimum for k = m. 
@lim- F ( M )  > 0 denotes lirnAi+m "[I&$ - c1 > b ]  = 0 
and c > 0). 

Suppose first that IC < m .  Then (B-1) yields 

M ( M - 1 )  M 
0' In - M - L  L AJk = ( k  - m) 

J=1 

We may write 
I P, = Pk + p , k  

where Pkk is a projection matrix of rank rn-k and PkP$, = 
0. Then 

It is obvious that 
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and Applying Chebyshev’s inequality, 

2 M ( M  - l)c4(m - I C )  
P[lw 2 MNz1 I M ~ N ;  

which implies that U = O,(M), and therefore (B-7). 
Using (B-3), (B-4), (B-5), and (B-7) in (B-2) yields 

M ( M  - 1 )  
= lini 

since 

where 0, ( M i  ) denotes that the sequence of random variables 
rbf = QZHzPA, e3 is at most of order in probability 
M 4 .  To show this, note that 

E(7.M) = 0 
and 

E(&) = 

where Nl = B~H$P$,H,B,. Applying Chebyshev’s in- 
equality 

Now, let IC > m. Then 

M ( M - 1 )  M 
L 

e’ In - A.JI, = ( I C  - m) 
M - L  

Since k > m 

PI, = P, + P;,. 

Furthermore 

P;,H, = 0. 

Therefore 

M ( M - 1 )  M 
= ( I C  - m) a’ In - - e’P;,e,. (B-1 1) 

‘.,=1 
M - L  

Now, it immediately follows that 
If for a given 15 we choose N2 such that $ I 6, then 

= 1  (B-12) A J I ,  plim 
( I C  - m)McZ In 

P[M-4Irnr/ 2 Nz] 5 6 
where 6 may be arbitrarily small. The last expression is 
equivalent to (B-6). 

since I t  can be shown similarly as for Y%=I eTPAke, that 

y:;=l erP;,e, = o,(M). 
‘fJ 

Finally % # 3  
From (B-10) and (B-12) we may assert that the estimator 

. M  

We shall show that zK3=1 erPAke, = O,(M), which will 
imply (B-7). Define the random variable 71 as 

t # I  

M 

U = erPAke,. (B-8) 
t , , = l  

t # J  

Its mean value and variance may readily be found using 
Propositions 4 and 5.  They are given by 

E(w) = 0. 03-9) 

and 

E(. - E(7J)y = E ( U 2 )  = 2 ( m  - IC)M(M - 1 ) 2 .  

(20) is consistent, 
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