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Bayesian Detection and Estimation 
of Cisoids in Colored Noise 

Chao-Ming Cho, Member, ZEEE, and Petar M. DjuriC, Member, ZEEE 

Abstract-In this paper, the problem of estimating the number 
of cisoids in colored noise is addressed. It is assumed that the 
noise can be modeled by an autoregression whose order has also 
to be estimated. A new criterion is proposed for estimating the 
number of cisoids and the autoregressive model order, as well as 
a new algorithm for estimating the cisoidal frequencies. In the 
derivation, a Bayesian methodology and subspace decomposition 
are employed. The proposed criterion significantly outperforms 
the popular MDL and AIC as applied in a paper by nagesha and 
Kay. In addition, an algorithm that reduces the computational 
complexity of the solution is developed. Computer simulations 
that demonstrate the performance of the criterion are included. 

I. INTRODUCTION 

HE estimation of the number and parameters of close T cisoids embedded in Gaussian noise is a crucial problem 
that arises in many fields ranging from radar, sonar, and radio 
communications to seismology. Recently, many so called high- 
resolution schemes have been proposed to solve this problem 
[11]. However, most of these methods are based on a white 
noise process assumption, which is frequently inadequate and 
leads to poor estimation performance. 

When the noise process has an unknown power spectral den- 
sity, it is usually assumed that the process can be approximated 
by a rational transfer function model such as autoregressive 
(AR), moving average (MA), or autoregressive moving aver- 
age (ARMA) models [5]-[15]. In our paper, as in most of the 
literature, we assume that the noise process can be modeled 
by an AR model. The use of the AR model is motivated by its 
mathematical tractability and good performance for a broad 
spectrum of scenarios. 

Under this assumption and known number of cisoids and 
AR model order, the maximum likelihood (ML) frequency 
estimator has been derived in [5], [12], [15], and its improved 
performance has been reported in [15], [21]. In many practical 
situations, however, the number of cisoids and the order of the 
AR process are unknown, and they have to be estimated si- 
multaneously. We will refer to this problem as mode2 selection, 
instead of “detection.” One plausible approach for selecting the 
model is to apply the information criteria such as the AIC [2] 
and MDL [18], [20]. Unfortunately, they tend to overestimate 
the number of signals [15]. 
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In this paper, a new Bayesian solution for estimating the 
number of superimposed cisoids corrupted by additive AR 
random noise process is proposed. The solution also provides 
MAP estimates of the cisoidal frequencies which are identical 
to the ML estimates obtained in [5] and [12], [15]. We derive 
the marginal a posteriori distribution of the signal parameters 
of interest as well as the Bayesian predictive densities of 
the data conditioned on the model hypotheses. The estimated 
number of signals and their parameters are then obtained by 
minimizing a criterion function derived from these densities. 
The criterion significantly outperforms the AIC and MDL as 
used in [15]. Moreover, we propose a recursive algorithm (RA) 
for solving the nonlinear, multi-dimensional maximization 
problem in the parameter estimation. With this algorithm 
which resembles a dynamic programming procedure, we are 
able to transform the multi-variable maximization to a se- 
quence of single-variable maximizations. This considerably 
reduces the computational complexity associated with the 
frequency estimation and model selection. 

The paper is organized as follows. The signal model and the 
problem of interest are defined in Section 11. In Section 111 we 
derive the Bayesian frequency estimator, and in Section IV we 
develop a model selection criterion that treats the estimates of 
the frequencies as true frequencies. The recursive algorithm 
is described in Section V. The performance of the proposed 
criterion is demonstrated by computer simulations, and the 
results are presented in Section VI. Finally, the conclusion is 
given in Section VII. 

11. PROBLEM FORMULATION 
Assume that we observe N data samples of a complex time 

series that represent the superimposed cisoids embedded in an 
AR noise process. That is, the observed data y[m] obey the 
model (also known as CARD model [12]) 

4. 

y[m] = S , P Q ,  + v[m], m = 1,2,  * * a ,  N (1) 
2=1 

where qs is the number of cisoids, s2 is the complex amplitude 
of the ith cisoid, and B i  is the frequency of the ith cisoid. The 
amplitudes sz and the parameters 0, are unknown deterministic 
constants. The sequence w[m] is a qath order AR noise process 
expressed by 

q, 

w[m] = Ea1 . v[m - I ]  + w[m] (2) 
1=1 

where w[m] is a complex zero mean white Gaussian process 
with the real and imaginary components identically distributed 
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and with an unknown variance rz .  Furthermore, we assume 
that the AR noise process is covariance stationary, i.e., it does 
not have poles on or outside the unit circle. 

For convenience, we may transform the signal model (1) 
to a generalized autoregressive (GAR) model [5], 1211. The 
GAR model of (1) is given by 

i=l z=1 

where m = 1 , 2 , .  . . , N, and 

When the above assumptions hold, the problem can be stated 
as follows. Given a finite number of observed data samples, 
where N > qs + 2qa + 1, estimate the parameters of the qs 
cisoids, 81, . . . , B q 8 ,  When qs and qa are unknown, estimate 
qs and qa as well as 01, . I . , OnS. 

In. BAYESIAN PARANLETER ESTIMATION 

Let X ~ t ( k , ~ )  denote the hypothesis that the number of 
cisoids is k and the order of the AR processes is p. Clearly, 
to use the data model (1) (or (3)), we need the samples 
y [0] , y [ - 11, . . . , y [ -p+ 11. Since they are unknown, we express 

and 

Yb1 Yb-11 
Y l p f 1 1  YbI 

Y =  I -  
The vector s z  = [s"aT] denotes a ( k  + p )  x 1 nuisance 
parameter vector which is formed by the k signal amplitudes 
s: and p AR coefficients al. The ( N  - p )  x ( k  + p )  data model 
matrix f i ( B ( k ) )  is defined by 

To simplify the notation, we use B instead of B ( k )  whenever 
it does not cause ambiguity. 

Given the data model (5) ,  we want to find the maximum 
aposteriuri (MAP) estimates of 0. Since 0 are the only pa- 
rameters of interest, we adopt the marginal Bayesian inference 
strategy, that is, we integrate out the nuisance parameters s', a, 
and r. The marginal MAP estimate of B is given by 

- a  e = arg min{- In f(@IY(l,N), X ( k , p ) ) }  
B E @  

= arg m i n e  @EO In f(Y(p+l,N) 10, Y(l,p), fiFt(k,P)) 

. f (@b(l ,p) ,  %,P))} (8) 

where 6 denotes the marginal MAP estimate of B and 0 
denotes the domain of 8. The conditional likelihood function 
03 ~ ( Z J ( ~ + I , N )  10, ~ ( i , ~ ) ,  X ( k , p ) )  is derived by using the 
marginalization, 

where Q1 = {sa, a} are the nuisance parameters. 
To deal with the margindizations of the nuisance pa- 

rameters in (9), we decompose the observed data space S, 
into two complementary subspaces. The subspace spanned by 
the columns of D(0) is referred to as the composite signal 
subspace, Ss, . The orthogonal subspace to Ss, is referred to as 
the noise subspace, S,. According to this decomposition, the 
observed data vector y(p+l,N) is then split into two subspace 
vectors, i.e., 

where 2, and IC, denote the ( k  $- p )  x 1 composite signal 
subspace vector and the ( N  - k - 2p) x 1 noise subspace 
vector, respectively. G(B) is an ( N  - p )  x ( N  - p )  unitary 
coordinate transformation matrix, and it is given by 

G(e) = [U,(B)%T,(B)]. (1 1) 

It satisfies the relations, 

and 

where I(m) denotes the m x m identity matrix. U,(0) is 
an ( N  - p )  x ( k  + p )  matrix whose orthonormal column 
vectors span the composite signal subspace, and U,(0) is an 
( N  - p )  x ( N  - k - 2p) matrix formed by a set of orthonormal 
vectors as basis of the noise subspace. The matrices P - 
and Pi are two complementary projection matrices which 
project onto Ss, and S,, respectively. 

D(B) 
W) 
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The property of unitary decomposition allows us to write 
the marginal CLF of 8 in (9) as [6] 

f ( y ( p + l , N ) l e ,  Y ( l , p ) >  x ( k , p ) )  

= f ( Z s , Z n l e ,  ~ ( 1 , p ) j  x ( k , p ) )  

= 1. f(Zs,Znle,3.a,ff,Y(l,p),x(k,p)) 
* f ( 5 a , a l e , Y ( i , ~ ) , ~ ( k , p ) )  dga do (14) 

where La = R(8)sa denotes a transformed nuisance parameter 
vector in the composite signal subspace and R(8) is obtained 
from the QR factorization of the matrix B(8) ( f i ( 8 )  = 

Since we assume that we know nothing about 3, and CJ, 
we choose noninformative priors by applying the Jeffreys' 
invariance principle [3]. According to the principle, a nonin- 
formative prior is derived by requiring invariance of inference 
under parameter transformation, which entails that the non- 
informative prior for a set of parameters is proportional to 
the square root of the determinant of the Fisher's information 
matrix. Here we introduce another approximation. Namely, 
the prior in (14), f ( s , , a ( 8 , Y ~ l , p ) , ~ ( k , p ) ) ,  depends also on 
the first p samples, y[l] ,  y[2], . . . , yk]. We will ignore this 
dependence (a) for tractability reasons and (b) because the 
number of data samples is smaller than the number of un- 
known parameters, which precludes acquisition of significant 
information about i,, and 0 from the first p samples. This 
assumption combined with Jeffreys' principle implies 

us(fl)R(B)) [191. 

(15) 
1 

f ( L  f f l f l , Y ( l , p ) x ( k , P ) )  a'  
After substituting (15) into (14), we get 

f ( Z s , Z n ( @ ,  ? / ( l , p ) ,  x ( k , p ) )  

By using (lo), ( l l ) ,  and (13), the inner product of the noise 
subspace vectors in (16) can be expressed in terms of the 
observed data as 

H H 
Zn Zn = Y ( p + l , N ) U , ( e ) U , H ( e ) Y ( p + l , N )  

- H 
- Y @ + l , N ~ P ~ ( g ~ Y @ + l , N )  

= q e ) .  (17) 

When we assume that f ( 8 1 X ( k , p ) )  IX const., the marginal 

8 = arg min{c(e)) (18) 

subspace MAP estimator of 8 is given by 

BEQ 

that is, the estimate of 8 is obtained by minimizing C(8)  with 
respect to 8. 

The function C(8)  can be further simplified by using 
a projection matrix update formula [9]. According to this 
formula, the projection matrix onto the column space of the 

matrix [ A b ]  can be decomposed into two projection operators, 
i.e.. 

where 

C = I - P A  = P i .  (20) 

The matrices PA and PCB are the projection matrices onto 
the column spaces of the matrices A and PAB, respectively, 
With this update formula, we get 

c(e) = 2 / ~ + 1 , N ) P ~ ( B ) t f t Y Y ( P + 1 , N )  (21) 

where 

and 

Not surprisingly, since we used the noninformative priors, 
the resulting Bayesian estimator coincides with the ML es- 
timator derived by Chatterjee, et al. [5 ]  and Nagesha and 
Kay [15]. However, the marginal subspace MAP estimator 
is instrumental in developing the Bayesian model selection 
criterion whose derivation is given in the sequel. 

IV. MODEL SELECTION VIA BAYESIAN PREDICTIVE DENSITIES 
Assume the maximum number of cisoids is Qs and the 

maximum model order of the AR process is Q,, where 
Qs +2Qa + 1 < N .  The problem is to select the optimal number 
of cisoids and the optimal order of the AR process. Optimality 
will be defined by the approximate MAP principle employed 
via Bayesian predictive densities (BPD) [7], [8]. The BPD 
criterion is given by 

where 
N 

m=2 

with i j s  being the estimated number of cisoids and ij, the 
estimated AR model order. Note that the models with no 
cisoid and/or zeroth order AR process (white noise) are aIso 
considered as possible hypotheses. 
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First we sketch the derivation of the predictive density 

Bayesian inference scheme and the subspace decomposition. 
According to the subspace decomposition approach used in 
the previous section, the form of f(y[m] ly(l,m-l), 3 - l ( r ~ , ~ ) )  

can be written as 

f ( ~ [ m ] l ~ ~ l , m - l ) , % ( k , p ) )  for k > O  and P > O  uskg the 

f ( ~  [ml ly(1,m-l) > 3 - I ( k , p ) )  

= s, f(dm1 lY(l,m-l)> 07 4, %kP))  

. f ( O >  q51Y(l,m-l)> % ( k , p ) )  dq5 

(25) 

where q5 = {sa, c}. The last line in (25) follows easily 
from the first line by applying the first equality in (14). The 
composite signal and noise subspace vectors xs(m) and xn(m) 
are transformed from the observed data y(p+l,m) by 

- - f ( z s ( m ) >  zCn(m) b( l ,p ) ,  x ( k , p ) )  

f ( x s ( m - 1 )  , xn(m-1) IY(l,p), % ( k , p ) )  

where the unitary transformation matrix G(f l (k ) ) (p ,m)  is de- 
fined similarly as in (10). With the use of the same noninfor- 
mative prior for q5 as in (15), we get 

f(xs(m), xn(m) b ( ~ , p ) )  3 - I ( k ,p ) )  
n n  

where 

used [I], [3], [16]. From the theory of large sample posterior 
distributions it is well known that the likelihood L(p,m)(f9(k)) 
is approximately normal in B A  [17], and that this approximation 
may be very good even for a small number of samples. 
Now, let the model hypothesis be 7 i ( l ~ , ~ )  and assume that 
the normality assumption holds, as well as that the prior 
f(t?&5,p)) is locally uniform in the neighborhood of O ( k ) ,  ' 

where B ( k )  is obtained from 

for m > k  + 2p + 1. The case of m 5 k + 2p + 1 will 
be discussed later. We use the approximation sign in (34) 

l ) /v~)~"~.  We also assume that the terms C ( O ( k ) ) ( p , m - - l )  

and C ( & ( k ) ) ( p , m )  are both evaluated at e ( k )  defined by (31). 
These assumptions are made to allow for simplified form 
of the model selection rule as well as great reduction in 
its computational complexity. Note that the first assumption 
is due to the fact that det(J[iim,) = O(m3k).  The second 
assumption ignores the nonzero contribution of the first term 
of the Taylor expansion of .C(,,,)(B(k)). However, all of these 
terms that appear in the overall criterion are canceled, except 
the first and the last one. The last one is zero, and the first one 
has expected value equal to zero. 

Next, we consider the hypothesis of k cisoids with additive 
white noise ( p  = 0) .  After applying a similar approach as 
above, for the predictive density of y[m] under % ( k , o ) )  we 
obtain 

because we assume that det(J{i;m-l))/ det(J(p,..,) ( k )  A ( (m - 

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on April 30,2010 at 16:09:16 UTC from IEEE Xplore.  Restrictions apply. 



CHO AND DJURIC: BAYESIAN DETECTION AND ESTIMATION OF CISOIDS IN COLORED NOISE 2947 

Apparently, the evaluation of J ( ~ C , ~ )  can be implemented 

7T 

for m > k + 1, and $ ( k )  is given by 

(35) 

Again, we will discuss the case of m 5 k + 1 later. 

predictive density of y [m] becomes 
When the observed data is a pth order AR process only, the 

f (Yb1 lY(1,m-1) , X ( 0 , P ) )  

- (YE+Lm-1) P'- y(p,m-l)Y(P+l,m-l))(m-2p-1) 
- 

( y ~ + l , m ) ~ ~ ( p , m ) p ( P + l , m ) )  (m-zp) 

(37) 
(m  - 2p - 1) 

7T 

Now, we consider the case when there are no cisoids and 
the additive noise is white. The result is 

for m > 1. Hence, the cost function for X ( o , ~ )  is obtained by 
the summation in (24) from m = 2 to N ,  i.e., 

N 
J ( 0 , O )  = - In f ~ Y ~ ~ 1 l ~ ( 1 , , - 1 ) ~ ' F l ( 0 , 0 ) ~ .  (39) 

m=2 

Note that we can write the predictive density of the next 
sample only if there are sufficient past samples to estimate the 
parameters of the model [7]. Under the hypothesis 'H(o,~),  the 
only unknown is U',  which implies that the predictive density 
of y[2] can be determined, and therefore the summation in 
(39) can start with m = 2. 

When k > 0 and p = 0, the number of model parameters is 
2k + 1. From the model, we can deduce that the least number 
of samples necessary to ensure a unique estimate is k + 1. 
However, in order to use the same amount of data samples for 
comparison of different models, the procedure has to start from 
m = 2. Thus, we design an initialization policy for m < k + 1 
to allow for the derivation of the predictive densities of y[m] 
without violating the above two requirements'. For instance, 
when k = 1 the cost function for 'H(l,o) is given by 

J(1,O) = -1n f(Y~2llY[ll> 'Fl(0,O))  
N 

- In f ~ Y l [ ~ 1 l g 1 ( 1 , ~ - 1 ) ~ ~ ( 1 , 0 ) ~ ~  (40) 
m=3 

This policy, although quite logical, is not optimal in any sense 

similarly. 
So is the case when k = 0 and p > 0. Then, the minimum 

number of samples for estimating the model parameters is 
2p + 1. For example, for p = 2 we have 

3 

4 0 , ' )  = - In f~YY[~ll~(l,m-l)~'Fl(o,o)~ 

- 1n f~Y~~ll~(l,m-l)~'Fl(o,l)~ 

- In f ~ Y ~ ~ 1 l ~ ( 1 , , - 1 ) ~ ~ ( 0 , 2 ) ~ ~  (41) 

m=2 
5 

m=4 
N 

m=6 

Finally, we consider the BPD criterion for the case k > 0 
and p > 0. Since the, determination of the number of cisoids is 
usually more important than that of the AR process order, we 
design an initialization policy as follows: when m < k + 2p + 1, 
we first adopt the policy such as in (43), then continue as in 
(41). For instance, for k = 2 and p = 1, we have 

J(2,l) = - In f(Yl[2lIY[ll> 'Fl(0,O)) 

- 1n f ( Y [ 3 1 1 1 ( 1 , 2 ) > ~ ( 1 , 0 ) )  

- In f(Y[mlly(l,m-1),'Fl(z,o)) 

- In f(Yl[~Il~(l,,-l),~(2,1)). (42) 

is, ia = arg min{J(k,p)>. 

5 

m=4 
N 

m=6 

In summary, we write the BPD model selection criterion as 

(43) 
k,P 

Note that whenever the estimates of 0 for all the hypotheses 
are determined (from (31) or (36)), the computation of the 
cost function in the proposed BPD criterion can be found 
straightforwardly. The most difficult point is how to efficiently 
determine the estimate of B .  We discuss this in the next section. 

v. A RECURSIVE ALGORITHM FOR PARAMETER ESTIMATION 
The computations of the MAP (or ML) estimator and 

the BPD model selection criterion proposed in the previous 
sections are intensive due to the multi-dimensional nonlinear 
parameter search. In order to reduce this intensity, we propose 
a recursive algorithm to estimate the nonlinear parameters. 
With this algorithm, the multi-dimensional optimization prob- 
lem in (18) and (31) can be transformed into a multistage 
one-dimensional optimization problem. 

First we consider the application of the recursive algorithm 
to the frequency estimation, and then extend it to model 
selection. Before we present the basic algorithm, we need to 
define the cost function of the MAP estimator. For a particular 
pth order AR noise process, the cost function for estimating 

(= [el +. .e , ] )  is given by 
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where y = Y ( ~ + ~ , ~ ) ,  and D(B(,)) and Y are defined in (6b) 
and (7), respectively. 

Next, let = [01& .'.Qk] for S < q  and assume 
8 1  < 0 2  < . . . < Ok. According to the projection matrix update 
formula (19), the projection matrix onto the subspace spanned 
by the column vectors of D(B(k+l)) and Y can be expressed 
by the sum of two projection matrices onto the orthogonal 
subspaces spanned by the column vectors of D(@(k))  @ Y and 
the residual of D(B(k)) $Y projected onto d(&+l) .  With this 
decomposition, we get 

(46) pmB,,+l,)~y = %+,,)ay + Pg(@,,,)&e,+l) 

where 

Also, a recursive form of the cost function for @ ( k + l )  is defined 
by 

g(Q(k+i ) )  = yI 'PD(e , , , )~yy  + Y H % ( e ~ , ) ) d ( e , + , ) Y  

= g(%d + Y H P B ( f , , ) ) d ( e , + l p  (49) 

Now, we derive a recursive equation to solve the maximiza- 
tion problem in (45). We define a cost function, Fk+1 (&+I),  

at the (IC + 1)st stage as [IO] 

Fk+l(dk+l) = y { F k ( Q k )  + YXPB(~(,-,):e,)d(e,~l)Y} 

(50) 

and we define the estimate of Qk (decision) corresponding to 
a particular Q k + l  by 

j k ( ~ k + l )  = arg ?~x{~k(Qk) + e,)d(e,,,)~)- 

(51) 

The vector @(k-l) is a function of 01, (policy function) and 
is given by 

@ ( k - l ) ( & )  = [&(e,)&(&). . .ek-,(ek-,)ek-1(Blc)].  (52) 

The residual matrix B ( C b ( k - l ) : ~ k )  is also a function of 6'k and 
is defined by 

B('(k-1):'k) = P D ( ~ , - ~ )  (s,))exi(e,)e~ (53) 

for k = 1 , 2 , .  . . , q - 1. Note that P k + ~ ( Q k + l )  consists of 
F k ( 0 k )  resulting from the policy function Cb(k-l)(Qk) made 
at all previous stages and a term dependent on the current 
decision 0 k + l .  In the last stage, we get the final maximum 
cost function, 

I 

8, = arg max{Fk(Qy)}. (54) 
0, 

Accordingly, the estimates f are determined from 

Equations (50)-(54) form the basic algorithm for estimating 
the 0s of the q signals in a pth order AR noise process. The 
algorithm consists of two p : The first part maximizes the 

P ( q -  1) (4 )&I * 

recursive cost function based on the cost function and decision 
at &e previous stage, and the second part makes the decision 
(parameter search) at the current stage. The algorithm does 
not guarantee the optimal solution since B ( B ( k ) )  in (49) was 
substituted by B ( @ ( k - 1 ) : 8 k )  in (50). Other approximations 
are also possible [22], [23]. 

We now explain our algorithm in more detail. First, we 
initialize k = 0 with B(&) = Pi' and Fo(Q0) = 0. 
Then Fl(B1) is computed for 01 E 0. At stage 2, F z ( 0 2 )  

is obtained by maximizing the sum of F l ( 0 1 )  and the term 
which is dependent on the current decision. From (51) we 
obtain the optimal 01 for each state of the second stage. 
Next, we increase k by 1 and continue along the same 
lines. When k = q - 1, we compute the cost function 
at the last stage and stop the algorithm. The estimates of 
e(,) are then sequentially determined by a backward search. 
For example, we substitute 8, into the argument of the 
function d q - l ( d q ) ,  and substitute the resulting OqV1 into the 
argument of the function 19,-2(0,-~),  and so on. Basically, 
we need a two-Qmensional search at each stage to find out 
F k + l ( B k + ~ )  and Q k ( B k + l ) .  However, in finding these terms 
we can use the result of F k ( 0 k )  computed from the previous 
stage. Furthermore, the second term of the cost function can 
be decomposed into a sequence of simple vector operations. 
This reduces the computational load considerably. 

Now, we summarize this algorithm as follows: 

1) hitialization: 
1.1 k = O ; B ( B o )  = P+;Fo(Ho) = 0; 
1.2 Compute FI(Q1); 

For Bk+l E 0, 
2) Main Loop: For k = 1 : ( q  - l), 

Find F k + l ( Q k + l )  from (50), and 
& ( Q k + l )  from (51); 
Tabulate FI,+I(&+I) and ( t ( Q k + l ) ;  

3) Compute 8, from (54), and 6(q-11(6'y) 
End 

For the model selection problem, the BPD model selection 

1) Initialize p = 0. 
2) Run the basic algcrithm for Qs stages. 

, 

criterion is implemented according to 

Substitute them into the BPD 
criterion. 

4) Increase p by 1. If p I Qa, go back to step 2. 
5)  Determine the number of signals and the order of the 

Finally, it should be noted that the computational load 
measured by the number of times we evaluate (50) and (51) 
is ( p  + l)q,M2, where M is the number of grid points on the 
frequency axis. Clearly, this load increases linearly as we add 
new models to the set of competing models. 

AR process by the BPD criterion. 

VI. SrrYnnATION RESULTS 

We examined the performance of the subspace MAP esti- 
mator and the BPD model selection criterion by Monte Carlo 
simulations. Two examples with four cisoids in colored noise 
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Fig. 3. Performance comparison of the MAP-C and ML-W estimators for 
fi and fz (example 1). 

SNR (dB) 

Frequency 

True log power spectrum of the signal in example 1 (SNR = 0 dB). Fig. 1. 
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Fig. 2. True log power spectrum of the signal in example 2 (SNR = 0 dB). 
Fig. 4. Performance comparison of the MAP-C and ML-W estimators for 
f 3  and f4 (example 1). 

algorithm was 1/100. The SNR is determined from were examined. The normalized frequencies of the four equal 
power cisoids were f l  = 0.15, f 2  = 0.17, f 3  = 0.33, 
and f 4  = 0.35, and their phases were $1 = 0, $2 = 
~ / 4 ,  43 = 0, and 4 4  = -7r/4, respectively. The number 
of samples was 25 and the number of Monte Carlo runs 
was 100. In the first example, the colored noise was modeled 
by a second order wide-band AR process whose poles were 
located at 0.8 exp(-j1.05~) and 0.8 exp(-jO.gr). In the 
second example, the noise was a second order narrow-band 
AR process with poles located at 0.95 exp(- j l .07~)  and 
0.95 exp(-j0.88~). The true log power spectra of these 
examples (SNR = 0 dB) are shown in Figs. 1 and 2. 

To illustrate the performance of the proposed estimator, we 
compare it with the ML estimator derived for the white noise 
case for a wide range of SNR’s [ll],  [412. For brevity, we 
refer to the MAP estimator for the colored noise case as 
MAP-C, and the ML estimator for the white noise case as 
ML-W. The estimates of the parameters were computed via the 
recursive algorithm. The search resolution used in the recursive 

where a, for i = 1, . . . , qa, is the ith reflection coefjcient of 
the qath order AR process [I l l .  

For the first example, the performance comparison of the 
MAP-C (or ML-C) estimator (see (21) or (31)) and the ML- 
W estimator (see (36)) are shown in Figs. 3 and 4. We 
observe that the performance improvement of the proposed 
estimator is significant, especially when the cisoids are located 
in the regions with low noise power, i.e., f l  and f 2  are better 
estimated than f 3  and f 4 .  The performance of the proposed 
estimator degrades when the cisoid is very close to the poles 
of the AR process. The observed nonmonotonic degradation in 
performance with decrease of the SNR is due to the statistical 
fluctuations of the Monte Carlo experiment. 

Next, we investigated the performance of the proposed 
estimator for the narrow-band AR noise case. The simulation 

*This comparison will show the degradation in performance of frequency 
estimation due to incorrect white noise assumption. 
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Performance comparison of the MAP-C and ML-W estimators for 
fz (example 2). 

TABLE I 
PERFORMANCE COMPARISON OF THE THREE 
CRITERIA FOR EXAMPLE 1, SNR = 0 DB 

k = O  k = l  k = 2  k = 3  k = 4  k = 5  k = 6  
p = o  0 0 0 0 0 0 0  
p = l O  0 0 0 7 5 0 

p = 3 0  0 0 0 0 0 0 
p = 4 0  0 0 0 0 0 0 
p = o  0 0 0 0 0 0 0  
p = l  0 0 0 0 1  3 8  

MDL p = 2  0 0 0 0 49 17 19 
p = 3  0 0 0 0 1 2 0  

BPD p = 2  0 0 0 1 77 9 1 

p = 4 0  0 0 0 0 0 0 
p = 0 0  0 0 0 0 0 0 

0 0 0 0 2 1 1 1  p = l  
AIC p = 2  0 0 0 0 38 21 23 

0 0 0 0 0 1 3  p = 3  
p = 4 0  0 0 0 0 0 0 

55, t 

TABLE 11 
PERFORMANCE COMPARISON OF THE THREE 
CRITERIA FOR EXAMPLE 1, SNR = 6 DB 

k = O  k = l  k = 2  k = 3  k = 4  k = 5  k = 6  
p = o  0 0 0 0 0 0 0  
p = l  0 0 0 0 8 3 0  

BPD p = 2  0 0 0 1 81 7 0 
p = 3 0  0 0 0 0 0 0 

0 0 0 0 0 0 0  p = 4  
p = o o  0 0 0 0 0 0 
p = l  0 0 0 0 1  3 11 

MDL p = 2  0 0 0 0 58 9 18 
p = 3 0  0 0 0 0 0 0 

0 5 10 15 2 0  
SNR ldB1 

Performance comparison of the MAP-C and ML-W estimators for 
f.2 (example 2). 

results are shown in Figs. 5 and 6. These results lead to the 
same conclusions as the ones for the wide-band AR noise 
case. The performance of the ML-W estimator is relatively 
poor when the noise is colored, and the MAP-C estimator 
significantly outperforms the ML-W estimator. The gain in 
the estimation performance of the MAP-C estimator is greater 
when the cisoids are far from the poles of the AR process. 

For the model selection, we compared the performance of 
the BPD, MDL, and AIC criteria. According to the derivation 
in [15], the MDL and AIC criteria are given by 

i 3 k + 2 p +  1 In 
+ 2  

and 

(57) 

p = 4 0  0 0 0 0 0 0 
p = o o  0 0 0 0 0 0 
p = l  0 0 0 0 2 5 1 1  

AIC p = 2  0 0 0 0 49 12 21 
p = 3 0  0 0 0 0 0 0 
p = 4 0  0 0 0 0 0 0 

where C ( ~ ( ~ I ) ( ~ , N )  is defined in (31). The performance com- 
parisons for the wide-band AR noise process are presented 
in Tables I and 11. We observe that the BPD criterion has 
the best performance for correctly choosing the signal model. 
The MDL and AIC criteria tend to overestimate the signal 
model because the penalty terms in (56) and (57) are not 
stringent enough. The simulation results for the narrow-band 
AR noise process are shown in Tables I11 and IV. Again, the 
best performance is obtained by the BPD criterion. 

Finally, we have also compared the performance of the 
selection rules in a white noise case scenario. There were two 
sinusoids whose frequencies and phases were f i  = 0.45, f 2  = 
0.5, 41 = ~ / 4 ,  and 42 = 0. The SNR was varied between 
0 and 10 dF3 in steps of 1 dB. For each SNR there were 100 
Monte Carlo runs. The results displayed in Table V show the 
number of times the correct hypothesis X F ~ ( ~ , O )  was selected. 
Again, the BPD had the best performance. 

VII. CONCLUSION 
In this paper, we have presented a marginal MAP estimator 

for frequency estimation and a Bayesian predictive density 
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TABLE I11 
PERFORMANCE COMPARISON OF THE THREE 
CRITERIA FOR EXAMPLE 2, SNR = 0 DB 

k = O  k = l  k = 2  k = 3  k = 4  k = 5  k = 6  
p = o o  0 0 0 0 0 0 
p = l  0 0 0 0 3 1 0  

p = 3 0  0 0 0 I O  0 
n = 4 n  n n n n n n 

BPD p = 2  0 0 0 1 91 4 0 

p = o o  0 0 0 0 0 0 
p = l  0 0 0 0  1 1 5  

MDL p = 2  0 0 0 0 56 21 15 
p = 3 0  0 0 0 1 0  0 
n = 4  f l  0 n n n n n  
p = 0 0  0 0 0 0 0 0 
p = l  0 0 0 0 1 4 6  

p = 3 0  0 0 0 0 0 3 
p = 4  0 0 0 0 0 0 0  

AIC p = 2 0 0 0 0 50 19 27 

TABLE IV 
PERFORMANCE COMPARISON OF THE THREE 
CRITERIA FOR EXAMPLE 2, SNR = 6 DB 

p = o o  0 0 0 0 0 0 
p = l O  0 0 0 1 0  0 

p = 3 0  0 0 0 0 0 0 
n = 4  n n n n n n n  

BPD p = 2  0 0 0 1 95 3 0 

p = o  0 0 0 0 0 0 0  
p = l O  0 0 0 0 0 3 

p = 3  0 0 0 0 0 0 0  
n = 4  n n n n n o n  

MDL p = 2  0 0 0 0 76 9 12 

p = o  0 0 0 0 0 0 0  
p = l O  0 0 0 0 0 2 

p = 3  0 0 0 0 0 0 0  
p = 4 0  0 0 0 0 0 0 

AIC p =  2 0 0 0 0 70 11 17 

TABLE V 
PERFORMANCE COMPARISON OF THE THREE CRITERIA FOR EXAMPLE 3 

SNR (dB) BPD MDL AIC 
0 68 32 63 
1 75 52 67 
2 87 67 72 
3 94 73 75 
4 98 81 78 
5 99 84 82 
6 100 87 83 
7 100 88 81 
8 100 91 85 
9 IO0 93 87 
10 100 95 86 

criterion for model selection of multiple cisoids in additive AR 
noise process. To choose properly the noninformative priors 
of the nuisance parameters and proceed with marginalization, 
we transformed the observed data by employing subspace 
decomposition. With this decomposition and applying a uni- 
form prior for the frequencies, we obtained a MAP estimator 
that coincides with the ML estimator derived under the same 

signal and noise models. The derived BPD criterion for model 
selection significantly outperforms the MDL and AIC from 
[15]. The improvement in performance is greater when the 
SNR is small and/or the AR noise is narrow-band. 

To reduce the computational complexity of the proposed 
criteria, we have developed an algorithm that reduces the 
multivariate maximization problem to a simple multistage 
single-variate maximization. From the simulation results, we 
observe that the proposed MAP estimator when implemented 
by our algorithm provides excellent estimation performance 
without involving tedious computations. 
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