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Bayesian Spectrum Estimation of Harmonic Signals 
Petar M. DjuriC, Member, ZEEE, and Hsiang-Tsun Li 

Abstract-A Bayesian spectrum estimator of harmonic signals 
in Gaussian noise is derived. It is based on the expected value 
of the theoretical signal spectrum over the joint posterior density 
function of the signal and noise parameters. Simulation results 
are provided that show its performance and comparison with 
MUSIC. 

A k ,  W k ,  and d k  are the parameters of the kth sinusoid that are 
unknown, e[.] is a sample of a zero-mean, white, Gaussian 
noise, that is 

e[n] N(0, U * )  ( 2 )  

I. INTRODUCTION 

PECTRUM estimation is an important area of research S in signal processing. It is applied in many scientific and 
engineering disciplines, such as communications, radar, sonar, 
astronomy, geophysics, and biomedical engineering. Its main 
objective is the estimation of average power of signals as a 
function of frequency. 

Recently the long list of techniques for spectrum estimation 
has been expanded by a Bayesian one [l], [2]. The Bayesian 
spectrum estimate is defined as the expected value of the 
theoretical signal spectrum over the joint posterior density 
function of the signal and noise parameters. The so-defined 
estimator provides estimates of the signal spectrum onZy. These 
estimates should be contrasted to the ones of the known 
approaches as the latter are spectrum estimates of the observed 
data rather than the signals. In this letter, starting with the 
basic definition, we derive a Bayesian spectrum estimator of 
multiple sinusoids in Gaussian noise. The advantage of the 
derived estimator over existing approaches is its excellent 
performance. The disadvantage is the increased computational 
intensity needed for its evaluation. The simulation results show 
spectrum estimates of sinusoidal signals whose frequencies 
are separated by a much smaller value than the Rayleigh 
resolution. 

where the variance of the noise o2 is also unknown, and 
finally, m is the number of superimposed sinusoids that is 
assumed known. Based on the data y[n], n E Z N ,  the objective 
is to find the spectrum estimate of the superimposed sinusoids. 
Note that we want the estimate of the signal spectrum only, 
and not the spectrum of the observed data y[n]. 

111. SIGNAL SPECTRUM ESTIMATION 

Let us define the estimate of the signal spectrum by 
P 

(3) 

S O ( W ,  8 )  is the theoretical spectrum of the signal, 8 and $ 
the parameters of the signal and noise, respectively, f ( 8 ,  $ 1 ~ )  
the a posteriori density of the unknown parameters 8 and $, 
and y an N x 1 vector that represents y[n], n E Z N .  S o ( w ,  8 )  
is clearly a function of the radial frequency w and the signal 
parameters 8. If 8 were known, it would have been the true 
spectrum of the signal. Since the parameters are not known 
we estimate S o ( w , 8 )  by (3), which is the expected value of 
the theoretical signal spectrum over the joint posterior density 
function of the signal and noise parameters. The a posteriori 
density f ( 8 ,  $ 1 ~ )  is obtained by applying Bayes' theorem, i.e., 

11. PROBLEM FORMULATION 

E ZN = {09 19 27 "'"-') be a set Of 

additive noise, that is 

where f ( y l 8 ,  $) is the probability density function of the data 
given the parameters 8 and $, f ( 8 , $ )  is the prior density of 

be found from 

Let y b ] ,  
Observed Of superimposed sinusoids in 8 and $, and f ( y )  is the marginal density of the data that can 

where 

W k  # wi for IC # i, and W k  # 0. 
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where 8 and 9 are the parameter spaces of 8 and $, respec- 
tively. If there is some prior knowledge about the signal and 
noise parameters, it should be quantified by the prior f(8, $). 

Now we want to apply (3) when the signals are defined as 
in (1). In order to facilitate the derivation, we reparameterize 
the sinusoids according to 

m 

s[n] = a& cos ( w k n ) +  ask  sin ( w k n ) .  (6) 
k=l 
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The vector of observations y can now be represented suc- 
cinctly in a vector-matrix form as 

y = D ( w ) a  + e (7)  

where w and a are m x 1 and 2 m  x 1 vectors of the signal 
parameters 6' = [wT a'] given by 

UT = [WI w 2 .  . . w,] 

aT = [ad  as1 ac2 as2 . . . acm asm] 

D(w) = [dc l  dsl dc2...dsm] 

and D(w)  is an N x 2 m  matrix defined by 
fl 0.2 

U1 
w) 

Fig. 1. 
their frequencies.. 

Prior density for the parameters of two sinusoids as a function of where 

d F k  = [1 COS ( W k )  . . . COS ( W k ( N  - I))]  

IV. FINAL RESULTS dTk = [O sin ( w k )  . . . sin ( W k ( N  - I))]. 

From the assumption (2), the only unknown noise parameter 
is 0. 

To begin the derivation, we identify the functions that are 

The rest is a straightforward, albeit tedious algebra. The 
signal spectrum estimate results in 

4 

(14) used in (3). First, the theoretical spectrum of the sinusoids is S ( W I Y )  = m C  I i ( W J Y )  
i=l 

Note that this is the power spectrum density of the superim- 
posed sinusoids if we knew their parameters. 

Second, the posterior density f(fl,+ly) is found from (4) 
where using (2) 

The other factor in the numerator of (4) is the prior of the 
parameters for which we write 

f(e,dJ) = f ( a , w ,  0) = f ( a , w ) f ( a ) .  (11) 

For f ( a ,w) ,  we assume 

f ( a , w )  0: I D T ( ~ ) D ( ~ ) ~ ~  (12) 

and for f(o) 

where K denotes proportionality. Thus, the priors for the 
signal parameters are known up to an unknown proportionality 
constant, and they are almost constant over 8 except in regions 
where any two frequencies get close to each other. If two 
frequencies become identical or their value is equal to zero, 
the prior for these sets of values in 8 becomes also equal 
to zero which reflects the conditions set for (1). In Fig. 1, 
we display the prior f ( a , w )  from (12) when there are two 
sinusoids. Finally, the marginal density is obtained by applying 
(lo), (12), and (13) to (5) .  

1 
J2(wIY) = 4(N - 2m - 2) J h,(w) 

1 
I4("IY) = 4(N - 2m - 2 )  J h s ( w )  

where (;I = [GI, G2 . . . , L j m - 1 l T  and f2 is the m - 1- 
dimensional space of W. Some of the variables in (15)-(18) 
have the following meaning: 

J =  J N - 2 m  ctw (19) 
1 

f2 ( y T P l y ) T  

N-1 

h,(w) = cos 2 ( w n . )  (20) 
n=O 

N-1 

h,(w) = sin ' ( w n )  (21) 
n=O 

The matrix P l  in the integrals in (15)-(18) is a projection 
matrix and is a function of w and w. It is defined by 
P l ( w , W )  = I  

-D(~,~)(D~(~,~)D(~.~)))-'D(W,~)T 

(22) 
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where D ( w , b )  = [d , (w)  d , ( w )  d,(&) . . . d s ( G m - ~ ) ] T .  
Finally, the amplitude estimates used in (15) and (17) are the 
first two elements of a ( w , b )  obtained according to 

qw.b) = ( D T ( ~ , w ) D ( ~ , ~ ) ) - ~ D ~ ( ~ , “ ) ~ .  (23) 

For m = 1, the expressions (15)-( 18) are slightly different 
and they take the forms 

and 

where Ci, and 6,  are the amplitude estimates of the sinusoid 
[as defined in (23)], provided its frequency is w. 

Clearly, this estimator requires multidimensional integra- 
tions that may be considered as its disadvantage. With the 
advance of multiple integration techniques however, this issue 
is losing its importance [3]. 

V. COMPUTER SIMULATION EXAMPLES 
To verify the performance of our spectrum estimator, we 

generated a data vector according to (1) with two sinusoids 
(m = 2). The length of y was N = 25, and the frequencies and 
phases of the sinusoids were w1 = 2 ~ 0 . 2 8 ,  w2 = 21r (0.28 + A), 41 = 0.5 rad, and 4 2  = 0 rad, respectively. The sinusoids 

-loo ~ 0.05 0.1 0.15 0 2  025  0.3 0.35 0.4 045 0 5  
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(b) 

Fig. 2. 
spectrum estimators. 

Power spectrum estimates of the (a) MUSIC and (b) Bayesian 

The results are shown in Fig. 2. The estimated spectrum by 
MUSIC is displayed in Fig. 2(a), and the estimated spectrum 
by the Bayesian method in Fig. 2(b). The markers in the upper 
portion of each figure show the true location of the spectrum 
peaks. Repeated trials show very similar results. Clearly, the 
Bayesian estimator provides a much more accurate estimate. 
Also, it should be noted that the area under the Bayesian 
spectrum is an estimate of the true power of the signal. 
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