
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 44, NO. 3, MARCH 1996 61 1 

Model Order Selection of Damped 
Sinusoids in Noise by Predictive Densities 

William B. Bishop, Student Member, IEEE, and Pets M. DjuriC, Member, IEEE 

Abstruct- We develop a procedure for the order selection of 
damped sinusoidal models based on the maximum U posterion’ 
(MAP) criterion. The proposed method merges the concept of 
predictive densities with Bayesian inference to arrive at a complex 
multidimensional integral whose solution is achieved by way of 
the efficient Monte Carlo importance sampling technique. The 
importance function, a multivariate Cauchy probability density, 
is employed to produce stratified samples over the hypersurfaces 
support region. Centrality location parameters for the Cauchy are 
resolved by exploiting the special structure of the compressed like- 
lihood function (CLF) and applying the fast maximum likelihood 
(FML) procedure of Umesh and n f t s  [38]. Simulation results 
allow for a comparison between our method and the singular 
value decomposition (SVD) based information theoretic criteria 
in [28]. 

I. INTRODUCTION 
BSERVATIONS described in whole or in part by an 0 additively error-corrupted weighted sum of functions of 

the same nonlinear parametric family occur in many fields of 
applied science. Among these weighted sum models, multiple- 
damped sinusoids occurring in speech analysis [lo], bio- 
medicine [25], radio astronomy [3], and a variety of other 
applications are frequently encountered. Parameter estima- 
tion methods based on forward-backward linear prediction 
[21], component by component iterative schemes such as 
expectation-maximization (EM) [ 111, or those based on system 
identification such as KiSSDQML [4] are able to provide 
reasonably accurate estimates of the signal parameters, but 
all rely on a priori knowledge regarding the actual number of 
signal components (i.e., the model order). In most practical 
situations this information is unavailable, and therefore, a 
reliable technique for estimating this number is required. 

As this problem is an old one, an exhaustive retrospect 
of the extensive literature is almost impossible. Recently, 
however, two interesting criteria were developed [28]. Both 
are singular value decomposition-based (SVD-based) offshoots 
of the popular Akaike information criterion (AIC) and mini- 
mum description length (MDL) rules originally proposed by 
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Akaike El], Schwartz [35], and Rissanen [29]. Because the 
original AIC and MDL were derived by way of asymp- 
totic assumptions, however, their utility in any form for 
model selection of decaying sinusoids (or any other tran- 
sient dlata model for that matter) must be carefully exam- 
ined. 

In lhis paper, following the contemporary theory of 
Bayesian statistical inference, we derive a maximum a 
posteriori estimator for the number of damped sinusoids 
in additive white noise. Predictive densities and estimation- 
validation techniques [6], [7], [22], [26] are used to construct 
selection criteria for the models. The predictive densities are 
formedl by splitting the data into two mutually exclusive sets 
(‘‘trainling” data and “validation” data), one of which (i.e., 
the training data) is used to obtain prior predictive densities 
for the parameters of each model. The remaining validation 
data are used to assess the likelihood of each model. It is 
shown that the best results are obtained when the training data 
comprise the minimum possible number of the last samples 
of the time series. 

Our approach results in a pair of complicated integrals that 
are solved numerically by Monte Carlo importance sampling 
integration. A multivariate Cauchy probability density function 
(p.d.f.) is employed to produce stratified random variates 
over the integrands support region. By exploiting the special 
structure of the integrand (i.e., the CLF), the FML procedure 
yields the centrality location parameters for the Cauchy. The 
spread parameters are set by matching the support region of the 
Cauchy with that of the integrand, one dimension at a time. 
Computer simulations on two-component damped sinusoidal 
data demonstrate the relative efficacy of our procedure in 
comparison with the SVD-based information theoretic criteria 
of Reddy and Biradar [28]. In particular, our results expose 
the shlortcomings of these rules when the data record length 
is not properly coupled with the information bearing portion 
of the signal. 

The paper is organized as follows. In Section 11, the general 
form of the MAP criterion is derived and the philosophy 
behind predictive densities is explained in detail. Section I11 
considers the special case of model order selection of multiple 
damped sinusoids in white Gaussian noise. A brief exposition 
into Monte Carlo importance sampling integration is provided 
in Section IV and a justification of the Cauchy importance 
function is provided therein. Discussions and simulation results 
are provided in Sections V and VI, and finally in Section VII, 
conclusions are drawn. 
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11. ORDER SELECTION VIA TKE M M  
CRITERION AND PREDICTIVE DENSITIES 

To eliminate the bias that can result from a proper prior, one 
may opt for a noninformative one. Generally speaking, nonin- 
formative priors are improper, but are attractive because they 
reflect liale information relative to that which is expected to 
be provided by the data. Unfortunately, the direct application 
of noninformative priors also encounters a serious setback-it 
results in arbitrary model selection rules [6] ,  [26]. 

Formally, a noninformative prior for a model k is written as 

A. The MAP Criterion 

the following: 
The general problem of interest may be characterized by 

Mo : X[n] €(12;$), 12 E ZN 

Here, M ,  represents a qth-order model, and M O  the “noise 
only” model. Q represents the number of models under con- 
sideration, and ZN =. {0,1, . s . , N - l} denotes a finite set 
of nonnegative integers. Both N and Q are presumed known. 
The signal components s,(n; e,) are completely specified up to 
the unknown parameter vectors {82}llilq. The noise samples 
~ ( n ;  $) are a sequence of random variables whose population 
distribution is known, but whose characteristic parameters $ 
are not. The model order q is also unknown, and the objective 
is to estimate g according to 

 MAP = arg max{p(g I x)} (2)  
qEZQ 

where p ( q  I x) is the posterior probability mass function of q 
giventhedatax, andZQ = { 0 , 1 , . . . , Q - l }  . 

From Bayes’ theorem we can write 

where g(.) is a function whose integral diverges over the pa- 
rameter space and c k  is an unknown constant. When applying 
the purely noninformative Bayesian approach to the analysis 
of a single model k ,  the posterior of the model parameters is 

- Ckf(Xl8k,4,k)g(8k,$l - 
ck s8, 9 f ( x lek ,$ ,k )g (h ,$ l  k ) d W $ , ’  

(4) 

As long as the integral in the denominator converges, the 
posterior is well defined despite the fact that c k  is unspecified 
(since a cancelation occurs between the numerator and de- 
nominator), This is not the case when evaluating the posterior 
odds of two models, however. For example, consider the 
following likelihood ratio C3,k(x) of two models j and k 
with noninformative priors f ( O , ,  4 I j )  = c3 . g(B,, 4 I j) and 
f ( ( ? k , $ l k )  = Ck .g (h ,+ Ik )  

where we have assumed that all the models are equiprobable 
a priori. Marginalizing over the nuisance parameters in the 
usual way we obtain 

The term f(x I O , , $ , q )  in (3) represents the likelihood of 
the parameters given the observed data x, while the second, 
f(O,, $ I q ) ,  denotes the prior p.d.f. of the unknown parameters 
for a q-component model. 8, and 9 are the parameter spaces 
of 19, and 4, respectively. 

B. On the Choice ofa Prior 
To maintain the analytical tractability of the problem, we 

would certainly like to select a proper prior,’ which is a 
member of the same natural conjugate family of distributions 
as is the likelihood function. This approach must be rejected, 
however, unless one can be found that is strongly justified by 
valid physical arguments. As was pointed out in [22], this is a 
common problem with the “fully” Bayesian approach to model 
selection, and is the main reason that modified versions are so 
common in practice. 

‘ A  “proper” prior IS defined as one that retains the basic properties of a 
probability density function That is, it is stnctly nonnegative, and integrates 
or sums to unity over its admissible range of values. 

From this example it is clear that the unspecified constants do 
not cancel, and they must now somehow be specified. This 
situation is similar to threshold setting in multiple hypothesis 
testing (a problem we certainly want to avoid). In order to 
overcome this problem, we will use an estimation-validation 
approach implemented by Bayesian predictive densities. 

Proceeding with this method, we partition the data x into 
two mutually exclusive sets, XR and X N - R .  Here the sub- 
scripts R and ( N - R )  denote that XR and X N - R  are composed 
of R and N - R samples, respectively. We then make the 
approximation 

Now consider the marginalization in (5) 

f ( X N - R  I XR, 4 )  

f ( X N - - R l X R , e , , 4 , q )  f(~,,4IxXR,4) de&$. 

(6) 

“ ’- 
likelihood prior 

= L1eqL 

The first term ~ ( X N - R  I XR, e,, 4, q )  in the integrand is the 
predictive density of XN-R based on the data XR and the 
model parameters. The second function f (O,,  4 I XR, q )  is the 
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prior density of the unknown parameters, which can also be 
interpreted as the posterior density of the parameters given 
the data XR. 

Note that ( 5 )  can be written as 

Since the identical prior p.d.f.'s f (O,,  I I ,  I q )  are now present 
in both the numerator and denominator, when we specify 
them as noninformative and the arbitrary constants appear, a 
cancellation effect (similar to that in (4)) takes place between 
the numerator and denominator. 

C. On Partitioning of the Data into Estimation 
and Validation Subsets 

An important issue concerning the application of predictive 
densities is the manner in which the data are partitioned. Many 
schemes have been devised over the years for accomplishing 
this task [8], [15], [24], [27], [30], [37], each with its relative 
advantages and disadvantages. The transient nature of damped 
sinusoidal data combined with our pursuit of a minimally 
informative proper prior suggests that the training data should 
comprise the samples that contain the least information. It 
therefore seems plausible that XR should consist of the mini- 
mum possible number of the latter R samples of x . ~  To clarify 
this notion, consider the following transient data model: 

n = O , l , .  S .  , N - 1 (9) 

where the error sequence E[.] %! N(0,a2). In matrix form, 
(9) can be written as 

x[n] = ae-Qn c o s ( 2 r f n )  + ~ [ n ] ,  

x = h a + e  

where h = [l e-Q c o s ( 2 r f )  e--2Q c o s ( 4 r f )  . + e--(N-l)cu 
cos(2(N - 1)rf) l ' .  For clarity, take the noise variance a2 
and the nonlinear parameters f and a to be known constants. 
Next we split the data x into XR and X N - R .  The prior density 
of the parameters in (6) can then be viewed as the posterior 
of the unknown amplitude a (given the training data XR). The 
quantity (a I XR) N N(&R,  c:~), and thus 

-- 2,: ( a - 8 d 2  
f ( U l X R )  e a R  

where i c ~  = ( h Z h R ) - ' h g x R  and azR = a 2 ( h ; h R ) - l  [2]. 
Since the variance a;, is inversely proportional to hghR, 
it is clear that increasing hghR causes 02R to decrease. 
Furthermore, hghR = CzEKRh: (here, h, is the ith element 
of h R ,  and KR c Z, consists of R elements of ZN) ,  so as 
R increases, h;hR increases, causing .a;, to decrease. The 

*Since the signal is increasingly inundated by noise as the process evolves 
with time, the last samples of x will contain the least amount of information. 

U Prior Density of Amplitude Based on First 10 Data Samples 

0.5 E C O  e -1 l F F  -0.5 0 0.5 1 1.5 2 2.5 3 

amplitude 
Likelihood of Amplitude Based on Last 54 Data Samples - 

0.5 

i o  c -1 -0.5 0 0.5 amplitude 1 1.5 2 2.5 3 

- Prior Density of Amplitude Based on Last 10 Data Samples 

c -1 -0.5 0 0.5 1 1.5 2 2.5 3 
amplitude 

U Likelihood of Amplitude Based on First 54 Data Samples 

amplitude 

Fig. 1.  Prior densities for a single unknown amplitude parameter and the 
corresponding likelihood functions. The top two distributions depict a prior 
based on the first ten samples and a likelihood based on the remaining 54 
samples. The bottom two distributions show the prior based on the last ten 
samples and the likelihood based on the first 54 samples. Clearly, the topmost 
prior is informative for a, while the prior in the third diagram is relatively 
noninformative for a. 

prior density of a is therefore increasingly more informative 
(smaller 02,) for larger R. Also note that hghR is largest 
when the samples are taken from the beginning of the time 
series and smallest when they are taken from the end. 

For demonstrative purposes, consider the model in (9) with 
a = 1, f = 0.24, a = 0.05, N = 64, and o2 set to provide 
a signal-to-noise ratio (SNR)3 of 15 dB. We generated 10000 
realizations according to (9) and plotted histograms of &R (this 
is the empirical density f ( a  I XR) based on 10000 trials) for 
two cases. For the first we constructed f( a I XR) with the Jirst 
R = 10 data samples (which entails that the corresponding 
likelihLood of a was based on the last 54 observations), 
and in the second case we formed f ( a  I XR) using the last 
R = 10 samples (implying that the likelihood of a was 
based on the jirst 54 samples). Fig. 1 shows the normalized 
histograms of i i ~  superimposed on the theoretical density 
f ( u  1 XR), along with the normalized histograms of & N - R  

superimposed on the theoretical likelihoods ~ ( X N - R  I x, a). 
The first two distributions are nearly identical, implying that 
approximately the same information is contained in the prior 
as is contained in the likelihood function. That is, f ( a  I XR) is 
highly informative (relative to its likelihood) when it is based 
on the first R = 10 samples. Conversely, the second pair of 
histograms demonstrate that f ( a  I XR) is locally uniform over 
the support region of the likelihood function, and thus, it is 
indeed noninformative relative to the likelihood function. 

It can likewise be shown that decreasing the number of 
samples R decreases the information in the prior, and increas- 
ing 6: increases the information in the prior. Note that this 
is consistent with the initial approximation in (5). That is, the 

31n (this context, SNR refers to the peak SNR that is, the signal-to-noise 
ratio of the first sample defined as 

SNR = 10loglo ( 
am;1itude)2) dB. 

( p  2 c  
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approximation f(x 1 q )  M ~ ( X N - R  I XR, q )  is better when X R  

contains less information. 

111. ORDER SELECTION OF DAMPED 
SINUSOIDS IN WHITE GAUSSIAN NOISE 

Consider the data model in (1) wherein the signals s, (n; 0,) 
represent real damped sinusoids and the noise samples ~ [ n ]  N 

N(0, ~7'). For this case, the observed data x can be represented 
by 

M O  : X[n] = € ( n , u 2 ) ,  72 E ZN 
P 

M ,  :%[.I = ~ a , e - " " c o s ( 2 n f , n  + q%)+ e(n;u2), 
2 = 1  

n E Z N ,  4 E { 1 , 2 , . . . , &  - 1). (10) 

The unknown parameters associated with the ith signal are its 
amplitude (a ,  ) , frequency ( f, ) , phase ( 4,) , and damping factor 
( a,). The noise power u2 is also assumed unknown. Given the 
data {z,},~z~, the objective is to estimate the model order 
q by applying the MAP criterion in (8). 

Equation (10) can be written concisely in vector-matrix 
notation as 

x = A,aq + E ,  q E ZQ (1 1) 

where x and t are N x 1 vectors, a, is a q x 1 vector of 
amplitude constants, and A, is the N x q signal manifold 
matrix whose ith column is of the €orm 

a, = [cos(b,) cos(2nf ,  + 4,) . . . e--at(N-l) 

x cos(2nf , (N - 1) + & ) I T .  
Since the noise process is white and Gaussian, the likelihood 
term can be expressed as 

To depict a state of ignorance concerning the unknown 
parameters, we assign the noninformative Jeffreys' prior 
f(8,, 0 I q )  oc 0-l (see [2]). Combining this and (12), the 
numerator of (8) can be expressed as 

x (xKP&xN)-(w)d4,df,da,, N > q .  (13) 

The matrix Pt) is the projection operator for the left nullspace 
of A.,,(.), and r(.) is the standard gamma function. The 
denominator in (8) can likewise be marginalized, the result 
of which is the following MAP model selection criterion for 
damped sinusoidal signals in white Gaussian noise (see (14) 

at the bottom of the page). Here the subscripts N and R in 
the numerator and denominator indicate that they are based on 
N ,  and the last R samples of the data vector x, respectively. 
Note that the total dimensionality of the integrals is 3q for both 
numerator and denominator. To lower the total dimension to 
2q, we apply the following transformation to the data model 
in (lo), as follows: 

4 

i=l 
a 

i=l 

- a, sin q5Ze--cutn sin(a.irf,n)] (15) 

the right-hand side of which can be expressed in matrix form as 

cos(2nj,n> - a, sin 4ze--cytn sin(anf,n)l 
4 C[a, cos 

z=1 

=H,b,, n c  ZN 

where 

€3, = [Cl SI c2 s2 .. . cq %I, 
b, = [by b: . . .  b:lT 

with 

Applying the transformation in (15) to (10) and following 
all the steps that led to (14), we arrive at (16), shown at 
the bottom of the next page. Note that the dimensions of 
the integrals in (14) have been reduced by a factor of $ 
as a result of the transformation. Still, their evaluation is 
not trivial by any means. They will obviously not have a 
closed-form solution, and we therefore resort to numerical 
methods. Since the dimension of the parameter space is large, 
a classical technique such as numerical quadrature would be 
excessively computational. The Monte Carlo method, on the 
other hand, has long been recognized as a powerful alternative 
to performing calculations that are considered too complicated 
for classical techniques. 
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IV. MONTE CARLO IMPORTANCE SAMPLING INTEGRATION 

A. Overview of Importance Sampling 

The fundamental concept behind simple Monte Carlo inte- 
gration is to uniformly sample M points {yi}llilM from a 
multidimensional volume V .  Then the Monte Carlo estimate 
of the integral of a function E over V is [18], as follows: 

Y 

standard deviation of error integral estimate ' 

where 
. M  

Clearly, the accuracy of the procedure depends on the error 
variance of the estimate. The variance can be reduced by 
applying importance sampling. With this technique, the M 
samples yz are not taken uniformly, but rather, are stratified 
so that they are clustered in regions of V where the magnitude 
of E ( . )  is largest. This overpopulation is compensated for by 
reducing the effective weight of the function in this region. 
The reweighted function then becomes more nearly constant, 
thereby reducing the variance of the integral estimate. 

To clarify this idea, let-us suppose that M variates yz are 
generated according to a general p.d.f. /I(.), where 

h(.)dV = 1. 

Then the integral of any function E(  .) can be estimated as 

where E(.)  is the well-known expectation operator. Note that 
if the function E (  .) is reweighted to 

c 3 constant 
h(*)  

then the standard deviation of the error in the integral estimate 
is 

and the error variance is reduced. It should also be 
that importance sampling is the only known means by 

(18) 

noted 
which 

infinite singularities (or near singularities) can be "removed" 
from the integrand (this is accomplished by sampling from 
an importance function with a similar singularity in the same 
location). 

The asymptotic error variance of an importance sampling 
estimate strongly depends on the density h(.)  (also known 
as the importance function) [23]. The three most important 
properties of a good importance function are as follows. 

The simplicity by which the random variates yz can be 

h( . )  should have longer tails than the integrand <(.). 
h(.) should be a close approximation to E ( . ) .  

The decision to use a Monte Carlo procedure was influenced 
mainby by the relationship between the dimensionality of the 
parameter space and the convergence rate of the integral 
estimate to the true value. From (17) it is clear that the 
uncertainty of a Monte Carlo integral estimate decreases as 
M -  f , independently of dimensionality. Classical multidimen- 
sional quadrature techniques, on the other hand, maintain a 
given integration accuracy only at the expense of exponentially 
increasing the number of functional evaluations. Therefore, 
a qualdrature rule requiring M functional evaluations in one 
dimension will require MP evaluations in p dimensions to 
maint,ain the same accuracy. This slows down the convergence 
rate in p dimensions by a factor of :. Since the convergence 
rate of Monte Carlo is independent of p ,  there is always some 
p for which Monte Carlo is more efficient4 than the popular 
quadrature rules. 
The importance sampling procedure decreases computation 

time wen further, since sampling from h(.) allows for fewer 
samples to be taken. So, although the implementation of 
(16) by importance sampling integration is fairly intensive, 
it is certainly more efficient than simple Monte Carlo or the 
classical alternatives. For detailed discussions on importance 
samplling, cf. [5 ] ,  [14], [20], [34] and [36]. 

generated from h( .). 

B. On the Choice of an Importance Function 
Investigations into the integrands in (16) have shown them 

to be very sharply peaked, particularly for high SNR and/or 
large N .  Fig. 2 depicts a typical realization of the normalized 
3-D surface and corresponding contour plot of the integrand 
IHTIJql-+ ( x z P & x , ) - ( v )  in the numerator of (16) over 
the (a,  f )  plane for N = 64 samples, and an SNR = 20 dB. 
The inodel order was set at q = 1. The true values of the 
signal parameters were set at a1 = 1.0, f l  = 0.2, $1 = 
0.0, a1 = 0.15. The characteristics of this integrand have 
been confirmed by observing many realizations of data from 
a variety of damped sinusoidal models. The surface in Fig. 2 

4"Nlore efficient" in the sense that it takes less computation time to achieve 
a given error in integration. 
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025- 

p 02- 
F 
+! 0 15-  

0 1  

Two-Dimensional Integrand 

decay rate frequency 
Contours of Equal Magnflude 

0.15 0.2 0.25 
frequency 

Fig. 2. Normalized 2-0 integrand for a single damped sinusoid in noise. The 
SNR = 20 dB, and the number of data samples in N = 64. These diagrams 
should be compared with those in Fig. 3. 

represents a typical realization. This observation has also been 
verified in [38]. 

These properties prompted us to consider both multivariate 
normal and multivariate Cauchy distributions as importance 
functions. Based on stability considerations we decided upon 
the latter, for it is well known that Monte Carlo importance 
sampling is unstable for importance functions that pass through 
zero, or which approach zero quickly (such as Gaussian 
p.d.f.’s) 1171. The Cauchy has longer tails and a sharp peak, 
while Gaussians can be sharply peaked only at the expense of 
shorter tails. The short tails can cause stability problems since 
if the integrand should happen to approach zero slower than 
the Gaussian, then 

(19) 

and the resulting error variance in (18) will approach infinity. 
It is therefore dangerous to choose importance functions that 
approach zero quickly (such as Normal p.d.f.’s) [17], espe- 
cially when one is attempting to match a highly concentrated 
integrand with a condensed importance sampling function. 

Upon deciding on the Cauchy importance function, all 
that remains is the initialization of its location and spread 
parameters. The spread parameters are found by matching 
the support region of the Cauchy with that of the integrand. 
To see how this is accomplished, compare the contours of 
Fig. 2 with those of Fig. 3. Clearly, the importance function 
covers the same region as does the integrand. The location 
parameters are the maximum likelihood estimates of the peak 
of the CLF. They are found with the FML estimation procedure 
of Umesh and Tufts [38]. The importance sampling procedure 
is more sensitive to the initial frequency estimates fz than to 
the those of the decay rates 6%. This is not unexpected since 
the compressed likelihood function is much smoother in the a 
subspace than in the f subspace (cf. Fig. 2 for the 2-D case). 

V. DISCUSSION 

The model selection rules in [28] are based on the infor- 
mation theoretic methods of Wax and Kailath [41], which are 

Two-Dimensional Cauchy Importance Function 
104 

10 

5 

0 
0.3 0 26 

decay rate frequency 
ContouB of Equal Probability 

Fig 3 Two-dimensional Cauchy importance functlon with corresponding 
contours of equal probability Maximum likelihood estimates of frequency 
and decay locabon parameters are 0 1960 and 0 1700, respectively The spread 
parameters are 8f = 1 x and 5- = 1 x lo,-’ respectively These 
diagram should be compared with those in Fig 2 

the SVD linear predictive versions of the AIC [ l ]  and MDL 
[29], [35]. They are attractive in that they do not require the 
solution of nonlinear equations for the determination of the 
maximum likelihood estimates (MLE s) of the models param- 
eters. This makes them computationally advantageous. There 
are, however, some key issues concerning the applicability of 
these rules to damped sinusoidal data (or any transient data) 
that need to be addressed, as follows. 

* The A I C ~ ~ D  criterion is simply a restatement of the 
original (1974) AIC, which was designed to be an asymp- 
totically unbiased estimator of the Kullback-Leibler in- 
formation. It is well known that the AIC is inconsistent 
and has a tendency to overparameterize. 
The M D L ~ ~ D  criterion is a restatement of the original 
MDL in 1291, which was based on the notion of compact 
encoding of data introduced by Wallace 1391 in 1968 with 
the minimum message length (MML) procedure. The idea 
of combining optimal coding theory with inductive statis- 
tical inference was later expanded in [31], [32], and [40]. 
Since the MDL is based on large sample approximations, 
it is questionable in terms of its applicability to model 
order selection of transients (damped sinusoids being just 
one of the many examples). 

e The penalty function of the MDLSVD monotonically 
increases with the data record length. Our claim is that 
this form of penalization is incorrect for transient signals. 
With transients, each additional sample contains less 
relevant information than the previous one, and, thus, 
the penalization should not continually increase with N .  
Instead, the penalty should be directly related to the 
determinant of the observed Fisher information matrix 
(i.e., the Hessian of the log likelihood of the model 
parameters). For example, consider Fig. 4 which shows 
the log determinant of the observed Fisher information 
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SNR = 15dB 
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1 

2 
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I 
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Log-Determinant of Hessian and Fisher Information Matnces vs. N 
70 

60 
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40 

30 
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AIC 0 13 55 32 
MDL 0 29 64 7 
MAP 17 14 64 5 
AIC 0 6 58 36 
MDL 0 16 69 15 
MAP 1 23 76 0 
AIC 0 3 65 32 

' MDL 0 5 84 11 
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data record length (N) 

Fig. 4. Top figure displays the signal envelope on 15 realizations of back- 
ground noise at SNR = 15 dB. The log determinant of the Hessian and Fisher 
information maaices as a function of data record length ( N )  arc shown in the 
bottom figure. The curves depict 15 realizations of the Hessian for a model 
consisting of two damped sinusoids in white Gaussian noise for S N R s  of 0 
dB, 15 dB, 30 dB, and 40 dB. The log determinants of the Fisher information 
are shown by the solid curves. 15 dB 

matrix for the two-component damped sinusoidal model 

z[n] = sin(2r(0.2)n) 
r + d%e-0.05n sin 2r(0.24)n + -) + ~ ( n ) ,  
4 

72 = 0, l , . . .  , N  - 1. 

The curves display the results of 15 realizations for SNR's 
of 0 dB, 15 dB, 30 dB, and 40 dB. Clearly, beyond 
50-60 samples the determinant is nearly constant, and 
these are precisely the points at which the signal energy 
becomes negligible in comparison to the noise intensity 
(cf. Fig. 4 (top)). These results indicate that the MML or 
MDL will provide more accurate selection results than 
those obtained by the MDL in [28] if the penalties are 
derived from the Fisher information matrix [91, [19]. 

( 

AIC 0 0 68 32 
MDL 0 2 89 9 
MAP 0 16 84 0 

VI. SIMULATION &SULTS 

The relative accuracy of the MAP criterion was established 
by comparing it with the SVD-based AIC and MDL model 
selection rules in [28]. We considered two experiments. The 
first quantified the performances of the three criteria as a 
function of SNR with the data record length N held constant. 
In the second experiment, the data record length N was varied 
and the SNR fixed. 

16 dB 

17 dB 

18 dB 

19 dB 

20 dB 

21 dB 

A. Experiment I 
The data model was given by 

~ [ n ]  = 1.Oe-'.ln cos(2r(0.2)n) + 1.0e-0.05n 

X ~ 0 ~ ( 2 ~ ( 0 . 2 4 ) n )  + ~ [ n ] ,  TZ = 0,1, .  . . ,63. 

The noise variance cz was set to provide an SNR ranging 
between 10 dB and 21 dB, in 1-dB increments. The training 

AIC 0 0 72 28 
MDL 0 0 95 5 
MAP 0 12 86 2 
AIC 0 0 73 27 
MDL 0 0 96 4 
MAP 0 6 94 0 
AIC 0 0 75 25 
MDL 0 0 96 4 
MAP 0 2 98 0 
AIC 0 0 75 25 
MDL 0 0 96 4 
MAP 0 1 98 1 
AIC 0 0 77 23 
MDL 0 0 96 4 
MAP 0 0 100 0 
AIC 0 0 77 23 
MDL 0 0 96 4 
MAP 0 0 100 0 

TABLE I 

MDL CRITERIA FOR VARIOUS SIGNAL-TO-NOISE RATIOS. ENTRIES INDICATE 
THE NUMBER OF TIMES OUT OF 100 INDEPENDENT TRIALS THAT THE 
GIVEN CRITERION SELECTED A PARTICULAR MODEL. THE NUMBER OF 

PERFORMANCE COMPARISON BETWEEN THE MAP AND SVD-BASED AIC AND 

SAMPLES IS N = 64 AND THE CORRECT MODEL ORDER IS TWO ( H z )  

data for the predictive densities were formed with the latter 
eight samples of x. For each of the hypothesized model orders 
H,, i = 0,1,2,3, the importance sampling integration was 
based on M = 2000 random variates from a multivariate 
Cauchy density. The spread parameters for the frequencies 
were set to 6f% = 1 x lop4, while those for the decay constants 
were 6a, = 1 x lo-', i = 1,2,3.  The location parameters for 
the Cauchy were estimated via the FML algorithm. The SVD- 
based AIC and MDL were implemented with the modified 
backward linear prediction formulation, with a prediction filter 
order ad length 32. This is the same order that was used in [28]. 

Table I contains the selection results for 100 independent 
trials. The number of observations was set at N = 64. From 
Table I[ it is clear that the accuracies of the MAP and MDL 
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256 samples 

TABLE I1 
PERFORMANCE COMPARISON BETWEEN THE MAP AND SIX-BASED AND 
MDL CRITERIA FOR VARIOUS DATA RECORO LENGTHS ENTRIES INDICATE THE 

CRITERION SELECTED A PARTICULAR MODEL. THE C o m m  MODEL ORDER Is 
Two ( H z )  AND FOR ALL TRIALS THE SNR WAS FIXED AT 15 dB 

Data Record Length N I Criterion I Ho I H I  I H2 I H3 
I A  0 I 68 I 32 

NUMBER OF TIMES OUT OF 100 INDEPENDENT TRIALS THAT THE GWEN 

~~~ 

8 

MDL 0 I 46 29 2 5  
MAP 0 1 3  97 0 

64 samples 

, 

I A  IC I 0 I 7  1 3 8 1 5 5  
150 samples 

I I 

I A  IC I 0 I 24 I 25 I 51 

criteria were essentially the same, while the AIC was consis- 
tently below them. As is typically the case, the AIC tended to 
overparameterize. Although the MDL overparameterized less 
frequently than the AIC, it did so more often than the MAP 
criterion. The MAP rule rarely overestimated the model order, 
and for low SNR’s it tended to select the noise-only model 
(Ho).  (This is entirely reasonable since, for low SNR’s, the 
information in the data is totally inundated by noise.) 

B. Experiment 2 

samples, the disparity between the two criteria became ap- 
parent. For N = 128, the correct selection probability of the 
MDL decreased to 0.69, while that of the MAP increased to 
0.93. This overall trend persisted as well. When N = 256 
samples, the correct selection probabilities of the MDL and 
MAP decreased and increased to 0.29 and 0.97, respectively. 
n s  difference is certainly much larger than the 0.89 and 
0.84 correct selection probabilities that resulted when N = 64 
samples. It is obvious that the accuracy of both the AIC’s and 
MDL’s deteriorate with increasing N .  The MAP criterion, on 
the other hand, showed an initial improvement as N increased. 
It then leveled off for N > 128 samples. This result certainly 
seems more logical. That is, the performance of any statistical 
criterion should improve to some extent when the phenomenon 
under study is observed over a longer time interval, and if it 
does not improve, it certainly should not deteriorate. 

VII. CONCLUSION 

In this paper, following the Bayesian approach to model 
selection, we investigated a MAP criterion for selecting the 
model order of superimposed signals in noise. The criterion 
was applied to the case of damped sinusoidal signals in i.i.d. 
white Gaussian noise, and its performance was compared to 
the SVD-based AIC and MDL. Our criterion proved to be 
more consistent than either of the others for damped sinusoidal 
data models. Computer simulations provided for a comparison 
between the MAP, AIC, and MDL criteria. 
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