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Abstract 

We propose an iterative minimum mean square error (MMSE) approach to parameter estimation of multiple 
exponentially damped sinusoids embedded in white Gaussian noise. The approach splits the observed signal into its 
constituent components and proceeds to estimate the parameters of the highest energy signal component first, followed 
by the next highest energy signal component, and so on. This scheme reduces the computational complexity of the overall 
procedure by approximating the multidimensional integrals with several two-dimensional integrals. For the evaluation 
of these integrals, we introduce an adaptive Gaussian procedure. We present computer simulation results that show the 
performance of our approach and compare it with the performance of the alternating projection and the expectation- 
maximization schemes. 

Zusammenfassung 

In dieser Arbeit wird ein iterativer, auf dem Prinzip des minimalen mittleren quadratischen Fehlers (MMSE) 
beruhender Ansatz fi_ir die Parameterschltzung im Fall mehrfacher exponentiell gedampfter Sinussignale in weiBem 
Gauljschem Rauschen vorgeschlagen. Das beobachtete Signal wird zunlchst in seine Komponenten zerlegt; danach 
werden die Parameter der Signalkomponente mit der griirjten Energie geschltzt, dann jene der Signalkomponente mit 
der zweitgrijl3ten Energie usw. Diese Vorgangsweise reduziert den Rechenaufwand, indem mehrdimensionale Integrale 
durch mehrere zweidimensionale Integrale angenlhert werden. Fiir die Auswertung dieser Integrale wird eine adaptive 
Gaul%Methode vorgeschlagen. Computersimulationen dokumentieren die Leistungsfihigkeit unseres Ansatzes und 
vergleichen sie mit der Leistungsftihigkeit der Methode alternierender Projektionen und der Expectation-Maximization- 
Methode. 

Rbumit 

Nous proposons une approche itCrative par l’erreur quadratique moyenne minimum (EQMM) de l’estimation de 
paramitres de sinusoides multiples amorties exponentiellement et noykes dans du bruit blanc gaussien. L’approche 
s&pare le signal observC en ses diffkrentes composantes et estime ensuite les paramktres de la composante du signal ayant 
la plus haute tnergie, puis celle ayant la plus haute knergie parmi les restantes, et ainsi de suite. Cette mCthode rkduit la 
complexitk de calcul de la procCdure totale en approximant les intCgrales multidimensionnelles par plusieurs inttgrales 
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bidimensionnelles. Pour &valuer ces integrales, nous introduisons une proctdure adaptative gaussienne. Nous prtsentons 
des rCsultats de simulations informatiques qui montrent les performances de notre approche et les comparons avec ler 
performances des mCthodes de projection alternCe et de maximisation de I’espCrance. 

Keywords: Parameter estimation; Damped sinusoids; Minimum mean square estimation; Bayes’ theory; Adaptive 
Gaussian quadrature 

1. Introduction 

In many engineering and scientific problems the 
observed measurements are modeled as exponenti- 
ally damped sinusoids distorted by additive noise. 
The important parameters of these models are the 
sinusoidal frequencies and the damping factors be- 
cause they reveal significant information related to 
the phenomenon under investigation. A difficult 
but interesting problem has always been the es- 
timation of these parameters. There have been 
a variety of approaches for estimation, most of 
them revolving around the maximum likelihood 
(ML) principle or linear prediction. As this is 
a highly nonlinear estimation problem, most of the 
methods in the literature maximize the likelihood 
function iteratively by employing variations of the 
expectation-maximization (EM) [2] or alternating 
projections (AP) schemes [ 121. 

At high signal-to-noise ratios (SNRs) the ML- 
based methods perform equally well. However, 
these methods require a search over the frequency- 
damping factor plane to locate the global max- 
imum or minimum, and their accuracy depends on 
the used grid resolution. Moreover, most of the 
iterative algorithms are sensitive to the choice of 
initial estimates, particularly when there are closely 
spaced signal components in the frequency domain, 
and the SNR is low. Recently, some efficient tech- 
niques based on linear prediction were proposed 
[5, lo], but they require higher SNRs to achieve the 
Cramer-Rao lower bounds (CRLBs). 

In contrast to the above approaches, we focus on 
a procedure that yields MMSE estimates. It is well 
known that MMSE estimation requires multi- 
dimensional integrations. Motivated by the ortho- 
gonality of sinusoids, we reduce the multidimen- 
sional integrations into a set of two-dimensional 
integrations and propose an iterative approach 

similar in philosophy to the EM and AP. Instead of 
estimating all of the parameters simultaneously, we 
estimate the parameters of one signal at a time 
while considering the remaining parameters 
‘known’ and equal to their current estimates. We 
also propose an efficient numerical approach, 
adaptive Gaussian quadrature (AGQ), for perform- 
ing the numerical integrations. The computational 
load of our approach is low, and its performance is 
excellent. Similarly to the EM and AP, it is also 
sensitive to initializations. To desensitize the pro- 
cedure, we have paid special attention to its initia- 
lization. The initial set of estimates are found by 
a two-step scheme that is based on notch periodo- 
grams. First the nonlinear parameters of the stron- 
gest signal component are estimated, followed by 
its annihilation and parameter estimation of the 
second strongest signal component, and so on. For 
initialization of the weakest component, we apply 
multimodal functions. 

The paper is organized as follows. In Section 2, 
we state the signal model and formulate the prob- 
lem. The parameter initialization is discussed in 
Section 3, and the MMSE procedure in Section 4. 
In Section 5, we provide simulation results and 
comparisons with the AP and EM methods. For 
the actual implementation of the estimator, we in- 
troduce an AGQ technique, which is outlined in 
Appendix A. Finally, in the last section we make 
some concluding remarks. 

2. Problem formulation 

A vector of measurements, y, is observed whose 
components are samples of 4 complex sinusoids 
corrupted by additive white Gaussian noise, i.e., 

y[n] = i Ui eXp(Mill + j2nLn) + W[n], ui < 02 (1) 
i=l 
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where n =O, 1,2, . . . ,N-1, ai, C(i and A, i = 
1,2, . . . ) q, are the complex amplitude, damping 
factor and frequency of the ith sinusoid, and 

j =n.The random samples w [n] are complex, 
independent and identically distributed. Moreover, 
the real and imaginary components of w[n] are 
identically normally distributed with zero mean 
and unknown variance 0~12. The number of 
sinusoids q is assumed known. 

From (l), the data model can be rewritten in 
a vector--matrix form according to 

y = H(J; a)a + w, (2) 

where H is an N x q matrix whose columns span the 
signal space, a is a vector of complex amplitudes, 
and w is a noise vector, where w - %?JV(O, 0~1). The 

matrix H is defined by 

H(f; a) = Cd(fi, Q) d(f2, ~2) . . . d(f,, a,)l, 

where for i = 1,2, . , q 

d(h, tti)T = [l exp(xi + j2nA) . . . exp((N - l)ai 

+ j(N - 1)27Eh)], Xi d 0. 

(In the remaining part of the paper, for notational 
convenience, whenever there is no ambiguity, 

d(f, a) and H(x a) will be denoted as d and H, 
respectively.) Given the observations y and the 
number of sinusoids q, the objective is to estimate 
the nonlinear parameters fi and Cli, i = 1,2, . . . , q, 

of the signals. Note that if a is a zero vector in (2), 
this becomes an undamped sinusoidal model, and it 

can be solved by the proposed algorithm as 
a special case. 

3. Parameter initialization 

To start the iterative algorithm, we have to find 
the initial approximate values of Cli and J for 
i = 1,2, . . . , q. First we estimate the initial values of 

x andfof the strongest sinusoid using the periodo- 
gram. We find the frequency estimate first, and, 
subsequently, the estimate of the damping factor 
without searching the wholef-cr plane. Once they 
are obtained, we proceed with the second strongest 

sinusoid, and so on. This method of estimating the 
frequency is similar to the alternating notch-peri- 
odogram algorithm (ANPA) initialization for un- 
damped sinusoids in [6,7], except that our model is 
more general since it includes damping factors. 

Before we describe the procedure for finding the 
initial estimates of the damping factors and fre- 

quencies, we define the notch periodogram of the 
data y at f with a notch set at (J a) by using the 
following result of orthogonal subspace decompo- 
sition [4]: 

Pn(f; J; a) = uH(P(J 0; J; a) - P(A a))y, (3) 

where P(x a) is a projection operator defined by 
P(J a) = H(HHZZ)-’ HH, with the superscript 
H denoting conjugate transposition. 

We exploit (3) in obtaining the initial estimates of 
the unknown parameters, The frequency estimate 

of the first sinusoid is found from the periodogram 
of the data. To find the initial estimate of the first 
damping factor, we proceed as follows. Let s1 de- 
note the first signal component given by 

Then we can show that 

sVV-,> 0; fi, c(1) - P(f1, z1))s1 =O, (4) 

which implies that c( can be estimated by minimiz- 
ing the following function with respect to K 

P,(?l;“C, co = sV(?1,O;“C, x) - P(J 1 B))Sl. (5) 

where P,($ ;fr, x) is the notch periodogram of s, at 
the estimated frequencyfl with a notch at [fi, cx]. 
The minimization of (5) yields a different result 
from the maximum projection method which 
searches for the x that corresponds to the minimum 
value of the orthogonal projection operator 

llP’(A, r)sl 11’ = il(Z- P(fl, a))sl /12. If the ob- 
served data represent a single component, the dif- 
ference between these two methods is insignificant. 

The advantage of our method becomes distinct 
when the data y are composed of multiple damped 
sinusoids. Suppose for example that y consists of 
two signals, s1 and s2, and that sX is the weaker one. 
Then the projection of s2 onto the space spanned 
by P’(f,, ‘A~) is larger than the projection onto the 
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notch periodogram, or 

where P,(fi;fi, al) is the notch periodogram of the 
vector s2 atfi with respect to the notch set [fr , al]. 
Thus, compared with the periodogram, the notch 
periodogram can reduce the interference from 
other components in the parameter estimation of 
individual components. Later we will present the 
initialization performance and compare it with the 
performance of the classical maximum projection 
approach. 

In summary, the initialization is implemented 
according to the following scheme. To begin, we 
search for the frequency?:” of the strongest com- 
ponent in the periodogram, then estimate 6:‘) that 
corresponds to the minimum of the notch periodo- 
gram (5) at &(‘“’ with respect to the notch set 
[f,!;‘“‘, a]. Fixing the initial estimate at [f{:“‘, Gy’], 
the initial parameter estimates of the second 
sinusoid are obtained by the notch periodogram 
with a notch at [fi;‘“‘, &?‘I. Continuing in this 
fashion, at the ith iteration we find the initial esti- 
mates from 

ji(O) = arg rn? P,(fi; 0,_ i), 

ai -(O) = arg min P,(i’O’; & 1, J(O), LX), 
CI 

where P,(f; 8,) is the notch periodogram of the 
data vector Y at f with resnect to the notch set 
&, 8, = [_f:;‘“‘: $“:. . . , J(O), &i”‘, . . ,A(‘), a^!“] with 
i notches,-and-8o = 0 (empty set). The subscript 
denotes the signal component number, and the 
superscript the iteration number. 

Since the initialization algorithm represents 
a search along the frequency axis followed by 
a search along the damping factor axis instead of 
the wholef-cc 2D plane, the estimated parameters 
do not necessarily correspond to the maximum of 
yHP(f, a)y. In particular, for low SNRs or large 
damping factors, this initialization algorithm may 
yield estimates that result from local maxima in the 

f-a plane. Here we propose a scheme that alleviates 
this problem and improves the overall performance 
of the algorithm. It is based on the concept of 
integration of multimodal functions from [ll], It 
uses M, initialization points, (fi”‘, a:‘), in the f-u 
plane for the weakest signal, where the Ith initializa- 
tion point is given by 

with f,+l_ 1 corresponding to the (4 + 1 - 1)th 
strongest peak of P,,(f; g4- i), and 1 = 1,2, . . . , M,. 

4. MMSE estimator 

In this section we propose an iterative method 
similar in philosophy to the EM and AP ap- 
proaches to obtain the MMSE of the frequencies 
and damping factors. To avoid integration of high 
multidimensional integrals over the space of un- 
known parameters, we ‘decouple’ the integrals by 
assuming that all the parameters except the para- 
meters of one signal are known and equal to their 
current estimates. This will allow usage of two- 
dimensional integrals only. 

The marginalized likelihood function can be ex- 
pressed as 

where {CT> and {u} are the parameter spaces of 
G and (I, respectively. For the prior probability 
density function (p.d.f) p(a, (T 1 J; a), we assume that 
it is noninformative and defined by Jeffrey’s invari- 
ance principle [ 11. Based on this principle, we have 

(10) 

where H($ a) is given by (2). After inserting (10) 
into (9) and integrating out analytically the ampli- 
tudes and the noise variance rs2, we obtain [9] 

(11) 
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where c is the normalizing constant, and 

P’(J; ~1 = I- H(_L a) W”(J; @CL a))- ‘H”(.L a). 

(12) 

By Bayes’s theorem, the joint p.d.f. of the frequen- 
cies and damping factors is given by 

with p(f: a) being the prior p.d.f. of (A a) for which 
we choose 

PM 4 x 
C # 0, ji # fk, Vi # k, h E F-, ai E ~2. 

0, otherwise, 

because f and a (by assumption) have finite sup- 
ports. So, the MMSE of (f, a) are obtained by 

and 

&= 
J s 

ap(f;al.v)dadf. (15) 
if: :L 

The integrals in (14) and (15) are 2q-dimensional 
integrals, and, as such, would require reliance on 
numerical techniques for high-dimensional integra- 
tion. This is computationally expensive and often 
precludes the use of the MMSE estimator in practi- 
cal applications. Since the a posteriori p.d.f.‘s of the 
parameters of each sinusoid, p(~,aily) for 
i = 1,2, , q, are highly concentrated functions 
around (f;, Xi) for i = 1,2, . , q, respectively, when 
y is observed, and due to the orthogonality of 
sinusoids, imprecise knowledge of all the frequen- 
cies and damping factors excepth and cli, has little 

effect on p( A, @Zi Iv). 
To be more specific, let k denote the current 

iteration, andxCk’ and &lk’ the current estimates of 
,1; and xi, respectively, i = 1,2, . . , q. Then, if we 
approximate the posterior density p(J; a jy) by 

p(f,aIy) -p($ 3.1~ j(k). d’k’. ) I> I 3 ( 1)’ ( I) 

x fJ 6( fi -.i;:‘“’ ) q - i?jk’), (16) 

1=1 
f#i 

our 2q-dimensional integral would reduce to q indi- 
vidual two-dimensional integrals. In (16), $?:, and 

oityii, denote the estimates at the kth iteration of all 
the frequencies and damping factors except the 
ones of the ith sinusoid. The two-dimensional inte- 
grals are MMSE estimators of the form 

ET’ = 
s s 

xip(f;q ail_V, $I”),$ st!!i\) dxi d,fi. (18) 
I/; I 14 

Thus, ifx!{, and oil” iJ approach J _ i) and a( . i), then 

E[Alx?),,y] and E[aiIa*i!!i,,Y] approach E[JI_v] 
and E[riIv], respectively. Provided_ XI”:, and 
al!, converge to the MMSE estimatesf;_I)MMsE and 
ac_iJMMSE, we get fMMsE and oiMMsE iteratively rather 
than by performing a 2q-dimensional integration. 
After substituting the density function (13) into the 
MMSE estimators, we have 

(19) 

(20) 

ss (,,Hp’(; a)y)N-q dri dfi 

In (19) and (20) the derivation of the matrix 

P’(A a), which is a matrix function of (f; a), con- 
sumes much time. Fortunately, there is only one 
element (fi, Xi) in the (J; a) vector that changes 
values, which allows us to simplify the calculation 

by using (3), or 

p’(.fi~%J-i),a(-i)) =p’(_t-i), +iJ 

+P,‘(j;,xi,J;-i,,a,-i,) -13 

(21) 
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where 

and 

Pi(f;., Ei,&-i), acei,) = I - U(U”U)- ‘UH. 

It is clear that P’(f,-i,, a(-i,) in (19) and (20) is 
a constant, and that there is only one inversion of 
a scalar in P,‘(J, ai,A_i), at-i)) instead of the orig- 
inal q x q matrix inversion. This improves signifi- 
cantly the computational efficiency of our algo- 
rithm. 

To enhance the computational efficiency even 
more, for the integration we propose an adaptive 
Gaussian quadrature technique (AGQ). This tech- 
nique is based on dividing the support of the integ- 
rand into subintervals for which we use GQ 
formulae corresponding to different number of 
terms. The details of the technique are given in 
Appendix A. 

5. Simulation results 

In this section, we demonstrate the performance 
of our algorithm by some simulation results. We 
considered four examples where the data represent 
two or three exponentially damped sinusoids in 

additive complex Gaussian noise, as defined in Sec- 
tion 2. The length of the observed data was N =25, 
and the amplitudes of the sinusoids were ai = 1. The 
data in the first experiment were generated by 

y[n] = exp( - 0.2n + j2x0.42n) 

+ exp( - O.ln + j2n0.52n) + w[n]. 

In the second experiment, the damping factors were 
cc, = - 0.4 and CI~ = -0.07, and we used 

y[n] = exp( - 0.4n + j2x0.42n) 

+ exp( - 0.07n + j27c0.52n) + w[n]. 

In the third experiment, the damping factors were 
the same as in the first one, but the frequencies were 
fi =0.46 andfi =0.5 to simulate a scenario of two 
damped sinusoids closely spaced in the frequency 
domain. Thus, y[n] was obtained from 

y[n] = exp( - 0.2n + j2x0.46n) 

+ exp(-O.ln + j2n0.5n) + w[n]. 

Finally, in the last experiment the data represent 
three damped sinusoids and were generated ac- 
cording to 

y[n] =exp(-02n +j2&46n) +exp(-O.ln +j2dl5n) 

+ exp( -0.ln + j2x0.68n) + w [n]. 

20 ’ I I I I I I 1 I 
4 6 8 10 S&B) 14 16 18 20 

(a) fi = 0.42 

Fig. 1. Performance comparison of the MMSE, EM and AP for q =2, (a)fi =0.42 (experiment 1). 



H.-T. Li, P.M. Djurid f Signal Processing 5I (1996) 105-120 

._ 
4 6 a 10 

(b) q = -0.2 

14 16 la 

60 1 I 1 I I I I 

55 - 

50 - 

45 - 

40 - 

35 - 

30 - 

25 - 

20 ““‘I. 1 I I I I I 
4 6 a 10 SNF&B) 14 16 16 20 

(c) fi = 0.52 

45 I I I I I I I 

40 - 

35 - 

15 1 I I 1 I I 8 I I 
4 6 a 10 m&i) 14 16 la 20 

(d) al = -0.1 

Fig. 1. (b) c(, = - 0.2, (c)f* = 0.52, (d) ,xz = - 0.1 
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(c) fi = 0.52 

Fig. 2. Performance comparison of the MMSE, EM and AP for q =2, (a)f, =0.42, (b) cq = - 0.4, (c)f2 =0.52 (experiment 2). 
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Fig. 3. 
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Fig. 2. (d) c(~ = -0.07. 
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Performance comparison of the MMSE, EM and AP for q =2, (a)f, =0.46, (b) a, = - 0.2 (experiment 3). 
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Fig. 3. (c)f2 =0.5, (d) a2 = -0.1. 
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(a) f~ = 0.46 

Fig. 4. Performance comparison of the MMSE, EM and AP for q =3, (a)fi =0.46 (experiment 4). 
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Fig.4. (b) a, = -0.2, (c)f2 =0.5, (d) o[~ = -0.1 
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In each experiment the SNR, which is defined by 

SNR =lOlog,,$, 

was varied from 5 to 20 dB in steps of 1 dB. For 
each SNR we had 500 trials, and for each experi- 
ment the initial estimates of the weakest compon- 
ent were obtained by using M, =2. Note that for 
the EM and AP schemes, we chose the same initial 
estimates, except for using multimodal functions 
for the weakest component. 

damping factor of the first sinusoid, and in Figs. l(c) 
and (d), the performance for the same parameters of 
the second sinusoid. In each figure there are four 
curves, the CRLBs and the MSEs of the MMSE, 
EM and AP methods calculated from the 500 trials. 
It is clear that the MMSE estimator outperforms 
the AP and the EM schemes. 

The results of the second experiment are dis- 
played in Figs. 2(a)-(d), where the same notation is 
used. Again, the MMSE procedure outperforms the 
AP and the EM, but this time with even larger 
margin. 

The results of the first experiment are shown in In Figs. 3(a)-(d) we see the results of the third 
Figs. l(a)-(d). In Figs. l(a) and (b), we display the experiment, The MMSE continued to yield better 
estimation performance for the frequency and results than the AP and EM. 

0.02 

0.015 

0.01 

0.005 
Bias 

0 

-0.005 

-0.01 

-0.015 

-0.02 , I I I I I I 

4 6 8 10 &t 14 16 18 20 

(a) fi = 0.42 

I 1 I I I I 
10 Sk 14 16 18 20 

(b) q = -0.4 

Fig. 5. Bias performance comparison of the MMSE, EM and AP for q =2, (a)fi =0.42, (b) a, = -0.4 (experiment 2). 
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The results of the fourth experiment are shown in 
Figs. 4(a)-(d). We have only shown the perfor- 
mance for the parameters of the first two sinusoids 
since the performance for the third sinusoid is 
similar. When we compare these results with the 
ones from the previous experiment, we realize 

that the performance of the MMSE has slightly 
deteriorated. But so has the performance of the AP 
and EM. 

Finally, in Figs. 5(a) and (b), we have graphed the 
bias of the frequency and damping factor estimates 
for the first sinusoid in the second experiment of the 

MMSE, EM and AP methods as a function of the 
SNR. It is obvious that the three methods are fairly 
biased for low SNRs. 

In general, the simulation results show that for 
low SNRs and large damping factors, the MMSE 
algorithm will significantly outperform the AP and 
the EM methods. This is so because the shape of the 

likelihood function is not a sharp peak in thef-a 
plane, but a multitude of smaller peaks. This entails 
that the iterative methods become sensitive to in- 
itialization, which in our method is alleviated by 
applying the concept of integration of multimodal 
functions. The other advantage of the MMSE is in 

the computational load. The MMSE converges 
more rapidly than the EM and AP methods. In 
Table 1, we compare the CPU times of the three 
estimators needed in the above experiments. The 
numbers indicate the normalized CPU time re- 

quired by each estimator to obtain the final esti- 

Table I 
The entries denote the normalized CPU times of various 

estimators after the same initialization 

Estimator\,EXP EXP I EXP 2 EXP 3 EXP 4 
- 

MMSE 1.0 1.0 1.0 1.0 

EM 6.83 5.01 5.60 5.98 

AP 6.28 4.54 4.42 6.88 

mates after the same initialization procedure. Note 

that these numbers correspond to the total times 
needed to complete the estimation of 500 indepen- 
dent trials for each SNR in the range 15-20 dB, 

with a step of 1 dB. 
We also present results that show the difference 

in performance between our initialization min- 
imum notch periodogram (MNP) scheme and the 
initialization by the classical maximum projection 

(MP) method. The results are displayed in Fig. 6 by 
the curves that show the mean square error initial 
estimates of 4:“’ obtained by the two methods. 
Obviously, the MNP yields much better results 
than the MP scheme. It is interesting to observe 
that the MP estimates do not improve with the 
increase of SNR, whereas the MNP estimates do 
improve. All these results are consistent with our 
analysis, which predicted that the notch periodo- 
gram should be a better procedure. The MNP has 
a better ability to reduce interference from other 
components in the parameter estimation of indi- 
vidual components than the periodogram. 
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Fig. 6. Initialization performance comparison of the MNP and MP for a2 = -0.1 (experiment 1). 
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6. Conclusions 

We proposed an efficient MMSE algorithm for 
parameter estimation of exponentially damped 
sinusoids. The algorithm is based on an iterative 
scheme, similar to the AP and EM methods. We 
also introduced a numerical technique, AGQ, to 
improve the computational efficiency of our algo- 
rithm. The experimental results showed agreement 
with our analysis as well as excellent performance, 
particularly for sinusoids with close frequencies 
and/or large damping factors. 

Appendix A. Adaptive Gaussian quadrature 

An important task in Bayesian analysis is the 
integration of various functions. Very often the 
integration cannot be carried out analytically, and 
one has to resort to numerical integrations. There 
are many approaches for numerical integration, 
and for some of them we provide in Table 2 their 
convergence rates to the exact values of the inte- 
grals for one- and d-dimensional integrations [8]. 
The entries in the table show the uncertainties of 
the results obtained by the various methods as 
a function of the number of evaluations b. 

Since the integrations in (19) and (20) are two- 
dimensional and the Gaussian quadrature (GQ) 
has the best convergence rate for low-dimensional 
integration, we propose an adaptive numerical 
technique based on the concept of GQ [3], which 
we call AGQ. This method uses different number of 
evaluation points for various subintervals. The goal 
is to compute the expected value of x, that is, 

Table 2 
The entries denote the uncertainty of results as a function of 
number of evaluations b. In the last row, k denotes the number 
of terms in Gaussian quadrature 

Uncertainty as a function In one In d 
of number of evaluations b dimension dimensions 

Monte Carlo b-112 b-r/2 

Trapezoidal rule b-Z b-Z/d 

Simpson’s rule b-“ b-416 

Gaussian quadrature b-2’+’ b-‘Zk-l),d 

where xT = [xi, x2, . . . , xl]. We consider one-di- 
mensional integrals first, where we use 10 function 
evaluations to calculate each one-dimensional inte- 
gral. The number of evaluations can be different 
and the algorithm modified easily. We assume that 
the initial estimates of the first and second moments 
of x are PC’) and A(‘). Since the p.d.f. p(x) can be 
improper, to obtain the first estimate of the ex- 
pected value, we use 

p(1) = SW v(x) dx 
jfx, P(X) dx ’ (A.21 

where {x} is the support of x defined by {x> = 
{x: - 4h + l;(O) < x < 4h + (;‘“)} and h is a con- 
stant defined later. In line with the concept of 
adaptive integration, we divide the interval 
[ - 4h + fi(‘), 4h + fi’“‘] into 3 suitable subintervals 
and use an appropriate number of terms of the GQ 
in each subinterval. We propose to partition (x} 
into 3 subintervals according to {x,} = [ - 4h + 

Ll “co), - h + flCo’], {xb} = [ - h + j?(O), h + j?(O)] and 
{xc} = [h + G(O), 4h + j.?“]. Moreover, for the 
middle set we use a GQ formula with four terms 
and for the remaining two, three terms. Thus, there 
are three, four and three evaluation points in the 
ranges {x0>, {xb} and (xc}, respectively. Note that 
the above choice depends on the prior information 
of the posterior distribution of the parameters but 
is still somewhat arbitrary. 

Next we show how to choose the value of h. 
As an importance function we adopt g(x) displayed 
in Fig. 7. The standard deviation of a random 
variable X, whose p.d.f. is g(x), is 2.08h. This 
implies that 

2.08h = $i&?, 

where p and m are the first and second moments of 
X, respectively. Hence, we could estimate h using 
the initial estimates A(O) and 1;(O) from 

(A.3) 

Now, we start the procedure by estimating &(‘) and 
fit’) followed by the evaluation of h^(” according to 
(A.3). The integral in (A.2) becomes 

pcl, = &x.1 xp(x) dx + j~xb} XP(X) dx + !PJ XP(X) dx 
jlxol P(X) dx + jfxbJ ~(4 dx + jfx,, P(X) dx ’ 

(A.4) 
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where Sixa; xp(x) dx and J (x,l xp(x) dx are computed 
by a 3-term formula, and jfxbl xp(x) dx by a 4-term 
Gaussian formula. Similarly, for estimation of m, 
we use 

(A.3 
Now we repeat the procedure, but we exploit PC’) 
and &(i) as initial estimates. In general, the kth 
estimates of ,@) and +rCk) are evaluated by (A.4) and 

(A.5) where L(k) =0.48 tick-‘) - fiCkP1j2. 

Next we consider the two-dimensional integra- 
tion with the AGQ technique, where we have two 
random variables X1 and X2 whose joint p.d.f. is 
p(xi, x2). Let the initial estimates of the first two 
moments be [l;r’, C;:“] and [&\O), P$$“‘]. Then, the 
new estimate of ,u, is given by 

piI) = 1:x,: X&x,: ~4x1, X2) dX2 dXl, 

J:x,; Six,; PC-~, > X2) dX2 dXl 
64.6) 

where {xi> is the support of xi defined by {xi} = 

{Xi: -4&i” + pi”’ < xi < 4&j” + F,!“‘), &ii’ EO.48 

x Jw, i = 1,2. For each (xi), i = 1,2, we 

partition the support into 3 subintervals {xia}, (xib} 
and (.~ic: in the same way as in the one-dimensional 
case. First for each of the 10 evaluation points of 

Xl, we use 10 function evaluations to solve the 
second integral, 

Pbl) = P(X~ > X2) dX2, 

1.x2: 

and obtain the marginal p.d.f. p(xl). Thus, (A.6) is 
simplified to computing a set of one-dimensional 
integrals as (A.2) which all together involves lo2 
evaluation points. The remaining moments, ,i&“, 
ti\i) and Ail), are estimated similarly. These 
methods can be easily extended to l-dimensional 
integrals, where the number of evaluation points 
will be 10’. 

For the integration of multimodal functions for 
the weakest component in (8) (A.4) is modified 

to [11] 

I I 

-4h+yr, -2h+po PO 2htpo 4h + /(co 
5 

Fig. 7. The importance function y(x) of the AGQ method 

where the interval of the Ith mode xCIJ is given 
by {xc(,) = {x: -4h + ,i$,’ 6 x < 4h + ,i$,‘], and 
,@’ is the initial estimate of the Ith mode, 
1 = 1,2, . . . , M,. In summary, in estimating 

P and I&, the integral range includes the highest 
M, peaks in thef-n plane of P,(f; x; e,_ i). There- 

fore, we need 102M, function evaluations to esti- 
matefq”’ and oil”‘, and lo2 function evaluations in 
the remaining iterations, as well as 10’ function 
evaluations for each of the remaining parameters in 
any iteration. The simulation results show that this 
modification extends the range of optimal perfor- 
mance by an SNR of 2-5 dB. 
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