
ELSEVIER Signal Processing 5 1 (1996) 93- 104 

A novel approach to detection of closely spaced sinusoids 

Hsiang-Tsun Li, Petar M. Djurik” 

Department of Electrical Engineering, State Utziversity qf New' York at Stony Brook, Stony Brook, NY I 1704-2350. (JSA 

Received 17 February 1995; revised 25 August 1995 and 6 February 1996 

Abstract 

A novel method for the detection of closely spaced sinusoids is proposed. It is based on the notch periodogram and 
a simple detection criterion. Compared with other well-known approaches, this method is not as sensitive to the accuracy 
of the estimated signal parameters, and it can be implemented with a low computational load. Simulation results of the 

approach are included, and they show excellent performance. 

Zusammenfassung 

Eine neue Methode zur Detektion dicht benachbarter Sinussignale wird vorgeschlagen. Sie basiert auf dem Notch- 
Periodogramm und einem einfachen Detektions-Kriterium. Verglichen mit anderen bekannten Andtzen ist diese 
Methode unempfindlich beziiglich der Genauigkeit der geschgtzten Signal-parameter und sie kann mit nur geringer 
Rechenleistung implementiert werden. Simulationsergebnisse zu dem gewlhlten Ansatz werden vorgestellt; sie zeigen ein 
hervorragendes Verhalten. 

Une mkthode innovatrice est proposte pour la dktection de sinuso’ides rapprochCes. Elle est basCe sur le pkriodo- 
gramme ii bande Ctroite coupCe et un crithe de dktection simple. Cornparke avec d’autres approches bien connues, cette 
mkthode n’est pas aussi sensible g la prCcision des parametres e&m&s du signal, et elle peut &tre implant&e avec une 
charge de calcul minimale. Des rCsultats de simulation de l’approche sont inclus, et ils montrent d’excellentes perfor- 

mances. 
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1. Introduction 

Signal detection is an important research area in 

signal processing with a broad range of applica- 
tions. Of special interest in many signal processing 
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problems is the detection of sinusoids in noise. The 
detection of well-resolved sinusoids has been pre- 
sented for example in [12]. A more difficult prob- 
lem, however, is the detection of sinusoids with 
close frequencies. Currently, a popular approach 
for resolving this problem is to employ an informa- 
tion theoretic criterion, such as the Akaike’s 
Information Criterion (AIC) [2,14] or the 
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Minimum Description Length (MDL) rule [13,16]. 
However, the results obtained by these methods are 
not satisfactory, and the computational cost for 
implementing them is considerably high. Other 
methods are based on Bayesian theory [4,8], and 
they show excellent performance, but unfortunately 
are also computationally intensive. 

corrupted by additive white Gaussian noise, i.e., 

y[n] = f aiexp(j27cAn) + E[n], (1) 
i=l 

It is well known that specific sinusoidal compo- 
nents can be removed by employing ideal band- 
stop filters. If the band-stop frequency of one such 
filter is set at the peak of the data’s periodogram, 
the spectrum of its output around the notch fre- 
quency is either flat or with peaks. It is flat if the 
periodogram peak corresponds to one sinusoidal 
component, and with peaks if the periodogram 
peak contains multiple sinusoids. This observation 
has motivated the present work and had led to the 
use of the notch periodogram. In this paper, based 
on the notch periodogram, we propose an efficient 
and simple approach for detection (NPD) of the 
number of sinusoids in each periodogram peak. 
Compared with other well-known methods, this 
approach does not require very precise estimation 
of the signal parameters. Its important feature is 
that it can be implemented by an FFT procedure 
[6,7], and therefore is computationally very effi- 
cient. Our analysis of the algorithm also provides 
the effects of the phases and amplitudes on the 
resolution of two sinusoids. Despite the periodo- 
gram’s limited resolution, we show that the method 
can achieve marked results in detecting sinusoids 
including the cases of closely spaced sinusoids with 
different amplitudes. Simulation results are pre- 
sented, and they demonstrate excellent perfor- 
mance of the proposed algorithm. 

where n = 0, 1,2, . . . ,N-1; ai,fi,i=l,2 ,..., m, 
are the complex amplitude and frequency of the ith 

sinusoid and j = ,/?. The random samples E[n] 
are complex independent, and identically distri- 
buted. Moreover, the real and imaginary compo- 
nents of ~[n] are identically normally distributed 
with zero mean and unknown variance 0~12. The 
number m of sinusoids is also unknown. It is as- 
sumed that the sinusoids are clustered in 1 groups, 
and within each group they cannot be resolved by 
the periodogram whose resolution limit for com- 
plex data is (2N))‘. If each group contains 
mk sinusoids, k = 1,2, . . . , 1, we rewrite (1) as 

y[n] = i 2 alk’exp(j2Rfik’n) + &[n], 
k=l i=l 

(2) 

where aik’ and fi”’ are the parameters of the ith 
sinusoid from the kth group, and CL= i mk = m. In 
other words, the periodogram of (1) has 1 distinct 
peaks, i.e., 1 groups of sinusoids. The problem is to 
determine the number mk of sinusoids in each peak 
of the periodogram.’ 

3. Preliminaries 

The observed samples can be represented in 
a vector-matrix form by 

The paper is organized as follows. In Section 
2 we formulate the problem, and in Section 3 we 
present some relevant results for our main analysis. 
The derivation of the algorithm is given in Section 
4 and its summary in Section 5. This is followed by 
simulation results in Section 6 and brief concluding 
remarks in Section 7. 

Y = iEl adfi) + & = 5 Si + 8, 

i=l 
(3) 

where 

WJT = Cl exp(j2nh) exp(j4~h) 

. . . exp(j(N - 1)2nfi)], 

with the superscript T denoting transposition, and 
Si = a&(J), i = 1,2, . . . , m. In the remaining part of 
the paper, for notational convenience, whenever 

2. Problem statement 

A vector of measurements, y, is observed whose 1 Note that we assume the peaks have already been detected, 
components are samples of m complex sinusoids for example, by the approach in [12]. 
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there is no ambiguity, d(f) will be denoted as d. Let 
the projection operator P spanning the space of 
d be denoted as Ptd: or P(f), where P(f) = 
d(d”d)-‘d”, with the superscript H denoting 

conjugate transposition. Then the orthogonal 
projection operator P’(f) is defined as P’(f) = 
Z - P(f). In the sequel we will use the following 
result of orthogonal subspace decomposition [S]: 

{Xi) 0 (xz} = (x > 1 0 {Pxix2), (4) 

where x1,x2 E RN, and (xi) 0 {x2} denotes the 
space spanned by xi and x2. The space spanned by 
x1 and x2 can be decomposed into the orthogonal 

spaces spanned by x1 and P:,x2, or 

Now, we can use (5) to express the projection 
matrix P(f,Q which spans the space of d(f) and 

d(fn) as 

P(Lfn) = PM) + p%)d(f) 

x (d”(f)P’(f,)d(f))- ‘dH(f)P’(f,). 
(6) 

Next, using vector-matrix notation we define the 
notch periodogram [6] and the periodogram [lo] 
ofy respectively as 

Pn(f; fn) = Y”(P(f, f,) - P(fn))Y 

= y”P’(f,)d(d”P’(fn)d)- ldHp%,)y 

=y”d”(f;fn)(~“(f,f,)d”(f,fn))_‘d””(f,fn 

= Y”Ci(fl fn)Y? (7) 

where .f, is the notch frequency and d”((f,f,) = 

P’(f,)d, and 

P&f) = _V”P(f)Y. (8) 

Let now d =f -fn. Then it is not difficult to show 
that 

d”P’(h)d = cfHd”= N’(d), 

where 

(9) 

1 1 - cos(2nAN) 
N’(A) = N - - 

N 1 - cos(27ul) 
(10) 

and that the notch periodogram can be expressed 
as 

A #O. 
(11) 

lo, A =O. 

It is important to note that when d(f) and d(,f,) are 
orthogonal, Pn(f;fn) = P,_(f). Also, if y = E and 

f#fn, one can readily deduce from (7) that 
2P,(S;f,)/02 has the central chi-squared probabil- 
ity density function (p.d.f.) with two degrees of 

freedom, that is, 

12) 

(For more details, cf. Appendix A.) 
We can also define a notch periodogram with 

more than one notch. In the case of 4 notch compo- 
nents, we replace the notch frequency fn by a notch 

vector f. = [frill fnz . , fn,] and write 

Pn(f;fn) = YH(P(f3J - P(f,))Y 

=y”P’(fn)d(d”P’(fn)d)-‘d”P’(f,).y. 

(13) 

4. Notch periodogram analysis 

Now we use the results from the previous section 
and show how to detect multiple and closely spaced 
sinusoids by using the notch periodogram. For 
simplicity, first we assume that 1 = 1, i.e., there is 
one peak in the periodogram at frequency fn, and 
m < 2. We will address the cases of m > 2 and 
multiple peaks later. 

When there is one peak and m < 2, we have to 
examine the following hypotheses: 

Xi : The data contain one sinusoid under the spec- 
tral peak around fn; 

X2: The data contain two sinusoids under the 
spectral peak around ,f,. 

Our objective is to find a relevant statistic when 
X1 is true, which will allow for evaluation of the 
false alarm probability. A statistic that we in- 
vestigate is based on the maximum value of the 
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notch periodogram in the vicinity of the notch 
frequency. 

To begin, let yi”l be true, that is, the spectral peak 
at fn is due to one sinusoid only, m = 1. The notch 
frequency fn is obtained from 

fn = arg m/ax uHP(f)y (14) 

and the notch periodogram ofy is expressed by (11). 
Now, the original spectral peak at f” disappears 
from P,,(f,fJ, and 2P,(f;fn)/a2 has a non-central 
x2 p.d.f. with a non-central parameter 

/1 = 2~ sin(nA3N) 
N’(A) sin(7cA 3) 

1 sin(xAN)sin(xA,N) ’ -- 
N sin(xd)sin(xd,) ’ 

(15) 

where A1 =fi -fn, A3 =f-fi, and p = la112/a2 is 
the signal-to-noise ratio (SNR). (For the derivation 
of I, see Appendix A.) The non-central parameter is 
always small despite its dependence on the SNR. In 
particular, we can show that il increases as A + 0 

and write 

Ad 
6~ 

N2(N - l)sin2(nA1) 

sin(nAIN)cos(nA1) 2 

sin(n A I) 
- Ncos(xAIN) . 

(16) 
Note that for high SNR, Al becomes very small, 
which offsets the increase in SNR. 

Since the noise variance cr2 is in general un- 
known, we replace it by its estimate s2 defined by 

82 = -+ 1 Pn(f;fn), (17) 
-F fc,F 

where .% = {f:f= k/M,(f-f,l B (2N)-‘, k = 0, 
L, 2L, .,. , (N - l)L), M is the number of equally 
spaced frequencies (bins) in the range (0,l) for 
which we compute the notched periodogram, MS is 
the number of bins included in the set 9, and 
L = [M/N] with [M/N] denoting the largest 
integer that does not exceed M/N. In other words, 
6’ is the mean of P,,(f;f”) over the range 
If-f”] 2 (2N)-‘. Then P,(f;f,)/B’ for f#f. has 

a non-central F p.d.f. with (2,2(N - K)) degrees of 
freedom and a non-central parameter 2 given by 

(15) (F 2,2N-2k(;l)), where K is the number of bins 
excluded in evaluating B2 and is equal to the num- 
ber of signal peaks in the periodogram.2 

Next we derive the p.d.f. of the maximum value of 

PnU-; .6J/a2 in the range ) AJ < (2N)-‘. Since 
P,,(f; fn)/S2 is a smooth curve in the neighborhood 
of the notch frequency, the local maxima of 
Pn(f;fn)/a2 in 0 < A < (2N)-’ and -(2N)-’ < 
A < 0, denoted by pnl and pn2 respectively, will be 
located with high probability around fn f (2N)- ‘. 

If Pn1 and ~~2 were independent, pii, = 

max(p,,,pn2) would be distributed according to 
(Eqs. (Q-(14) on p. 185 of [ll]) 

sp::.(p) = 2g(p)G(p), (18) 

where g(p) is F2,2N_2K(A) and G(p) is the cumula- 
tive distribution function (c.d.f.) of F,, 2N_2K(A). The 
superscript (I) of p!& denotes the number of com- 
ponents in the notch set. However, pnl and pn2 are 
weakly correlated, and the maximum value of 
Pn(f;fn)/B2 in the range 1 Al < (2N)-‘, pi!,, will 
not be exactly distributed according to (18). 

To get a better insight into the above conjectures, 
we made the following test. We generated one 
sinusoid, m = K = 1, of length N = 25, embedded 
in zero mean white Gaussian noise according to the 
model definition in (1). The amplitude of the 
sinusoid was a, = 1 and the frequency was 
fi = 0.5 + (2M)- ‘, where M was 1024 and was 
the number of points for which we evaluated the 
whole periodogram. The SNR, defined by 
SNR = 1010gl,(~a1~2/02), was equal to 0 dB. There 
were 1000 independent trials in the experiment. The 
empirical c.d.f. of 2P,(f;f,)/a2 and Pn(f;fn)/6’ 
with f= (2N)-’ +fn are shown in Fig. l(a) and (b) 
plotted together with the hypothesized xf central 
and F 2,2N-2 c.d.f.‘s, respectively. We then applied 
a Kolmogorov goodness of fit test to verify our 
distributional assumptions [3]. Fot a critical value 
of CI = 0.05 and 1000 trials, the Kolmogorov statis- 
tic is 0.042 [3], which is plotted in Fig. 1 (a) and (b) 

‘For a definition of the non-central F p.d.f., its relation to 

other functjons. and ways of computing it, see, for example, Cl]. 
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Fig. I. Comparison of (a) the empirical c.d.f. of 2P.(S;fJ/ (Y* with the hypothesized central I(: c.d.f., and (b) the empirical c.d.1: of 
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P,J/,f,)/S’ with the F2.2N-Z c.d.f. 

with dashed lines. It is clear that the maximum 
difference between the empirical and the hy- 
pothesized c.f.d.3 in Fig. 1 (a) and (b) is smaller than 
0.042. 

In Fig. Z(a) and (b), we display the empirical c.d.f. 

of P!& together with the c.d.f. from (18) and the 
empirical c.d.f. of 2pij, with the central ~2” c.d.f., 
respectively. As expected, the empirical distribu- 
tions and the ones obtained from (18) do not pass 
the Kolmogorov test. However, in the tails, they 
almost coincide, in particular when g(p) in (18) is 
the xi c.d.f. So, to decide between the hypotheses 
that there is one (,X1) or more than one sinusoids 

(I&) under the peak, we use the test 

(191 

where y1 is a threshold obtained from the xi distri- 
bution. 

Now we consider the case where Y?‘~ is true. In 
this case, the single spectral peak is between jr and 
f2. Again, let fn in (11) be the frequency correspond- 
ing to the spectral peak and set Al =fi -fn and 
A2 =fi -f,. Then for high SNR the notch periodo- 
gram should have a peak or two peaks at or near 
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Fig. 2. Comparison of (a) the empirical c.d.f. of p,!& with the c.d.f. of (17), Go, and(b) the empirical c.d.f. of p’,‘& with the central X: c.d.f. 
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fi or f2. If we suppose that the peak is at fi for 
example, it is of interest to determine the c.d.f. of 

fxf;fnfi~=, where the notch periodogram at 
fi can be expressed as 

Pn(f ifnf 

Al #O. (20) 

For simplicity in the derivation, we assume 
a2 = ai exp(j0) and f, u (fi +fi)/2. Then it is not 

difficult to show that P,,(f; f,)/c?' has approxim- 
ately non-central F2.2N_2 p.d.f. with a non-central 
parameter /z given by (cf. Appendix 23) 

J.A!_ 
N’(A 1) 

N _ _l_ sin2(rcA1N) 

N sm’(nAi) 

( 1 sin2(nd,N) sin@d,,N) 2 - exp(j&) - 
N sin2(7cA,) - sin(nA,,) ’ >i 

(21) 

where A zI =j2 -II, and 8, = 8 + TLA~~(N - 1). 
From the criterion (19), it is clear that the algorithm 
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Fig. 3. The empirical c.d.f. of p$Jx 

will select the hypothesis yi”,, with high probability, 
provided yi”z is true, if the maximum value p$, has 
a p.d.f. with most of its mass to the right of the 
threshold yr. From the non-central parameter in 
(21) one can determine the needed SNR (for fixed 
19,) to detect closely spaced sinusoids with a 
predefined probability. Of course, the higher the 
predefined probability, the higher the necessary 
SNR. In addition, from 

arg,, max 2 = n, arg,, min 1. = 2rr, 

and the expression for o1 we conclude that the best 
resolution for fixed fi and f2 is obtained for 
0 = 7-t - rc(f2 -f,)(N - l), and the worst for 
8 = 2~ - rr(fi -f,)(N - 1). Identical results were 
obtained in 1151 with a more complicated ap- 
proach where the time index of the data model 
starts from n = 1 instead of n = 0 as in our case. 

Similarly to (19) we define the next criterion 

(2) - 2Pidf; _&I, h) .xdt 
Pmax - max 

I+S.l<(ZN)-’ 
^2 P Y2, (22) 
C7 fl2 

where A?&, is the alternative hypothesis to yi”2 (the 
detected number of sinusoids & > 2), y2 denotes the 
appropriate threshold that satisfies a predefined 
probability of false alarm, and P.(f;h,&) is the 
notch periodogram with a notch set (fa,fb) with 
fa and fb corresponding to the frequencies of the 

two strongest peaks in Pn(f;fn) in the range 
If-frill < (2N)-‘. We have found that the c.d.f. of 
pg& is similar to the one of pan,. However, its tails 
are not as significant, which entails that the thre- 
shold y2 has to be smaller than yi. We have conduc- 
ted extensive investigation of the empirical c.d.f. of 

P (‘I max for various SNR’s and signal parameters. Our 

results show that for SNR’s above 0 dB, this c.d.f. 
has a shape which for all practical purposes re- 
mains free from variations as the SNR or the signal 

parameters change. This then allows appropriate 
determination of the new threshold y2. In Fig. 3 we 
show the empirical c.d.f. of pgi,‘,, and in Table 1 we 
provide thresholds for 
alarm, Pi+. 

5. Detection algorithm 

given probabilities of false 

When we hypothesize more than two sinusoids 
under one peak, we can still use the proposed 
procedure. Here we outline its steps under the as- 
sumption that 1 = 1 in (2). The case of I > 1 is 
addressed at the end of this section. 

If 1= 1 and we have more than two hypotheses, 
that is &i,PZ, . . . , SF,, where q > 2, we proceed 
according to the following steps: 
(1) Find the periodogram peak, j$)‘. 
(2) Evaluate the notch periodogram with respect 

to the notch fL”’ and find the frequency f b" 
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Table 1 
The required threshold, y2, for a given false alarm probability 

P FA 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 1 .oo 

YZ 8.0 7.0 6.0 5.2 4.9 4.7 4.5 4.2 4.0 3.8 

(3) 

(4) 

(5) 

(6) 

(7) 

corresponding to the maximum value, pt!,, in 
the range If-fb”l < (2N)-‘. 
If o2 is known, compare (1) - Pmax - 
2P,(Sb”,fL”‘)/a2 with the threshold yl, chosen 
appropriately from the ~3 c.d.f. (We chose the ~‘2 
c.d.f. since it provides good approximation of 
gp;;,(p) in the tails.) If the noise variance 
is unknown, estimate it according to (17) 
and compare the maximum value pcix = 

2P,(fbl’;fb’))/~+~ with yl. 
If in step 3 pgAx < yl, stop and conclude that 
there is only one sinusoid, i.e., & = 1. Other- 
wise, find the two largest peaks of the notch 
periodogram (fb”,fb”) (if there is only one 
peak, at say ff’, set fb” =fb”). 
Find the new notch periodogram with respect 
to the notch vector (fb”, fr’). 
Compare the maximum value of the new notch 
periodogram p::,‘, = mq 2P,(f; f?, _fb”)/o’, 

where If-fh”l < (2iV)-‘, with the threshold 
y2. If 0’ is unknown, estimate it by 

where 9 = {f: f= k/A4,1f-fb0’l 2 (2N)-‘, 
k = O,L,2L, . . . ,(N - l)L}, and M, is the 
number of bins in the set p. 
If the maximum value in step 6 is less than y2, 
then stop, there are only two sinusoids, i.e., 
fi = 2. Otherwise, find the three peaks of the 
new notch periodogram, (fb2’, fa’, fL2’), sim- 
ilarly as in step 4. Continue along the same lines 
until the test fails to support further increase of 
hypothesized sinusoids. The appropriate thre- 
sholds y3,y4 and so on, are determined empir- 
ically as y2, 

If 1 > 1, the detection algorithm for the kth peak 
is similar to the one that was outlined. There are 
two differences. First, when the kth peak is ana- 

lyzed, each notch periodogram has also notches at 
the other peaks of the original periodogram. Sec- 
ond, the frequency set 9 used for estimation of o2 
is changed to exclude the regions around the peaks 
of the periodogram. 

6. Simulation result 

In this section, we present some simulation re- 
sults to demonstrate the NPD performance. We 
consider four examples, one with a single, two with 
two sinusoids, and three sinusoids in the last 
example. For the first example, the complex data 
were generated according to 

y[n] = exp(j(2n0.51n + n/4)) + ~[n] 

and for the second by 

(24) 

y[n] = exp(j2x0.5n) + exp(j(27c0.51n + n/4)) 

+ e[n]. (25) 

The data in the third example were obtained by 

y[n] = exp(j27c0.5n) 

+ l/J% exp(j(2n0.51n + n/4)) + ~[n] 

(26) 

and in the fourth by 

y[n] = exp(j2n:0.5n) + exp(j(2x0.5ln + x/4)) 

+ exp(j(27c0.53n + 7t/16)) + ~[n]. (27) 

In all examples n = 0, 1, . . . ,24, and the SNR was 
varied between 0 and 20 dB. For each SNR there 
were 200 trials and we chose y1 = 7 and y2 = 6 
which correspond to PFA = 0.03. Note that in the 
second and third experiments, the sinusoids were 
separated by half of the resolution limit. Also, in the 
fourth experiment there are three sinusoids in one 
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Table 2 
Detection performance of the NPD method when m = I. The 
numbers denote the estimated probabilities of detecting rk = I, 2 
and 3 sinusoids for SNR’s in the range from 0 to 20 dB 

SNR (dB) 1 2 3 

0 0.985 0.015 0.000 
I 0.995 0.005 0.000 
2 0.990 0.010 0.000 
3 0.990 0.010 0.000 
4 0.980 0.020 0.000 
5 0.980 0.020 0.000 
6 0.985 0.015 0.000 
7 0.990 0.010 0.000 
8 0.990 0.010 0.000 
9 0.970 0.030 0.000 

IO 0.985 0.015 0.000 
I1 0.985 0.015 0.000 
I2 0.995 0.005 0.000 
I3 0.985 0.015 0.000 
I4 0.995 0.005 0.000 
15 I .ooo 0.000 0.000 
16 0.985 0.015 0.000 
I7 0.990 0.010 0.000 
18 1.000 0.000 0.000 
19 0.985 0.015 0.000 
20 0.980 0.020 0.000 

periodogram peak, that is m, = 3. The detection 
results are presented in Tables 2-5, respectively. 

From Table 2 we see that the algorithm has 
excellent performance throughout the whole SNR 
range. The estimated probabilities of false alarm 
are between 0 and 0.03. The results of the experi- 
ment with two sinusoids that have equal ampli- 
tudes are shown in Table 3. The algorithm has very 
good performance for SNR’s above 5 dB. For SNR 
below 5 dB, and as it decreases, the algorithm tends 
to select with increased probability one sinusoid 
only. The results of the third experiment are given 
in Table 4. Note that the amplitudes of the two 
sinusoids differ by 10 dB, and that the SNR is 
defined according to the stronger sinusoid. The 
performance is excellent for SNR’s greater than 
13 dB and starts to deteriorate as it gets smaller. 
This is not surprising because it is well known from 
estimation theory that the frequency estimates of 
the sinusoids begin to deteriorate considerably at 

Table 3 
Detection performance of the NPD method when m = 2 and the 
amplitudes of the two sinusoids are the same. The numbers 
denote the estimated probabilities of detecting rk = I.2 and 
3 sinusoids for SNR’s in the range from 0 to 20 dB 

IFl 
- 

SNR (dB) I 2 3 
- 

0 0.650 0.350 0.000 
I 0.450 0.545 0.005 
2 0.3 I5 0.685 0.000 
3 0.195 0.800 0.005 
4 0.165 0.835 0.000 
5 0.045 0.955 0.000 
6 0.020 0.980 0.000 
7 0.000 0.995 0.005 
8 0.000 0.995 0.005 
9 0.000 0.995 0.005 

IO 0.000 1.000 0.000 
11 0.000 1.000 0.000 
I2 0.000 I .ooo 0.000 
I3 0.000 I .ooo 0.000 
14 0.000 I.000 0.000 
I5 0.000 0.995 0.005 
I6 0.000 1.000 0.000 
I7 0.000 1.000 0.000 
I8 0.000 1.000 0.000 
I9 0.000 1.000 0.000 
20 0.000 1.000 0.000 

- 

about 3 dB [9], which is in our example the SNR of 
the weaker sinusoid. Finally, the results of the 
fourth experiment are given in Table 5. In the 
scenario of three closely spaced sinusoids, the per- 
formance is satisfactory for SNR’s greater than 
17 dB. 

7. Conclusions 

We presented the derivation of a simple algo- 
rithm that can be used to detect closely space 
sinusoids. This algorithm is based on the notch 
periodogram and can be implemented by Fhe FFT. 
The algorithm processes each peak of the periodo- 
gram separately. In examining each peak, it starts 
with the hypothesis of one sinusoid under the peak, 
and continues with two, three, etc. sinusoids until 
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Detection performance of the NPD method when m = 2 and the 

amplitudes of the two sinusoids are related by a2 = are j+/JZi. 
The numbers denote the estimated probabilities of detecting 
+I = 1,2 and 3 sinusoids for SNR’s in the range from 0 to 20 dB. 
The SNR is measured with respect to the first sinusoid 

Table 4 Table 5 
Detection performance of the NPD method when m = 3 and the 
amplitudes of the three sinusoids are the same. The numbers 
denote the estimated probabilities of detecting Ct = 1,2,3 and 
4 sinusoids for SNR’s in the range from 0 to 20 dB 

k 

SNR (dB) 1 2 3 

0 0.945 0.055 0.000 
1 0.905 0.095 0.000 
2 0.865 0.135 0.000 
3 0.785 0.215 0.000 
4 0.825 0.175 0.000 
5 0.690 0.310 0.000 
6 0.680 0.320 0.000 
7 0.660 0.340 0.000 
8 0.475 0.515 0.010 
9 0.380 0.610 0.010 

10 0.325 0.675 0.000 
11 0.170 0.825 0.005 
12 0.105 0.895 0.000 
13 0.025 0.975 0.000 
14 0.005 0.995 0.000 
15 0.000 1.000 0.000 
16 0.000 0.990 0.010 
17 0.000 1.000 0.000 
18 0.000 1.000 0.000 
19 0.000 0.995 0.005 
20 0.000 1.000 0.000 

the newest hypothesis is rejected. The experimental 
results showed agreement with our analysis as well 
as excellent performance. 

Appendix A 

Proposition. If y = aI d(f,) + E, where dT = 
Cl ew(j2~fA ew(_i4~f4 . . . ew(j(N - lV~_fdl, 
aI is a complex constant, and E - CN(O,o’I) with 
the real and imaginary components identically dis- 
tributed, then for f # fn, the random variable 

2P,(f ;f,)la2, where P,,( f; fn) is the notch periodo- 
gram of y dejined by (11) has a non-central x2 p.d.J 
with two degrees of freedom and a non-central para- 
meter given by (15). 

SNR (dB) 1 2 3 4 

0 0.000 0.970 0.030 0.000 
1 0.000 0.990 0.010 0.000 
2 0.000 0.980 0.020 0.000 
3 0.000 0.985 0.015 0.000 
4 0.000 0.990 0.010 0.000 
5 0.000 0.980 0.020 0.000 
6 0.000 0.975 0.025 0.000 
7 0.000 0.945 0.055 0.000 
8 0.000 0.900 0.100 0.000 
9 0.000 0.800 0.200 0.000 

10 0.000 0.720 0.280 0.000 
11 0.000 0.630 0.370 0.000 
12 0.000 0.415 0.585 0.000 
13 0.000 0.270 0.730 0.000 
14 0.000 0.145 0.845 0.010 
15 0.000 0.080 0.915 0.005 
16 0.000 0.030 0.960 0.010 
17 0.000 0.005 0.985 0.010 
18 0.000 0.000 0.995 0.005 
19 0.000 0.000 0.995 0.005 
20 0.000 0.000 1.000 0.000 

Proof. Recall that the notch periodogram was de- 
fined as 

Pn(f if”) = &) Id”(f )Wfn)yIz~ 64.1) 

Now we substitute for y, aId + E, and obtain 

P”(f if”) = N’(d) -!- IdH(f )Wf,)(ald(f~) + 41’ 

= &) lGH(f P’(f,)d(fi) 

+ dH(f P’(f4e12 

= $) 
i( [ 

Re QH(f )I?f,)d(f~) 

’ + dH(f P’(fn)e I) 
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+ Im ~~~~(fP’(.W(fd ( [ 

where Re[ ] and Im[ ] denote the real and imagi- 
nary components of a complex number. Since 
Re[.s] - N(0,(a2/2)1), Im[s] - N(0,(02/2)1), and 
Re[s] is independent of Im[a], it is easy to show 
that 

Re aidH(f)~L(f,)d(fJ + dH(f)J%Js 1 

64.3) 

Im ~l~H(f)~L(f,)~(fl) + dH(f)p%)s 1 

Therefore, 2P,,(f;f,)/c-? has non-central x2 p.d.f. 
with two degrees of freedom with the non-central 
parameter i given by 

\ I- 

+ Im2 
[ 

aldH( 

21ai12 
=N’oaz 

N- 1 

.zo exp(.iWf~ -fM 

x C exp(_i24fl -f,b) ’ 
n=O 

I) 

2P 
= - exp(-.W3(~ - 1)) 

sin nA,N 

N’(A) 
sinn.d 

3 

- exp(jn(A, - A)(N - 1)) 

1 sinrcANsinzA,N ’ 
x- 

N SinrtAsinrrA, 

2P sin(rcA,N) 1 sin(rrAN)sin(rcAiN) 2 =- -- 
N’(A) sin(rrA,) N sin(rrA)sin(nA,) ’ 

(A.4) 

where A =f-fn,Al =f, -fi, and A, =,f-fi. 
0 

Appendix B 

Here we show that P,( f; f,)/c? in (20) under the 
assumption fn = (fi i-f,)/2 and a2 = ui exp( j 0) 
has a non-central F,,,,_, p.d.f. with non-central 
parameter /z given by (21). 

Clearly, 2P,( f; f,)/a’ has a non-central xi p.d.f. 
whose non-central parameter is derived in 
the sequel. On the other hand, 2(N - 1)e2/a2 
has approximately a central x;(,+ i,p.d.f. Since 
2P,(f,; fn)/02 and 2(N - 1)e2/a2 are independent, 
it follows straightforwardly that P,,(fr ; .f,)/c?’ has 

an Fz,~(N-~) p.d.f 

Next, we derive the non-central parameter 2. We 
can write 

+ 1” = $-,, IdH(fi)P’(fn)(Uid(fl) + Q4f2))l” 

= N,I~l)n2 IdH(fdh4fJ + al ev(jWU2)) 

- i dH(fi)d(Sn)dH(fn)(Uld(f,) 

+ 4 exp(jW2) I2 

2P 
N- 1 

= __ N + c exp(j(h, + 2nA,,n)) 
N’(A I) n = 0 

- $ N~1exp(-j2nAln,)~~~ exp(j2rrd,n) 
n-0 

N-l 

+ 2 exp(j(O + 2nA,n)) 2 
II=0 
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sin(nA,,N) 

N sin(nAzI) 

1 sin’(nA,N) -- 
N sin’(nA 1) 

(1 + expje,) 2 

9 1 sin2(nAIN) 
=--.--N-- 

N’(A I) N sm2(n A,) 

sin(zA,,N) 2 

- sin(n.AzI) ’ >I 

P.1) 

where AZ1 = f2 - fi, 8 is the phase difference be- 
tween s1 and s2 and ~9~ = 8 + 2nAl(N - 1). 
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