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Unsupervised Vector Image Segmentation 
by a Tree Structure-ICM Algorithm 

Jong-Kae Fwu and Petar M. DjuriC," Member, IEEE 

Abstruct- In recent years, many image segmentation 
approaches have been based on Markov random fields (MRP's). 
The main assumption of the MRF approaches is that the class 
parameters are known or can be obtained from training data. 
In this paper we propose a novel method that relaxes this 
assumption and allows for simultaneous parameter estimation 
and vector image segmentation. The method is based on a 
tree structure (TS) algorithm which is combined with Besag's 
iterated conditional modes (ICM) procedure. The TS algorithm 
provides a mechanism for choosing initial cluster centers needed 
for initialization of the ICM. Our method has been tested on 
various one-dimensional (1-D) and multidimensional medical 
images and shows excellent performance. In this paper we also 
address the problem of cluster validation. We propose a new 
maximum U posteriori (MAP) criterion for determination of 
the number of classes and compare its performance to other 
approaches by computer simulations. 

I. INTRODUCTION 

ECTOR images are comprised of pixels that are repre- V sented by vectors. They are frequently encountered in 
medicine [18], [30], [32], and are inherent in color [401 and 
satellite imaging [8]. For example, the pixels of magnetic res- 
onance images (MRI) are usually represented by the weighted 
spin-lattice relaxation time (Tl), the spin-spin relaxation time 
(T2), and the proton density (Pd). Each image (Tl, T2, or Pd) 
of the same slice provides information about the anatomy of 
the slice, and usually, the objective is to fuse the information 
optimally and obtain the best estimates of some important 
quantities. The same applies to other vector image problems, 
such as problems involving color and satellite images. Recall 
that color images are represented by three different perceptual 
attributes, namely, the brightness, the hue, and the saturation, 
and land satellite images have seven spectral measurements 
associated with each pixel. 

An important problem in processing images is their-segmen- 
tation, that is grouping the image pixels with homogeneous 
attributes together and assigning them an adequate label. The 
segmentation of vector images should yield better results than 
the segmentation of one-dimensional (1-D) images, but its 
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implementation is a more a difficult task. The commonly used 
maximum likelihood and clustering methods for vector image 
segmentation tend to have an unacceptably large number of 
misclassified pixels since they ignore spatial dependencies. 
Most of the methods using nonlinear filters are based on order 
statistics [39], [40], but to date there is no unified theory on 
multivariate ordering. Other approaches typically treat each 
image separately and then combine the results by some user- 
specified rules [8]. There are also methods that project the 
multidimensional space onto a 1-D subspace, and proceed by 
applying techniques for 1-D image segmentation [21]. 

Markov random field (MRF) models are commonly used to 
model data encountered in many practical signal processing 
[27], image processing [15], [23], [29], [49], and computer 
vision [14], [33] problems. They can capture locally dependent 
characteristics of the images very well by tending to represent 
neighboring data with the same properties of signal attributes. 
Most of the MRF-based segmentation methods proposed re- 
cently are supervised since they rely on the assumption of 
known class parameters or availability of training data [4], 
[ l l ] ,  and [29]. Quite often, however, prior knowledge of 
class parameters may not exist, or training data are not 
available. Even when training data are available, intensive 
user interaction is needed to obtain the required class parame- 
ters. Consequently, unsupervised segmentation has received 
considerable attention by the image processing community 
[25], [31], [34], [46], [49]. Some other important references 
regarding MRF-based image segmentation with emphases on 
vector images include [26], [301, [36], and 1421. 

Since the underlying scenes are unobservable, we want 
to reconstruct them from the observed images. Geman and 
Geman modeled the underlying scene as an MRF (151, and 
they showed that the posterior distribution of the underlying 
image is also an MRF. They also proposed a Gibbs sampler 
and a simulated annealing (SA) technique to find its maximum 
a posteriori (MAP) estimate. Their approach can reach the 
global maximum, but it requires intensive and, typically, 
random amount of computation. To avoid the computational 
difficulties in the MAP estimation, Marroquin, Mitter, and 
Poggio derived the maximizer of the posterior marginals 
(MPM) technique, which minimizes a segmentation error 
[33]. Besag proposed the iterated conditional modes (ICM) 
algorithm which is computationally efficient but guarantees 
only that a local maximum solution can be reached [4]. 
Dubes and Jain compared the SA, ICM, and MPM and found 
that the ICM is the most robust of the three methods [ l l ] .  
Pappas proposed a generalized K-means algorithm which is 
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a segmentation-estimation approach that varies an estimation 
window size as the algorithm progresses [37]. However, it 
is not clear how the window sizes are changed systematically. 
Lakshmanan and Derin used an adaptive algorithm to estimate 
the edge penalty of the MRF model and to segment the images 
alternately 1291 and 1461. Finally, Liang 1321 and Zhang 1491 
exploited the EM algorithm 191 to estimate the parameters 
from incomplete data. 

All these algorithms are iterative and therefore require 
initialization of their parameters 1251. In processing multi- 
dimensional images, it is more difficult to identify initial 
cluster centers and determine decision boundaries. One popular 
algorithm for initialization of class parameters is the K- 
means algorithm, but its performance strongly depends on the 
number of classes and the selected initial conditions 1191 and 
[45]. If the initial conditions are chosen inappropriately, the 
initial classification is poor, which subsequently degrades the 
final segmentation. The same happens to the mixture method 
which is a sophisticated version of the K-means algorithm 
[ 191. Instead of associating pixels with existing classes, it 
assigns only probabilities of association with these classes. 
On the other hand, approaches for the initialization of class 
parameters based on conventional histogram thresholds cannot 
be extended to multidimensional images in a straightforward 
manner 1411 and 1471. Multiscale MRF models have been 
introduced to improve the segmentation 1201. However, initial 
conditions or predefined grouping techniques for initializing 
the coarse segmentation are still needed 161 and 171. Banfield 
and Raftery applied a multidimensional model-based cluster- 
ing algorithm to MFU brain images 131, but they ignored spatial 
information. 

In this paper, we propose a novel approach for simultaneous 
class parameter estimation and image segmentation, which we 
refer to as tree structure-ICM, TS-ICM. The algorithm com- 
bines the tree structure vector quantization (TSVQ) procedures 
1381 and [43], with the ICM method. Vector quantization (VQ) 
is a powerful and popular technique in coding theory that 
is utilized for data compression 1161. A full search VQ can 
achieve optimal quantization, but is a very time consuming 
task. As an alternative, there is a suboptimal, low complexity 
VQ scheme known as TSVQ. Instead of a full search VQ, 
the TSVQ is composed of a sequence of binary searches 
which greatly reduces the computational load, and provides 
suboptimal, and yet good results 1381. As a TSVQ scheme, 
one can adopt a greedy tree structure, also used in this paper, 
which splits the tree one node at a time, and subsequently 
selects the node with the smallest overall cost. This usually 
gives an unbalanced tree because the node that is split can 
be at any depth 1431. The TSVQ is used to choose initial 
cluster centers, and when combined with the ICM, to provide 
a mechanism for unsupervised image segmentation and class 
parameter estimation. It should be noted that it is well known 
that classification can also be viewed as a form of compression 
and vice versa 1351. More information on VQ and TSVQ can 
be found in 1161 or in the tutorial article 1171. 

An automatic image segmentation technique has to perform 
segmentation without operator's assistance. A very difficult 
problem in automatic segmentation is the determination of 

the number of classes from the observed data, also known 
as cluster validation or multiple hypotheses testing [22] and 
[48]. Recently, qualitatively new methods have been proposed 
based on penalized maximum likelihood criteria. Among them, 
the most popular are the Akaike's information criterion (AIC) 
111 and the Minimum description length (MDL) 161, 1321, 1441, 
and [48]. Many researchers have applied them and recognized 
their poor performance in many cases [28]. Modified rules 
have been proposed 1321, however, most of them are heuristic 
and, in general, do not perform well. It is well known that the 
cluster validation is a very difficult problem and that a search 
for a solution is still under way [13], 1281, [46]. This is more 
so for vector images. 

In image processing, the cluster validation problem is some- 
what easier because the pixels are ordered data. The ordering 
provides inherent spatial information that is exploited for 
cluster validation by imposing spatial constraints. In this paper 
we derive a maximum a posteriori (MAP) solution for cluster 
validation. We utilize asymptotic Bayesian theory, which has 
been exploited before in model selection problems [lo] and 
1241. The number of classes is determined along with the 
segmentation. 

The paper is organized as follows: The problem of vector 
image segmentation is stated in Section 11. The details of 
our TS-ICM algorithm are provided in Section 111, where we 
describe the MAP criterion for choosing the best nodes in the 
tree structure algorithm as well as the selection of perturbation 
vectors for splitting the nodes. In Section IV, we propose a 
novel Bayesian cluster validation criterion for determining the 
number of classes. This criterion, when combined with our TS 
algorithm, provides an automatic image segmentation scheme. 
Some simulation results on various 1 -.D and multidimensional 
medical images are shown in Section V. Finally, a discussion 
on two important issues about our TS algorithm is presented 
in Section VI, and a brief conclusion is given in Section VII. 

11. PROBLEM STATEMENT 

Let S = {s = ( i ,  j)ll 5 i < M I ,  1 5 j < M2) denote a 
two-dimensional (2-D) M I  x Mz lattice with a neighborhood 
system N = { N s :  s E S} ,  where N ,  c S is a set that contains 
the neighboring sites of s. Let Y be a p-dimensional @-D) 
random field defined on S ,  that is Y = {y,ls E S}.  Y is 
the observation of Y and y = [y[ll , ys ['I , .", yF1IT is the 
observed random vector ys. Let X := {x,Is E S }  be a 1-D 
random field defined on S ,  and let X be the realization of X 
and 5 ,  the realization of x,. We assume that X is an MRF 
with a probability distribution f ( X ) ,  and that X is the set of 
class labels of the underlying image of Y .  X is comprised of 
pixels that belong to one of m classes. It is assumed that m 
and the parameters associated with each class are unknown. 
Let c be a clique that is a subset of S with one or more sites 
such that each site in c is a neighbor of all the remaining sites 
in e, and let C denote the set of all cliques. 

The joint probability of X is a Gibbs distribution whose 
form is 

-S 
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X 
where 2 is a normalizing constant called the partition function, 
and U(X) is an energy function defined by 

(3) 
ctc 

with Vc(X) being the potential function whose argument, 
X ,  is an element of the clique. The MRF considered here 
is a multilevel logic model [46] that has a second order 
neighborhood system (eight neighbors) with painvise cliques 
[29] whose potential function is defined as 

where p is the hyperparameter of the model, which can also 
be interpreted as edge penalty. 

The observed image y, is obtained when the noise w, is 
superimposed on the signal g(xs), that is 

Ys = g(xs) + ws (5)  
where g(xs) is a function that maps the underlying label x, to 
its associated attribute vector pxs . The w,’s are independently 
distributed Gaussian random- vectors with zero mean and 
unknown covariance matrix E,, , which is class conditional. 
Therefore, the density of Y ,  given the underlying true image 
X = X ,  is 

f (YIX) = rI f(yslx4 (6) 
S E S  

and 

5, E (1, 2, ’ ” ,  m}  (7) 
where ys and p 

Based on tGz>bserved vector image Y ,  the problem is 
to find the number of classes m and classify the observed 
random vector g into one of the m different classes. Note 
that, according is the assumptions, each pixel has a Gaussian 
distribution whose parameters pZ3 and E,, are not known. In 
addition, the edge penalty /3 that appears in the MRF model 
is also unknown. 

are p-D vectors. 

111. THE TS-ICM ALGORITHM 
First, we address the segmentation problem when the num- 

ber of classes is known. Since we plan to apply the ICM 
method, it is critical to resolve the problem of its initialization 
[6] and [25]. Our goal is to find both X and 0 which maximize 
the a posteriori (MAP) function, i.e., 

(X,, 6,) = arg max f(x, OIY, m) (8) 

where 6 includes both the class parameters (E,~,  E,,), 
5 ,  E { 1, 2, . . . , m}  and the edge penalty /3 of the MRF 
and m is the assumed number of different classes. Since 
the maximization of (8) with respect to both X and 0 is a 

X ,  0 

formidable task, the TS-ICM algorithm uses a partial optimal 
solution [29], [46] for X and 6. In other words, we apply a 
sequential scheme based on 

(9) 

(10) 

where the index k = 1, 2 ,  . . . , m, denotes both the number of 
classes and the current stage of the algorithm. At each stage 
we try to obtain intermediate solutions iteratively by using (9) 
and (10) that ultimately leads to the solution defined by (8). 
Once the partial optimal solutions are found, they are used as 
initial values for the next stage. Note however, the following: 
1) (9) and (10) are only suboptimal solutions of X k  and 6 k ,  
2) to implement (9), we need the estimates of the unknown 
parameters 6 ,~ ,  and 3) to apply (lo), we need the segmented 
underlying image X k  . 

Suppose that we have the initial estimates of X F )  and 
6;’ obtained by the TS scheme. We then apply the ICM 
using 6;) to get Xi’ ) .  Once we know X r ) ,  we estimate the 
class parameters 6r). One of these parameters is the edge 

penalty br) ,  which is estimated by maximizing the likelihood 
function f(Xil)) of the estimated underlying image Xi ’ ) .  The 
maximum likelihood (ML) estimate of 0 can be written as 

X k  = arg maxf(xl6, ,  Y,  I C )  

6, = arc max f(elXk, Y,  I C )  
X 

0 

Sk  = arg { f ( X k ) }  (1 1) 

To avoid the intractable partition function 2 in f (X) and 
estimate the edge penalty /3 that appears in the MRF model, 
we use the “pseudo-likelihood” [4] and [5].  It is defined by 

XS’ I CEC 

where the 2,’s are normalizing constants. The estimate of the 
edge penalty is then given by 

Sk = arg max{PL(kk))  (16) 
B 

where (18) is obtained by taking the negative logarithm of (17). 
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Once we have 6:), we continue to estimate sequentially Xp) 
and 6?), where n = 2 ,  3 ,  . . ., until convergence is reached. 

According to the TS algorithm, we split each cluster into 
two clusters one at a time, where each cluster center is the 
estimated mean vector and denoted as a node in the tree. If 
there already exist IC - 1 classes, we have k - 1 different nodes 
to split. The best node k is the one obtained from 

R = a r g  max f ( X , " l Y )  
r c € { l ,  2, ..', k - 1 )  

where K denotes the node being split, X [  the MRF field with 
I% classes obtained by splitting the Kth node, and k is the best 
node to split. 

From Bayes' theorem 

it follows that the maximization of f ( X k I Y )  does not depend 
on f ( Y ) ,  and therefore f ( Y )  can be ignored. To avoid 
difficulties in dealing with all the possible configurations of X 
as well as the intractable partition function 2, which appears 
in f ( X k ) ,  we adopt the pseudo-likelihood again. The MAP 
criterion then becomes 

k = arg max f ( Y l X z ) f ( X z )  
K € { l , 2 , " ' ,  k-1) 

Therefore, the surviving node whnch maximizes the MAP 
criterion is obtained from a functnon that is a penalized 
likelihood comprised of two terms. One is the data term, Fd( .), 
which is a measure of the fitting error, and the other, a penalty 
term Fc( .), which penalizes for spatial discontinuities. 

Before we outline the algorithm, two important issues 
are discussed. a) We add a small value of perturbation 5 
to each cluster center in opposite directions to stimulate 
breaks of clusters. In the conventional TSVQ scheme, the 
perturbation E can be any small arbitrary fixed vector, and 
it is usually not in the direction of' the cluster orientation. 
To avoid unwanted effects caused by using arbitrary g and 
to improve the performance, g is chosen in the direction 
of the largest variability of the cluster [3] and [12]. This 
direction is given by the eigenvector gIz, associated with the 
largest eigenvalue of the cluster covariance matrix kzs . b) The 
initial conditions provided by the previous cluster splittings 
lead to a local minimum and many misclassified pixels. The 
ICM algorithm, however, will correct the classification of 
most of them by exploiting their spatial interdependence, 
thus precluding propagation of the misclassified pixels to the 
next stages. Since a big portion of the initially misclassified 
pixels is now correctly classified, this not only improves the 
segmentation results, but also the partial optimal parameter 
estimates. We emphasize that the algorithm does not require a 
priori information, and therefore is completely data-driven. 

The algorithm is implemented along the steps outlined 
below. Note that Steps 3 )  and 4) are identical to the ISODATA 
algorithm [2], and Steps 5) and 6) are from [46]. 

Step 1) Choose the initial number of classes equal to one 
( I C  = l), i.e., x, = 1, V s  E S .  Estimate the 
cluster center jil, which is simply the sample mean - 

vector of all the pixels, and 91, where 21 = 

to form two 
initial cluster centers by using ,GI 7 5 and jiI - 5. 
The perturbation 5 is chosen in the direction-of the 
eigenvector associated wilh the largest eigenvalue 

Step 3) Classify all the pixels to one of the two classes by 

V(M1 x M2) CS,&S --E1)(& - EllT. 
(23) Step 2) Increase IC by one, ( k  = 2 ) .  Split 

1 
of 21. 

5, = 2 if d(gs, &) 

where 

S E S  I CEC 

5 42% @ l , ) >  1 # 1' (28) 

where we choose d( .) to be the Euclidean distance 
in the p-D space. Then update - -  ji~, j i 2 ,  21 and 22 
by 

where 1 = 1, 2, and T E  is the number of pixels in 
class 1. 

Step 4) Repeat Step 3) until convergence is reached. 
Step 5 )  Use - -  ji1, ,Lip, $1, and 22 as well as the ICM to 

segment the image, i.e., find 5,. Update - -  ji1, j i 2 ,  21, (27) 
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n Step 6) 
Step 7) 

Step 8) 

Trueparameters 20.0,80.0, 100.0, 120.0, 160.0 

and 2 2  by (29) and (30). Update f12 by maximizing 
the pseudo-likelihood (18). 
Repeat Step 5) until convergence is reached. 
Increase the number of classes by one. In a similar 
fashion as in Steps 2)-6), split the existing nodes 
one at a time to form additional cluster centers. 
Choose the best set of cluster centers from the set 
of IC - 1 candidates for the next stage according to 
the MAP criterion (25). 
Repeat Step 7), forming one node at each stage 
until IC = m. 

IV. CLUSTER VALIDATION 

K-means 

From Bayes’ theorem, the joint a posteriori estimate of X ,  
and m is given by 

Final estimates 20.00,88.59,107.32, 130.65, 161.07 

where f ( Y I X m ,  m) is the likelihood function, f ( X m I m )  is 
the Gibbs distribution of the underlying image with m classes, 
and f (m)  is the a priori probability of the model with m 
classes. If we assume uniform f (m) ,  the MAP solution of 
(3 I )  becomes 

( X m ,  &)MAP = arg max { f ( Y I X m ,  m ) f ( X m I m ) } .  (32) 
( X , m )  

Given the number of classes m, we can find the underlying 
image X m  by the TS-ICM technique. 

Once we obtain X ,  for m = 1, 2, . . . , mmax, the number 
of classes is selected according to 

&MAP = arg m p { S ( Y l X m ) f ( X m ) } .  (33) 

~ o t e  that f ( y ~ X m )  = Je, f ( Y l X m ,  e m ) f ( ~ m ) d ~ m ,  
where 0, is the parameter vector of all the classes. If 
we Taylor expand f(YlX,, 0,) around the ML estimate 
6, and use asymptotic approximation, we find that (33) 
simplifies to 

%MAP = arg min - In f(ylXm, 6,) 

(34) 
I m 

+ p In n, - In P L ( X ~ )  

m i 
z = 1  

where p is the dimension of the vector images, 6, is the 
ML estimate of Om, n, is the number of pixels that belong 
to the ith class, and P L ( X m )  is the pseudo-likelihood. It 
is a penalized maximum likelihood criterion with a simple 
interpretation. The first term is a data term which corresponds 
to the fitting error of the applied model. The second term is a 
penalty for overparameterization due to unnecessary classes. 
The third term is also a penalty, which penalizes for additional 
spatial discontinuities as quantified by the MRF model. For the 
purpose of comparison, we list the following criteria for cluster 
validation that have been reported in the literature [28], [32], 
[46], and [48] 

= arg min m {- In ~ ( Y I X , )  + df} (35) 

(36) &MDL = arg min {- In f(YIXm) + d f  In N }  
m 

11 TS-ICM I Initial parameters I 20.06.70.79.96.66, 122.18. 158.78 I 
11 TS-ICM I Final estimates 1 20.00,79.90,99.58,118.97.158.90 1 
11 K-means 1 Initial parameters I 20.15,80.03,109.99,137.40,172.02 I 

- In P L ( X ~ )  + ~ “ d f ) .  (37) 

where df is the number of free parameters in the model, c is a 
prespecified constant, and N is the data size. Note that all the 
criteria have identical data terms; they differ in their penalty 
functions only. The AIC’s penalty is not a function of the data 
lengths, while the MDL’s, unlike the MAP’S, depends only on 
the total size of the image. Also the AIC and MDL do not 
have terms that arise from spatial information. We must point 
out, however, that an MDL segmentation with spatial penalties 
has been proposed in [26]. The compensated likelihood (CL) 
[46] includes the spatial information via the MRF as in our 
rule, but it has a third term, different from ours, which has 
been determined empirically by experimentation. 

V. SIMULATION RESULTS 

A. TS-ICM 

In this section, we present the results of three experiments. 
In the first, we applied the TS-ICM to 1-D ( p  = 1) synthesized 
MR brain images, where the shapes of the various tissues were 
obtained from a hand segmented MR image. We compare its 
performance to that of the K-means algorithm. The size of 
the image was 256 x 256. The contrast-to-noise ratio (CNR) 
defined by 

was equal to 20/20. In (38) pl and ,LLL are the intensity levels 
of the pixels in two adjacent regions respectively, and cl, 
Ok are noise standard deviations. There were five classes of 
objects (tissues) with true mean values p1 = 20, p2 = 80, 
p3 = 100, p4 = 120, and p5 = 160. The noise deviations 
in the background and bone was 3.5 and for the remaining 
region, it was 20, that is CT~ = 3.5, r 2  = ( ~ 3  = ~4 = 0 5  = 20. 

In Fig. 1, the left two images are a noiseless (top) and 
noisy (bottom) MR images, and the middle two images are the 
segmented image by the TS-ICM and the corresponding error- 
map. The two images on the right are the segmented image 
obtained by the ICM initialized by the K-means algorithm and 
its error-map. When we simulated the K-means algorithm, we 
updated the parameters {p l ,  CT~} after each iteration [46]. The 
results clearly show improved performance of our procedure 
over the K-means procedure. 
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Fig. 1. 
labels obtained by the ICM initialized by the K-means algorithm and its error-map. 

(a) A noiseless (top) and noisy (bottom) MR images. (b) The segmented labels by the TS-ICM and the corresponding error-map. (c) The segmented 

TABLE I1 
THE ROBUSTNESS AGAINST NOISE WITH VARIOUS CNR'S. THE TABLE 

INCLUDES THE ICM INITIALIZED BY THE TRUE PARAMETERS, THE 
TS-ICM, THE MODIFIED TS-ICM (ALLOWS BOTH CLUSTER 
SPLITKNG AND MERGING), AND THE &MEANS ALGORITHM 

This improvement is due to the complete ICM segmenta- 
tion after every split, which improves the initial parameters 
significantly. To compare these schemes, in Table I we show 
their initial and final estimated parameters obtained in the 
previous experiment. Our algorithm outperforms the K-means 
approach, and therefore yields better segmentation results. 

To test the robustness against noise, we performed an 
experiment with various CNR's on the first image of 
Fig. 1. The simulation results that show the Percentage of 
Correct Classifications for the different CNR's is shown 
in Table 11. The table includes the results of the ICM 
initialized by the true parameters, the TS-ICM, the modified 
TS-ICM (allows both cluster splitting and merging), and 
the K-means algorithm. When the CNR is high, all the 
approaches perform similarly. As the CNR decreases, the 

TABLE I11 
PARAMETERS OF THE SYNTHESIZED IMAGE IN EXPERIMENT 2 

T1 ( p )  168 

T1 (c) 21 25 

T 2 ( p )  106 119 
I I I U 

TS-ICM outperforms the K-means algorithm significantly. 
Although, the modified TS-ICM has larger computational 
requirement than the TS-ICM, their performances are 
comparable. 

In the next experiment, we applied our algorithm to a 
three-dimensional (3-D) synthesized MR image (I, = 3) 
whose size was also 256 x 256. The parameters of the 
different tissues are shown in Table 111, and the noiseless 
and three noisy images (Tl, T2, Pd) are displayed on the 
left side of Fig. 2. The parameters of the different tissues are 
chosen according to [30] except that we added more noise. 
Note that there are only four different intensity levels shown 
in the third image (Pd), since two classes in the third image 
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(a) (b) 

Fig. 2. (a) The class labels of the underlying image, and the three bands of the noisy synthesized MR images. (b) The top two images display the segmented 
labels and the error-map of the TS-ICM. The bottom two images are the segmented labels and the error-map of the ICM initialized by the A-means algorithm. 

have the same intensity level. In addition, the white matter 
and gray matter are two adjacent regions with small CNR, 
which makes them difficult for discrimination. 

In Fig. 2, the top two images on the right side display 
the segmentation result and the error-map of the TS-ICM. 
The bottom two images on the right display the segmentation 
result and the error-map of the ICM initialized by the K- 

means algorithm. Table IV shows the numbers of misclassified 
pixels in various regions obtained by the ICM initialized by the 
TS and the K-means algorithm, respectively. Clearly, the TS 
algorithm had better performance, and it is more so as we keep 
increasing the noise. In our experiments the algorithm created 
a few 1-pixel regions, which can be prevented by additional 
penalization. 
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TS-ICM 

ICM initialized by the K-means algorithm 

TABLE IV 
THE NUMBER OF MISCLASSIFIED PIXELS IN VARIOUS REGIONS FOR ICM INmIALIZED BY THE TS-ICM AND THE K-MEANS ALGORITHM 

WhiteMatter GrayMatter CSF Air/Bone Other 

181 311 3 0 11 

248 507 3 0 8 

ImageSidCNR 

TABLE V 
COMPARISON OF THE MAP, AIC, AND MDL RULES FOR 

QUSTER VALIDATION. THE TRUE NUMBER OF CLASSED IS FIVE 

rule\segm. 2 3 4 5 6 7 

In the last experiment, we applied our algorithm to a real 
3-D MR image (Tl, T2, and Pd) acquired by a 1.5-Tesla GE 
scanner, whose size was also 256 x 256. In Fig. 3, the images 
on the left side from top to bottom, are the T1, T2, and Pd 
images. The T1 image is acquired with TR = 1000 ms and 
TE = 20 ms, the T2 image with TR = 2000 and TE = 75 
ms, and the Pd image with TR = 3000 and TE = 20 ms. 
The images on the right hand side from top to bottom, are the 
segmentation results for m = 4, 5 ,  and 6, respectively. 

B. Cluster Validation 

To verify the cluster validation performance of the proposed 
MAP criterion, we applied it to the synthesized MR brain 
images as shown in Fig. 2. Table V displays the simulation 
results from 50 independent trials of the MAP, AIC, and 
MDL rules. As can be seen, the AIC and MDL showed 
strong tendencies to overestimate the number of classes. In 
particular, the AIC exhibited very poor performance and can 
be considered unreliable. By contrast, our criterion yielded 
excellent results. 

20/2 20/4 20/6 2W8 20/10 20/12 

VI. DISCUSSION 

A. Sensitivity Evaluation 

Cluster splitting can only perform well if the clusters contain 
large enough number of pixels, and there seems no obvious 
way to circumvent this problem. In order to examine this 
issue, we generated a small region (10 x 10 pixels) embedded 
in a larger region with different CNR’s. The experiment 
was performed with various vector images who sizes were 
32 x 32, 64 x 64, and 128 x 128 pixels. The results are listed 
in Table VI, where the entries represent the misclassified pixels 
(average value out of 50 trials) and “F” denotes more than 35 
misclassified pixels or failure of discrimination. 

As the image size gets larger, the required CNR for suc- 
cessful separation of the small object from the background 
increases. This shows that a subcluster can only be separated 
from the other cluster if its size is not too small compared to 
the other one. Of course, this also depends on the CNR. For 

TABLE VI 
SENSITIVITY ANALYSIS OF THE TS-ICM ALGORITHM 

example, at CNR = 2/1, the small object can be separated 
from the larger one, if their size ratio is larger than 1/10. 

B. Computational EfJiciency 
It is known that the ICM is an efficient algorithm, when 

the class parameters are known. If the initial conditions are 
unknown, the TS algorithm provides an efficient way for 
obtaining them. The TS algorithm when applied to a 3-D (Tl, 
T2, and Pd) 256 x 256 brain image with five classes, takes 
about 12 min on a Pentium 90 machine with 16 MB RAM 
and 32-MB swap memory. Although Dubes et al. [ 111 show 
that the ICM can converge in five or six raster scans of an 
image, we performed ten raster scans for the segmentations 
in our simulations. 

The computational requirements mainly depend on the 
image size and the number of classes contained in the image. 
It does not vary dramatically when it is applied to different 
types of images. When the image has m different classes, 
the total computation requirement is z = m2 - m - 1 
segmentations. For a medium size image (e.g., 256 x 256) 
with a medium number of classes (e.g., lo), the computational 
requirements are modest. When the image size and the number 
of classes are large, as can occur, for example, in some satellite 
image applications, the direct application of the TS algorithm 
may become computationally infeasible. Since a significant 
portion of the computation is used for initialization, to reduce 
the computational requirements, coarse segmentation can be 
applied to feature vectors extracted from 6 x b windows. 
Once the initial parameters are obtained, the segmentation can 
proceed as before. In some practical applications, this may 
decrease the computation by a factor of about l / b 2 .  In certain 
cases, however, a technique based on this approach may miss 
some extremely narrow regions. Another way to reduce the 
computational requirement in applications with larger number 
of classes is to start the TS-ICM from certain number of 
classes rather than always starting from one class. In addition, 
parallel computation can be straightforwardly applied which 
will further reduce the computation time. 

m-1 . 
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Fig. 3. (a) 

(a) 

Three bands of the noisy real MR images (T1 

(b) 

T2, and Pd weighted). (b) From top to bottom, the segmented 
m = 4, 5, and 6, respectively. 

VII. CONCLUSIONS 

We have presented a novel algorithm for simultaneous 
parameter estimation and vector image segmentation. The 
algorithm is implemented sequentially in stages, where at each 
stage a specific number of classes is assumed. It increases 
the number of classes by one at each stage by using a tree 

structure technique that provides initial parameter 
which are then improved by the ICM procedure. 
mation results of every stage are used as initial 

879 

labels for 

estimates 
The esti- 
estimates 

for the next stage. As the number of stages increases, the 
number of classes also increases. We have also proposed a 
MAP criterion for cluster validation. This criterion has the 
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_- 
form of a penalized likelihood function that is composed [22] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Engle- 
of two terms, a data term and a penalty term. The data 
term represents the fitness of the segmented image to the 
original image, and the penalty term penalizes for the spatial 
discontinuity and the overparameterization. The performance 
of the algorithm and the MAP criterion were examined by 
computer simulations on synthesized images, and they show 
excellent results. Segmentation results on real brain images 
are also included. 
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