
VI. CONCLUSION

We have shown that dilution of precision terms
for relative positioning, using double-difference
processing of GPS satellite signals, are bounded by
the corresponding dilution of precision terms for
point positioning. This result is valid for the case of
four satellites, with a common reference satellite. An
example is provided which shows that such a common
reference is required. It remains to extend our result
to an arbitrary number of satellites. Simulations
conducted to date have yielded no counterexamples
for the case of n > 4 satellites.
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A Fast Weighted Bayesian Bootstrap Filter for
Nonlinear Model State Estimation

In discrete-time system analysis, nonlinear recursive state

estimation is often addressed by a Bayesian approach using a

resampling technique called the weighted bootstrap. Bayesian

bootstrap filtering is a very powerful technique since it is not

restricted by model assumptions of linearity and/or Gaussian

noise. The standard implementation of the bootstrap filter,

however, is not time efficient for large sample sizes, which

often precludes its utilization. We propose an approach that

dramatically decreases the computation time of the standard

bootstrap filter and at the same time preserves its excellent

performance. The time decrease is realized by resampling the

prior into the posterior distribution at time instant k by using

sampling blocks of varying size, rather than a sample at a time

as in the standard approach. The size of each block resampled
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into the posterior in the algorithm proposed here depends on the

product of the normalized weight determined by the likelihood

function for each prior sample and the sample size N under

consideration.

I. INTRODUCTION

The extended Kalman filter (EKF) has been one of
the most popular approaches to recursive nonlinear
state estimation problems [1, 3, 5]. According to
this approach, the nonlinear state transition and
observation equations are linearized about the current
state, and with the system of equations linearized, the
Kalman filter algorithm is applied. However, because
of the linearization process, the filter may diverge
from the correct state-space trajectory, even when
the system and/or observation noises are low. This
potentially poor performance in some nonlinear state
estimation applications has led to the introduction
of a Bayesian approach using a weighted bootstrap
methodology [2].
The weighted bootstrap filter takes a set of random

samples from the probability density function (pdf),
conditioned on the measurements, describing the
state vector distribution at the discrete time instant
k. The state samples are then propagated through
the system state model, and the resulting sample
distribution is updated using the weighted bootstrap as
presented in [6]. The advantage of this approach over
the EKF is that no linearization of the equations is
performed, so divergence is not a problem. Moreover,
the Bayesian bootstrap filter does not restrict the
class of system models due to analytical tractability.
However, a drawback of this filter, as given in [2], is
the computational load of the algorithm in the update
stage. Although the update portion of the algorithm
is very simple, it is very time consuming when, for
accurate estimates, at each time instant large sample
sizes (i.e., a few hundred) are required.
The time required to run the bootstrap filter

becomes important when we have to apply the
filter in real time, or we are faced with the problem
of selecting a model from a set of candidates. In
these applications, the standard bootstrap filter may
become intractable. By contrast, the fast weighted
bootstrap proposed here provides great reduction in
computation time. The reduction is achieved by using a
special resampling scheme, which is an averaging-type
procedure. It is based on the expected number of
times each prior sample should appear in the posterior
at each time instant. The justification for using an
averaging procedure is that, had a Monte Carlo
simulation been run for some time instant using a
given set of prior samples and the data summarized
by averaging, the result would be nearly identical to
the approach proposed here.
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This paper proceeds by first reviewing the Bayesian
bootstrap as presented in [2]. This is followed by
a description and derivation of our fast bootstrap
method. Finally, we conclude with an example that
provides performance comparison of the proposed fast
and standard bootstrap filters.

II. THE BAYESIAN BOOTSTRAP FILTER

In this discussion we are concerned only with
the problem of estimating the state vector of a
discrete-time system. The system model is assumed
to have the form

xk+1 = fk(xk,wk) (1)

where fk : Rn£Rm!Rn is the state transition
function, and wk 2Rm is a sequence of independent
zero mean random vectors. The noise vector wk is
assumed independent with the state vector xl, for l · k,
and the pdfs of the wks are known. At the times under
consideration, the measurements yk 2Rp are related to
the state vector via the observation equation

yk = hk(xk,vk) (2)

where hk : Rn£Rr!Rp is the measurement function,
and vk 2Rr is another sequence of independent zero
mean random variables. These noise samples are
independent with the state vector samples as well as
the system equation noise samples, and their pdfs are
also assumed known. A further assumption is that
the initial pdf, p(x1 jD0)´ p(x1), of the state vector
is available together with the functional forms of the
state transition function and observation functions for
all k. The available information at time instant k is the
set of measurements denoted by Dk = fy1,y2, : : : ,ykg.
The end result is that the posterior pdf for state
estimation at time instant k conditioned on the
measurements, is given by Bayes’ rule, i.e.,

p(xk jDk) =
p(yk j xk)p(xk jDk¡1)

p(yk jDk¡1)
: (3)

The detailed derivation of the above equation is given
in [2, sect. 2]. From this formulation the bootstrap filter
algorithm can be described as follows.
Let x¤k(i), i = 1,2, : : : ,N, be the set of prior samples

for instant k. These samples are passed through an
update process, which uses the measurement yk, and
each prior sample x¤k(i) to evaluate the normalized
likelihood for each prior sample according to

qi =
p(yk j x¤k(i))PN
j=1p(yk j x¤k(j))

: (4)

We then define a discrete distribution over fx¤k(i)g
with probability mass qi associated with each x

¤
k(i).

The distribution is resampled N times to generate

the set of samples fxk(i)g, so that for j = 1,2, : : : ,N,
the probability Pfxk(j) = x¤k(i)g= qi. The result of
the update procedure is that the samples fxk(i)g are
distributed as the required pdf, p(xk jDk).
Next, the fxk(i)g are passed through a prediction

process, where we use the system transition equation
to generate a set of predicted samples fx¤k+1(i)g by
calculating

x¤k+1(i) = fk(xk(i),wk(i)): (5)

The samples wk(i) are generated from the pdf of
the system noise p(wk) so that there is one sample
for each of the N samples in the set fxk(i)g. The
fx¤k+1(i)g are then passed similarly through the update
and prediction processes as fx¤k(i)g. The update and
prediction processes are repeated until the desired
number of time samples has been processed. Note
that the algorithm is initiated by generating N samples
x¤1(i), where i= 1,2, : : : ,N, from the known prior p(x1).
The resampling portion of the update process is

implemented by drawing a random sample ui from the
uniform (0,1] distribution. When

M¡1X
j=0

qj < ui ·
MX
j=0

qj (6)

where q0 = 0, we choose xk(i) = x
¤
k(M) for making up

the posterior.
If N is large, this process takes a very long time to

complete, and the problem is further exacerbated when
a large number of samples is simulated over many
time instants. However, examining the structure of the
resampling process, a faster method is possible which
can still generate useful results. The faster method is
based on the expected number of times each prior
sample should appear in the posterior. It is described
in the next section.

III. DERIVATION OF THE FAST BOOTSTRAP

As mentioned above, the main limitation of
the weighted bootstrap as given in [2] is in the
computational load for its implementation. Most of
it comes from the resampling of the prior distribution
into the posterior. The current proposal is to decrease
the execution time of the weighted bootstrap by
generating samples into the posterior in groups rather
than one at a time as in the weighted bootstrap. The
groups are generated based on the expected number
of times each value in the prior should be resampled
to the posterior. Simulations have been performed
comparing the two resampling approaches and are
presented in the next section using a highly nonlinear
model from [4], which was used in [2] to show the
superior performance of the weighted bootstrap filter
over the EKF.
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The weighted bootstrap provides a possibly small,
but finite, probability of resampling any value x¤k(i) for
i= 1,2, : : : ,N, from the prior into the posterior. The
probability of resampling a particular x¤k(M) is qM . To
implement this, the value of x¤k(M) is selected each
time a random variable U uniformly distributed on
(0,1] satisfies

M¡1X
j=0

qj < U ·
MX
j=0

qj: (7)

Thus, the probability of selecting x¤k(M) is the same
as U lying in the interval bounded as shown above.
Equivalently, this probability can be expressed as U
lying in the range,

0<U · qM: (8)

Therefore, the probability of selecting a particular
x¤k(M) on a single trial is as claimed. In addition, the
probability of not selecting x¤k(M) in a single trial is
1¡ qM . Now, with a sequence of N trials, the weighted
bootstrap resampling procedure can be analyzed as
a sequence of Bernoulli trials. Cast in this form, the
probability of “success” on a single trial (i.e., selecting
an x¤k(M)) is p= qM , and the probability of “failure” is
q= (1¡ qM). The probability of selecting the value
x¤k(M) exactly L times in N trials is given by the
binomial distribution of order N. Thus, the expected
number of times any prior sample x¤k(i) should appear
in the posterior is Nqi. This is the key to the fast
algorithm.
In our algorithm, at a fixed time instant k, we pick

one of the N prior samples from fx¤k(i)g, say x¤k(M),
at random by assigning a sampling probability of 1=N
for each x¤k(i) and place [NqM] samples of the x

¤
k(M)

value into the posterior, rather than generating one
sample into the posterior at a time as in the weighted
bootstrap approach. The symbol [¢] means the largest
integer not exceeding the contents. This method
is repeated until a total of N samples have been
generated. Then the resampling is stopped, and the
posterior samples are projected ahead using the given
system model. The resample and projection scheme is
repeated until the desired number of observed data has
been processed.
As with most statistical simulation algorithms, the

proposed fast algorithm has some difficulty in handling
low probability events known as outliers. Briefly, if at
a particular time instant k for some is, the product of
N and qi is not at least one, then those x

¤
k(i)s in the

prior cannot generate any samples into the posterior
using the [¢] criterion. The weighted bootstrap on
the other hand, guarantees each prior sample a
chance, no matter how small, of being selected in the
posterior. This difficulty can be handled in two ways
depending on the needs of the modeler. In either case
selecting a large N decreases this problem, and some
experimentation may be necessary to determine what
“large N” means.

In any bootstrap method, of course, there is no
guarantee that outliers even exist in a prior distribution
sample of fixed size. However, with an N large
enough, statistically a few outliers will eventually
appear, and therefore a mechanism to handle them
is necessary. For the fast algorithm, one solution is to
choose an N large enough so that [Nqi]¸ 1 for almost
every x¤k(i) in the prior. However, no matter how large
N is selected, there can be outliers still ignored when,
dependent on yk, the product of N and the normalized
resampling probability qi of some states is less than
one. Hence, relative to the repeated application of
the weighted bootstrap at that time instant, given the
same set of prior samples, the low probability states
are underrepresented in the posterior.
Another solution is to consider max([NqM],1)

as the number of times of including in the posterior
the selected value x¤k(M). Thereby, even those values
which are outliers can be selected at least once into
the posterior. However, there is a danger here because
if N is too small, some outliers can be overrepresented
in the posterior by selecting them much more often
than their normalized probability indicates.
A possibility to overcome the above problems

is a combination approach. This entails that each
prior sample x¤k(i) with a qi such that [Nqi] = 0, is
“tagged” when it is selected the first time so it cannot
be selected again at a particular time step. This
guarantees that each sample from the prior below
1=N probability can only appear at most once in the
posterior. The removal of the outliers from the prior
population of N samples once selected is such a small
effect when N is chosen properly, that hypergeometric
arguments are not necessary when considering the
resampling procedure proposed [7].
Due to the random selection of the samples

from the prior, it is possible to generate more than
N samples in the posterior. When this happens,
the posterior sample vector is truncated to the first
N selected. Random selection of the prior sample
index provides several benefits. First, the process of
selecting values is unbiased as long as the random
number generator is good. That is, no index in the
prior distribution sample vector is more likely to be
selected than any other. So every sample has an equal
chance of selection, although they will not contribute
an equal number of samples to the posterior. Second,
a deterministic selection criteria for selecting indexes
cannot guarantee exactly when the N points will be
achieved. Thus, it seems random sampling of the prior
distribution sample vector is justified.

IV. SIMULATION RESULTS

In this section, we compare the performance
of the proposed fast bootstrap algorithm to that of
the standard bootstrap method. For the purpose of
simulation, the highly nonlinear scalar model from
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Fig. 1. Performance of standard bootstrap filter. Dashed line denotes true system states, solid line denotes estimates of 9 different trials.

Fig. 2. Performance of fast bootstrap filter. Dashed line denotes true system states, solid line denotes estimates of 9 different trials.

[4 and 2] is used to generate the observed data. We
chose this model because its nonlinearity in both
measurement and observation equations produces
difficulties with standard estimation approaches,
in particular the EKF. Further, the modality of the
likelihood function depends on the sign of the observed
data. The model is described by

xk = 0:5xk¡1 +
0:25xk¡1
1+ x2k¡1

+8cos(1:2(k¡ 1))+wk

yk =
x2k
20
+ vkD

(9)

where wk »N(0,10), vk »N(0,1), and x0 = 0:1. The
assumption of Gaussian distribution of wk and vk
is not a requirement. It is made here merely for
comparison with previously published work. Using
Monte Carlo methods, both bootstrap algorithms
were repeatedly run many times and the results
are summarized in Figs. 1—4. Figs. 1 and 2 show
the performance “spread” of the standard and fast

bootstraps. For clarity, only 9 runs are shown. In each
case note that the repeatability between realizations is
in general quite good, both, amongst the realizations
of each algorithm and between the algorithms. We
used N = 500 at each time instant and applied the
[NqM] criterion to determine the number of times
to add x¤k(M) into the posterior. This number of
points per time instant provided simulations that
give repeatable data within a reasonable tolerance.
In Fig. 3, the individual run data are summarized
by displaying the sample mean (ensemble average)
performance for the estimated state value (minimum
mean-square error (MMSE)) of both algorithms
against the true nonlinear states, versus time instant.
We show that both bootstrap methods on average
track each other very well. When at some time
instants the fast bootstrap deviates from the true state
value, so does the well-accepted standard bootstrap.
Fig. 4 shows the mean-square error (MSE) of the
estimates of the two bootstrap approaches at each
time instant. Clearly, the fast algorithm provides state
estimates nearly as good as the standard method.
Additional experiments with other models have
shown similar agreement between the standard and
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Fig. 3. Trajectories of state estimate mean values (dashdot line is standard bootstrap filter, dashed line is fast bootstrap filter, solid line
is true states).

Fig. 4. Comparison of MSE of state estimates between standard bootstrap filter (solid line) and fast bootstrap filter (dashed line).

fast methods. Regarding the execution speed, we
have found that the fast algorithm, using MATLAB
software running on a 486 PC, reduces the execution
approximately by a factor of 20.

V. CONCLUSION

In this paper, we have proposed a bootstrap
filter that requires much less computation than the
standard bootstrap filter. The decrease in computation
is achieved by resampling the posterior in groups
of samples instead of one at a time. The simulation
results are very encouraging. They show that the fast
bootstrap produces comparable results to those of
the standard filter. The main advantage of the fast
method is the time reduction for model simulation and
its suitability for real-time applications. Further work
on this technique should be performed to investigate
its applicability to other nonlinear models and study
its performance in more detail. An important issue is
to determine the conditions when the posterior state

distribution collapses and remains a set with few truly
distinct values.
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[5] Ljung, L., and Söderström, T. (1987)
Theory and Practice of Recursive Identification.
Cambridge, MA: MIT Press, 1987.

[6] Smith, A. F. M., and Gelfand, A. E. (1992)
Bayesian statistics without tears: A sampling-resampling
perspective.
The American Statistician, 46, 2 (1992), 84—88.

[7] Stuart, A., and Ord, K. (1994)
Kendall’s Advanced Theory of Statistics.
New York: Wiley, 1994, ch. 5.

Adaptive Beamforming Based on the Conjugate
Gradient Algorithm

Adaptive filtering using a version of the conjugate gradient

(CG) method which does not involve matrix inversions and is

hence computationally attractive has been presented in [1]. The

method, which uses a time average over a suitably chosen window

in order to generate the required gradients, has been used in

[2] for the design of an adaptive beamformer. The algorithm

essentially uses time diversity to obtain improved performance.

We consider a modification which essentially combines spatial and

time diversity to obtain an algorithm for adaptive beamforming

which has potential application in cellular communication

systems. Simulation results are presented to demonstrate the

performance of the algorithm.

I. INTRODUCTION

Adaptive beamforming has been an area of
active study for many years [3]. While many of its
applications have been in the areas of radar and
sonar, recently it is being applied to other areas such
as cellular communications, in which microwave
transmission is necessary. Although beamforming can
enhance such systems, many adaptive beamforming
algorithms are usually not fast enough for use in
real-time applications. Consequently, current research
is concerned with developing faster, more accurate
methods for adaptive beamforming. Among the
several adaptive techniques available for beamforming,
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the conjugate gradient (CG) method offers a good
compromise between speed of convergence and
computational complexity.
The CG algorithm basically is an iterative

technique for solving the matrix equation Ax = b,
where A is a known M £M matrix, b is a known
M £ 1 vector, and x is unknown. In the classical
conjugate gradient algorithm, b is determined by
minimizing the functional

f(x) =
XTAx
2

¡bTx: (1)

If di are vectors that are conjugate with respect to A
the solution x¤ can be expressed as

x¤ =
M¡1X
i=0

®idi (2)

where the ®is are scalar constants that are found using
the relation

®i =
dTi b
dTi Adi

: (3)

The vectors di at iteration k are determined as

dk =¡gk +¯k¡1dk¡1 (4)

where gks are negative gradient vectors of the
functional f(¢) and the ¯ks are chosen so as to provide
conjugacy. For nonquadratic cost functions, the
Fletcher-Reeves method uses the Hessian F(x) of f(x)
in place of A in (3) and a line search to minimize the
functional f(xk +®kdk) [4].
Computation of the Hessian matrix and the line

search can be avoided by using the following algorithm
proposed in [4]. The steps in the algorithm are as
follows.
Step 1 Starting with an initial choice x0, evaluate

the gradient vector g0 = ±f
0(x0), y0 = c0¡ g0, and

p0 = ±f
0(y0).

Step 2 For k = 0,1, : : : ,M ¡1, compute
xk+1 = xk +®kdk (5)

where

®k =
gTk dk

dTk (gk ¡pk)
(6)

gk+1 = ±f
0(xk+1) (7)

yk+1 = xk+1¡ gk+1 (8)

pk+1 = ±f
0(yk+1): (9)

Unless k =M ¡ 1
dk+1 =¡gk+1 +¯kdk (10)

where

¯k =
gTk+1gk+1
gTk gk

: (11)
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