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EM Algorithm for Image Segmentation
Initialized by a Tree Structure Scheme

Jong-Kae Fwu and Petar M. Djuri´c

Abstract—In this correspondence, the objective is to segment vector
images, which are modeled as multivariate finite mixtures. The underlying
images are characterized by Markov random fields (MRF’s), and the
applied segmentation procedure is based on the expectation-maximization
(EM) technique. We propose an initialization procedure that does not
require any prior information and yet provides excellent initial estimates
for the EM method. The performance of the overall segmentation is
demonstrated by segmentation of simulated one-dimensional (1-D) and
multidimensional magnetic resonance (MR) brain images.

I. INTRODUCTION

Image segmentation is a process that groups the image pixels
with homogeneous attributes together and assigns them adequate
labels. Many image segmentation methods are iterative and require
good initial conditions for reliable performance. In general, if the
initial conditions are inappropriate, the performance of the methods
degrades significantly. In most of the literature related to iterative
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methods, the class parameters are assumed known, or if they are
unknown, it is supposed that their initial values can be estimated
from available training data [2].

In this correspondence, we propose a new approach for getting
initial estimates [4]. It is based on a tree structure (TS) scheme usually
used in the context of vector quantization [6]. We combine it with
the expectation-maximization (EM) algorithm, which is a popular
iterative method for maximum likelihood parameter estimation and
image segmentation [3]. As with other iterative schemes, it is also
sensitive to initialization, which can cause significant problems in
practical applications. In [5], the EM algorithm was used to segment
medical images, where the initial parameters were chosen according
to a heuristic rule. Here we show that the combination of the TS and
EM algorithm (TS-EM) requires neither training data nor operator’s
assistance. This, however, does not sacrifice the EM’s excellent
performance in parameter estimation and image segmentation.

This correspondence is organized as follows: The problem state-
ment is given in Section II, and the details of the TS-EM algorithm
are provided in Section III. Simulation results are presented in Section
IV, and a brief conclusion is drawn in Section V.

II. PROBLEM STATEMENT

Let S = fs = (i; j): 1 � i<M1; 1 � j <M2g denote an
M1 �M2 lattice, andNs a set that contains the neighboring sites of
s: Suppose also thatXXX is a one-dimensional (1-D) Markov random
field (MRF) defined onS; orXXX = fxxxs: s 2 Sg: The joint probability
density function ofXXX is a Gibbs density whose form is

f(Xj�) =
1

Z
exp(U(Xj�)) (1)

whereZ is a normalizing constant,U(Xj�) is an energy function, and
� is the hyperparameter of the MRF. A realization ofXXX is denoted
by X; and a realization of the random vectorxxxs by xs:

Let YYY = fyyy
s
: s 2 Sg be a vector random field that represents

the observed image, whereyyy
s

is obtained when the noisewwws is
superimposed to the signalg(xxxs): That is

yyy
s
= g(xxxs) +wwws (2)

with g(xxxs) being a vector function that maps the underlying label
xxxs to its associated attribute vector���

x
: Note that this model is,

in general, valid for images with homogeneous attributes within the
same region, such as X-ray and MRI images, but may be invalid for
other images, such as positron emission tomography (PET) and single
photon emission computed tomography (SPECT). We assume that the
noise sampleswwws of WWW are independent and distributed according
to a multivariate Gaussian distribution with zero mean and unknown
covariance matrix.

Each pixel ofX belongs to one ofm different classes, wherem is
known. Given the above assumptions, the probability density function
of the observed vector at the sites can be expressed as

f(y
s
jxs;�Y ) =

1

(2�)p=2j���x j1=2

� exp �
1

2
(y

s
� �

x
)
T
���
�1

x (y
s
� �

x
)

(3)

where�Y = f�
x
;���x : xs = 1; 2; � � � ; mg;���x is the covariance

matrix andp is the dimension of the vectory
s
: Note that, in general,
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Fig. 1. Left: noiseless and noisy MR images. Middle: segmented image initialized by TS-EM and its error map. Right: segmented image initialized by
the K-means algorithm and its error map.

the covariance matrices associated with each class of pixels are
different.

Given these assumptions andY ; the main objective is to segment
Y into m classes and estimate the unknown parameters�Y :

III. A LGORITHM

The segmentation ofY and the estimation of�Y are entangled
tasks and are usually carried out simultaneously. To resolve the stated
problem, we want to apply the EM algorithm. First we write

f(Y ;Xj�) = f(Y jX;�)f(Xj�) (4)

'
s2S

f(y
s
jxs;�Y )

s2S

f(xsjNs; �) (5)

where� includes both the class parameters�Y and the hyperparam-
eter� of the MRF. Note that in writing (5) from (4), we adopted the
“pseudolikelihood” (PL) principle [1]. Next, define� = f�

s
: s 2 Sg;

where�T
s
= [�1s�

2
s � � ��

m

s ] is an indicator vector of lengthm whose
components are ideally all zero except for thelth one, wherel is
the label of thesth pixel. In practice, as well as in this work, the
elements of�

s
represent the conditional probability that the vector

y
s

belongs to thelth class. From the EM algorithm, after thenth
iteration, thelth element of�

s
is [7]

�
l(n)
s =

f(y
s
jxs = l;�(n)

)f(xs = ljNs; �)

m

l=1

f(y
s
jxs = l;�(n))f(xs = ljNs; �)

l = 1; 2; � � � ; m: (6)

The remaining equations yield the(n + 1)st iteration, and they are
given [3], [7] by

�
(n+1)

l
=

s2S

�
l(n)
s y

s

s2S

�
l(n)
s

; l = 1; 2; � � � ;m (7)

���
(n+1)

l
=

s2S

�
l(n)
s (y

s
� �

l
)(y

s
� �

l
)
T

s2S

�
l(n)
s

l = 1; 2; � � � ;m: (8)

As mentioned before, the EM algorithm requires accurate initializa-
tion if it is to perform reliably.

Our objective is to develop a procedure for providing initial
conditions, which is completely data driven. To achieve this goal, we
propose a TS algorithm whose scheme is identical to the TS vector
quantization (TSVQ) method [6]. The scheme represents a sequence
of binary searches that usually leads to suboptimal solutions. It is
implemented in stages, where at each stage a fixed number of classes
are considered, and at thekth stage there arek classes assumed. In
stage onek = 1; that is, we assume the data belong to one class
only, and we easily find the class parameters. Note that for this stage
we do not need initial values for the parameters. For the next stage,
k = 2; the data are assumed to come from two classes. To apply the
EM algorithm, we need the initial values of the class parameters. To
obtain them, we perturb the estimated mean of the data from stage one
in opposite directions along the eigenvector associated with the largest
eigenvalue of the estimated covariance matrix. The initial values are
determined by applying a simple iterative scheme that converges in
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Fig. 2. From left to right: T1 image, T2 image, Pd image, and segmented image using TS-EM.

a few steps. Next, the EM algorithm is implemented, which further
improves the estimates of the class parameters.

Once the estimation in the second stage is completed, we go on
with setting initial values for the third stage(k = 3): Here we have
two possibilities: to perturb the estimated mean vector of the first or
the second class from the second stage. We perturb them one at a time
and repeat the procedure as in stage two. Since the two possibilities
lead to two different solutions, we choose the better one according to
the density functionf(XqjY ); whereq represents the first or second
possibility andXq maximizesf(XqjY ): With the completion of the
third stage, we are ready to move on to the fourth one. The steps are
similar to those already described. We continue in this manner until
the number of classes equalsm: Note that in the last stage, we have
m� 1 different initial conditions for the EM algorithm that operates
on m classes.

The selection of the class that is being perturbed in thekth stage
is obtained as follows. From Bayes’ theorem

f(XqjY ) =
f(Y jXq)f(Xq)

f(Y )
: (9)

Clearly, the maximization off(XqjY ) does not depend onf(Y ); and
thereforef(Y ) can be ignored. To avoid difficulties in dealing with
all the possible configurations ofX as well as the intractable partition
functionZ; which appears inf(Xq); we adopt the pseudolikelihood.
The maximuma posteriori (MAP) criterion then becomes

q̂ = arg max
q2f1;2;���;k�1g

f(Y jXq)f(Xq) (10)

= arg min
q2f1;2;���;k�1g

fFd(y
s
; �̂) + Fc(xs; �̂)g (11)

where

Fd(�) =
s2S

f 1
2
ln j���x j+ 1

2
(y

s
� �

x
)
T
���

�1

x (y
s
� �

x
)g (12)

represents the fitting error (data term) and

Fc(�) =
s2S

f� ln f(xsjNs)g (13)

provides the smoothness (continuity) constraint.
The sequence of binary searches greatly reduces the computational

load and provides very good results. The procedure can further be
accelerated if the computations of each stage are implemented in
parallel. This will allow linear increase in computation time with the
increase of the number of classes. The performance of the overall
TS-EM scheme is excellent because, for the pixel classification, we
not only use the statistical properties of the pixels but also exploit
their spatial interrelationships that are quantified by the MRF.

TABLE I
TRUE AND ESTIMATED PARAMETERS BY THE EM ALGORITHM

INITIALIZED BY THE TS-EM AND K-MEANS ALGORITHMS

The algorithm is implemented according to the following scheme.
In the first stage, we start with one class,xs = 1;8s 2 S: We
evaluate�̂

1
; which is the sample mean vector of all the pixels as

well as the covariance matrix

�̂��1 =
1

M1�M2
s2S

(y
s
� �

1
)(y

s
� �

1
)
T
:

In thekth stage, wherek = 2; 3; � � � ;m�1; we perform the following
steps:

Step 1: Set the initial mean vectors of thek classes as(�̂
1
+�; �̂

1
�

�; �̂
2
; � � � ; �̂

k�1
); where� is a perturbation vector that splits the first

class. Its direction is identical to the direction of the eigenvector
associated with the largest eigenvalue of�̂��1:

Step 2: Classify all the pixels into one of thek classes by

xs = l if d(y
s
; �̂

l
) � d(y

s
; �̂

l
);

l 6= l
0 and l; l

0 2 f1; 2; � � � ; kg (14)

whered(�) is thep-dimensional Euclidean norm, andl andl0 are the
different possible labels of the pixels at sites: Then updatê�

l
; and

�̂��l for l = 1; 2; � � � ; k:
Step 3: Repeat Step 2 until convergence is achieved, i.e., until

the number of changing underlying pixels is zero or below certain
predefined number.

Step 4: Use �̂
l
; and�̂��l for l = 1; 2; � � � ; k as initial estimates for

the EM algorithm to segment the image. The hyperparameter� is
estimated from the pseudolikelihood and updated after each iteration.
Repeat the EM procedures until the estimates converge.

Step 5: As in Steps 1 to 4, split each class(2; 3; � � � ; k � 1) one
at a time to form additional classes. Choose the result from all the
k � 1 candidates using the MAP criterion (11) as the result for the
kth stage.

IV. SIMULATION RESULTS

In this section, we present the simulation results of two ex-
periments. In the first, we applied the TS-EM procedure to one-
dimensional(p = 1) synthesized MR brain image, and in the second,
to a three-dimensional(p = 3) real MR brain image. The sizes of
all these images are 256� 256.
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TABLE II
THE ROBUSTNESSAGAINST NOISE WITH VARIOUS CNR’S

In Fig. 1, the left two images are the noiseless and noisy MR
images. The middle two images are the segmented image initialized
by TS-EM and its error map. The right images are the segmented
image initialized by the K-means algorithm and its error map. The
contrast-to-noise ratio (CNR) defined by

CNR= min
l;k

j�l � �kj

�
; l 6= k and

l; k 2 f1; 2; � � � ;mg (15)

was equal to20

10
: In (15), �l and �k are the intensity levels of

the pixels in two differentadjacentregions, respectively, and� is
the noise standard deviation. There were five classes (tissues) with
true mean values�1 = 20; �2 = 80; �3 = 100; �4 = 120; and
�5 = 160. The noise deviations associated with the various class
were�1 = 3:5; �2 = �3 = �4 = �5 = 20: The results clearly show
that the method was able to segment the image successfully even in
areas where the details of the patterns are fine. In Table I we also
provide the true mean values of the various classes and compare them
to the estimated values obtained by the EM method initialized by the
TS and K-means algorithms.

We also present the results of the average percentage of correct
classifications (PCC) for the different CNR’s out of 50 trials. They
are given in Table II, and they show that the TS-EM outperforms the
K-means algorithm significantly.

The results of the second experiment are displayed in Fig. 2. The
first three images are real images, and the remaining one is the
segmented image.

V. CONCLUSIONS

A TS scheme for initialization of an EM algorithm for image
segmentation and parameter estimation has been proposed. The
scheme comprises a sequence of binary searches. It starts with the
assumption that the pixels come from one class and, subsequently,
it increases the number of classes one at a time. In each stage, the
results obtained from the previous stage are used to construct initial
estimates for the current stage. The algorithm stops when the image is
segmented into a predefined number of classes. The performance of
the algorithm was examined by computer simulations. They showed
excellent results.
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