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On the Detection of Edges in Vector Images

Petar M. Djuríc and Jong-Kae Fwu

Abstract—A novel method for edge detection in vector images is
proposed that does not require any prior knowledge of the imaged scenes.
In the derivation, it is assumed that the observed vector images are
realizations of spatially quasistationary processes, and that the vector
observations are generated by parametric probability distribution func-
tions of known form whose parameters are in general unknown. The
method detects and estimates the edge locations using a criterion derived
by Bayesian theory. It chooses the number of edges and their locations
according to the maximum a posterioriprobability (MAP) principle. We
provide results that demonstrate its performance on synthesized and real
images.

I. INTRODUCTION

A common task in image processing is edge detection. This
problem has been widely researched, and there is a broad range of
methods that can be used to resolve it satisfactorily [8]. Most of the
work, however, has been devoted to the analysis of one-dimensional
(1-D) images. In many practical applications including medical
imaging, robotics, satellite technology, and industrial inspection, there
is a need to process vector images, that is, multidimensional images
whose pixels are represented by vectors. The edge detection in
such images has been considerably less frequently addressed. Some
references related to it include [3]–[6], [9], and [10].

We approach this problem by using Bayesian theory. As a principle
for detecting edges, we exploit the MAP criterion, which selects the
most probable hypothesis regarding the number of edges and their
locations, given the observed image. The models associated with the
hypotheses are described by parametric probability density functions.
Their parameters are considered nuisance and are integrated out.
The proposed criterion is a penalized likelihood function that is
composed of two terms. The first term is the likelihood function
that decreases monotonically as the number of hypothesized edges
increases. The second term is the penalty function which, as opposed
to the likelihood, increases monotonically as the number of edges
increases, thus penalizing for using nonessential additional edges in
modeling the image. The MAP solution is the one that minimizes
the criterion.

An important feature of the proposed procedure is that no setting of
thresholds is required for the edge detection. The procedure has been
tested on synthesized and real magnetic resonance (MR) images. The
results show that the number of edges as well as their locations are
estimated with high accuracy even for low contrast-to-noise ratios
(CNR’s).

The paper is organized as follows. In the next section we formulate
the problem, and in Section III we provide the criterion for edge
detection. The details of its derivation are given in the Appendix.
In Section IV, we present results, and in Section V some brief
conclusions.
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Fig. 1. A row of N pixels. The arrows point to theN + 1 locations of
possible boundaries.

(a) (b)

Fig. 2. (a) Mask for detecting vertical boundaries. (b) Mask for detecting
horizontal boundaries.

II. PROBLEM STATEMENT

A realizationfyg of aq-dimensional stochastic vector fieldfYg is
observed over a set of pixel sites on anN1�N2 image lattice.fYg
is assumed to be a spatially quasistationary process in the sense that it
is locally wide sense stationary. The random vectorYij from theith
row andjth column, where(i; j) 2 ZN �N with ZN �N being the
set of pixel sites, is generated by the probability distribution function
f(yij j���ij) whose parameters���ij are unknown. As one moves across
the image, the parameters of the generating distribution function may
change. It is assumed that these changes are abrupt as they reflect
discontinuities of local image properties. The sites where the changes
occur, which are referred to as edges, are unknown.

The generating probability distribution functions of the random
vectorsYij , f(yij j���ij) are multivariate Gaussian whose parameters
���ij are unknown. The parameters of each distribution are the mean
vector���ij and the covariance matrix���ij . We restrict the covariance
matrix to be diagonal, but not necessarily a multiple of the identity
matrix. In other words

f(yij j���ij ; ���ij) =
1

(2�)q=2j���ij j1=2

� exp � 1

2
(yij � ���ij)

T
���
�1
ij (yij � ���ij) (1)

whereyij and ���ij are q-dimensional vectors and���ij is a q � q

matrix, where���ij = diag(�2
1 ; �2

2 ; � � � ; �2
q ).

Given the above assumptions,the problem is to detect all the edges
and estimate their locations.

III. CRITERION FOR DETECTION OF EDGES

AND ESTIMATION OF THEIR LOCATION

We assume that there are two types of edges, horizontal and
vertical. The horizontal edges are located at sites between pixels from
the same column. If there is an edge at the siteb(h), this implies that
the generating distribution functions of the pixel data on each side of
the edge are different. The vertical edges are defined similarly at sites
between pixels from the same row and are denoted byb

(v). As an
example, in Fig. 1 we show one row withN pixels and the possible
locations of the edges.

The edge locations in theith row and jth column are denoted
by the vectorsb(v)

~m and b(h)
~m , respectively, where~mi and ~mj are

their individual lengths. More specifically, if theith row of the
image has ~m(v)

i edges and their locations are denotedbk ~m for
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k = 1; 2; � � � ; ~mi, then

b
(v)

~m = [b
(v)

1 ~m b
(v)

2 ~m � � � b(v)~m ~m ]
T (2)

whereb(v)k ~m < b
(v)

l ~m for k < l andb(v)k ~m 2 fk+1; k+2; � � � ; N2 �

~m
(v)

i + kg. The notation for horizontal edges is analogous. Note that
we tacitly assume that the edge vectors may be of zeroth length,
which is the case of no edges in the rows or columns.

To find the optimal estimates of the vector lengths and their
elements, we use the Bayesian theory. If, as a criterion for best
estimates, we adopt the maximum jointa posteriori probability, for
the MAP estimates of the vertical edges we can write

[m̂
(v)

i ; b̂
(v)

m̂ ] = arg max
m ;b

fp(m(v)

i ; b
(v)
m jfyg)g (3)

wherep(m(v)

i ; b
(v)
m jfyg) is the joint a posteriori probability mass

of m
(v)

i edges at theb(v)m sites in theith row. In (3), m(v)

i 2

f0; 1; � � � ; M (v)

i g, whereM (v)

i is the maximum number of edges
in the ith row, andb(v)m 2 Bm , where Bm is the set of all
possible vectors of lengthmi whose structure is given by (2). An
analogous expression holds for the horizontal edges. For convenience,
we rewrite (3) in the following form:

[m̂
(v)

i ; b̂
(v)

m̂ ] = arg min
m ;b

f� ln p(m
(v)

i ; b
(v)
m jfyg)g : (4)

The derivation of the estimator based on (3) is rather lengthy, and
all its details are omitted here. Its main steps are, however, provided
in the Appendix. The obtained criterion for selection of the optimal
number of edges and estimation of their locations can be expressed as

[m̂
(v)

i ; b̂
(v)

m̂ ] = arg min
m ;b

fd(m(v)

i ; b
(v)
m ) + c(m

(v)

i ; b
(v)
m )g

(5)

whered[m(v)

i ; b
(v)
m ] and c[m(v)

i ; b
(v)
m ] are given by

d(m
(v)

i ; b
(v)
m ) =

m +1

k=1

ni � 2

2

q

l=1

ln �̂
2
l (6)

and

c(m
(v)

i ; b
(v)
m ) = [m

(v)

i + 1]q ln
K1K2

2
p
2�

+

m +1

k=1

q ln ni

+

m

k=1

ln
N2 � k

k
: (7)

In these expressions, some of the variables have the following
meaning:q is the dimension of the vector field,ni is the number of
pixels in thekth segment of theith row, �̂2l is the estimated noise
variance from thekth segment in theith row of the lth image,N2

is the number of pixels in a row,K1 andK2 are constants whose
values depend on our prior knowledge about the vector field (see the
Appendix). Note thatd(m(v)

i ; b
(v)
m ) is a term that depends on the

datafygi and that it decreases as the number of hypothesized edges
increases. This is so because by allowing for more segments in the
row, we can fit the observed data better. On the other hand, the term
c(m

(v)

i ; b
(v)
m ) can be considered as a penalty because it increases as

the number of hypothesized edges increases.
So, to find the vertical edges, we have to find the optimal solutions

m̂
(v)

i , b̂(v)m for every i 2 f1; 2; � � � ; N2g according to (5). For the
horizontal edges, an equivalent expression is used. Clearly, the search
for the best solution is computationally intensive since there is a large

number of possible combinations of edge locations. However, we
can cope with this issue in several ways. First, the computation time
can be dramatically decreased if the processing of the rows and the
columns is parallelized. Second, there are two approaches that can
decrease the computational intensity for processing each row/column.
One is dynamic programming, which executes the optimization in (5)
efficiently [1], [2]. The other is preprocessing of the vector image by
two-dimensional (2-D) masks of the type shown in Fig. 2 [11]. For
example, if the mask on the left in Fig. 2 is run for theith row of
the q images and if a potential edge is declared at thejth site when

max [z
(1)

ij ; z
(2)

ij ; � � � ; z(q)ij ] >  (8)

where z(l)ij , l = 1; 2; � � � ; q is the output of the mask when it is
centered between the(j � 1)st andjth pixel of the lth image, and
 is an appropriately chosen threshold, then we obtain a set of edge
candidates that can be tested via (5). Thus, instead of checking all the
possible hypotheses, we are only examining a small subset of them.

The proposed procedure has a restriction that needs to be addressed.
In its derivation, we have assumed that the complete vector image
minus any row is independent of that row. Since this is an unrealistic
assumption, we would like to relax it. One way to achieve this is
to apply the results obtained by the masks in Fig. 2. Namely, first
we run the masks through the rows and columns of all the images.
By doing so, a map of potential edges is constructed. Second, we
search for the MAP solution according to (5) by considering all
the adjacent pixels to the processed row (or column) provided that
between them and the row there are no horizontal (vertical) edges.
Note that this inclusion does not have to be restricted to pixels
from the adjacent rows (or columns) only. Also, in implementing (5)
everything remains unchanged except that 1) the number of pixels
ni is different and should be carefully counted, and 2) in estimating
�̂2l we exploit the adjacent pixels. This scheme yields an improved
overall performance because by assembling more pixels for the row
and column calculations, more contextual information is used and
most of all, the approximation applied in the derivation becomes
more accurate.

In summary, we suggest that the proposed procedure is imple-
mented in two steps, as follows.

1) Detection of potential edges by using the masks displayed in
Fig. 2 and (8).

2) MAP estimation of the number of edges and their locations for
each row and column by implementing (5). In processing the
rows and columns, the edge candidates obtained in step one
are tested. The tests include all the adjacent pixels that are not
separated from the processed rows or columns by edges found
in step one.

IV. SIMULATION RESULTS

To test the performance of the proposed method, we conducted
three experiments. In the first we generated 100 realizations of a
subset of a three-dimensional (3-D) vector image, and in the second,
we synthesized MR vector images. As performance measures for the
algorithm, we used the following:

1) probability of false alarm (detecting a false edge);
2) probability of missing an edge (not detecting an existing edge);

and
3) mean squared errors (MSE’s) of the edge location estimates.

In all the experiments,K1 = 256, K2 = 4:8, and = 14.
The generated subset in the first experiment represented three rows

that do not have horizontal edges. The noiseless rows are shown in
Fig. 3. As can be seen, there arem = 7 edges and their correct
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(a)

(b)

(c)

Fig. 3. (a) First noiseless row. (b) Second noiseless row. (c) Third noiseless row.

(a)

(b)

(c)

Fig. 4. (a) First noisy row. (b) Second noisy row. (c) Third noisy row.
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Fig. 5. First row: Three synthesized noisy MR images. The second and third rows represent results obtained without mask and with mask, respectively.
From left to right: Estimated horizontal edge map, estimated vertical edge map, and estimated edge map.

locations areb17 = 20, b27 = 40, b37 = 50, b47 = 70, b57 = 80,
b67 = 90, and b77 = 100. The rows have 128 pixels. It should be
observed thatb17, b47, b57, andb67 are present in each of the three
images. On the other hand,b27, b37, andb77 are only shown in two of
them. Also,b57 andb67 are set close to each other so that we can test
the performance of our algorithm when there are shorter segments.
The noisy rows are displayed in Fig. 4. The CNR is equal to30

15
.

Note that we define the CNR as CNR= min fj�l � �kj=�g, where
�l and�k are the intensity levels of the pixels on two different sides
of an edge, and� is the noise standard deviation. Clearly, the profiles
from Fig. 4 show that it is not trivial to detect the number of edges
and estimate their locations from the observed data.

We present the statistical results in Tables I and II. Excellent
performance was obtained in detecting and estimatingb17, b37, b47,
and b57. The edgesb27 and b67 were missed three times, andb77,
seven times in 100 trials. We had perfect estimation forb17, b37, and
b47. The MSE was the largest forb77. In Table II, we present the
overall results of the detected and missed edges as well as the false
alarms. It is interesting to note that it is much more likely to miss an
edge than to produce a false alarm.

In the second experiment, the size of the three synthesized MR
images (q = 3) was 256� 256. The shapes of the various tissues

TABLE I
PERFORMANCE RESULTS OF THEFIRST EXPERIMENT WHEN THE CNR= 2/1

TABLE II
TOTAL NUMBER OF DETECTED AND MISSED BOUNDARIES

AS WELL AS FALSE ALARMS FOR CNR = 2/1

were obtained from a hand-segmented MR image. The parameters of
the different tissues are shown in Table III.
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Fig. 6. First row: Three real MR images. Second row from left to right: Estimated horizontal edge map, estimated vertical edge map, and estimated
edge map (no mask used).

The three noisy images and the detection results are shown in
Fig. 5. The first two images in the second row present the estimated
vertical and horizontal edge maps, respectively, whereas the rightmost
image displays all the detected edges. These edge maps were obtained
without the use of mask. The bottom row provides the results
of the procedure when it used the mask. Clearly, the algorithm
was able to preserve the fine details of the MR images in either
case.

Finally in the third experiment, we show results obtained from
three real MR images showed in the top row of Fig. 6. In the bottom
row we display the estimated horizontal, vertical, and overall edge
maps, respectively. For visual comparison, in Fig. 7 we provide the
results obtained by the vector gradient approach from [6] for the
synthesized and real images in Figs. 5 and 6, respectively.

V. CONCLUSIONS

We have presented an algorithm for edge detection of noisy vector
fields. The algorithm is derived by using Bayesian theory, and it
yields the joint MAP solution of the number of edges and their
locations. Its final form has two terms, one of which is a data
term and represents a measure of the modeling error, and the other
is a penalty that quantifies the complexity of the model. The best
solution is the one that minimizes the sum of the two terms. The
algorithm can be implemented efficiently by processing the raws
and the columns simultaneously. Also, to reduce the computational
intensity, the method can be combined with simple edge detectors
that provide a set of edge candidates that are subsequently tested. The
performance of the algorithm was examined by computer simulations,
which yielded very good results.

TABLE III
PARAMETERS OF THE SYNTHESIZED IMAGES

APPENDIX

Here we show the steps in deriving the main expressions
(5)–(7). To simplify the presentation, consider the problem of
finding the edges in theith row only. The solution that maximizes
p(m

(v)
i

; b
(v)
m jfyg)g in (3) is identical to the one obtained from

[m̂
(v)
i

; b̂
(v)
m̂

] = arg min

m ;b

f� ln f(fygjm
(v)
i

; b
(v)
m )

� ln p(m
(v)
i

; b
(v)
m )g (9)

wheref(fygjm(v)
i

; b
(v)
m ) is the density function of the vector image

data given the edges in theith row, andp(m(v)
i

; b
(v)
m ) is thea priori

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on April 30,2010 at 17:00:15 UTC from IEEE Xplore.  Restrictions apply. 



1600 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 11, NOVEMBER 1997

Fig. 7. Edge detection results obtained for the images in Figs. 5 and 6,
respectively, using a vector gradient approach.

probability mass function of the number of edges and their locations.
The a priori probability mass functionp(m(v)

i ; b
(v)
m ) can be

written as

p(m
(v)

i ; b
(v)
m ) = p(b

(v)
m jm

(v)

i )p(m
(v)

i ) (10)

where p(m(v)

i ) is the a priori probability of m(v)

i edges. For the
prior p(m(v)

i ) we adopt the uniform mass function. If the maximum
number of possible edges in the row isM (v)

i , then

p(m
(v)

i ) =
1

M
(v)

i

: (11)

For the conditional priorp(b(v)m jm
(v)

i ) we also take up the uniform
probability mass function. Since the number of combinations ofm

(v)

i

edges inN2 � 1 locations can easily be found, it follows that

p(b
(v)
m jm

(v)

i ) =
m

(v)

i !(N2 �m
(v)

i � 1)!

(N2 � 1)!
: (12)

So, from (10)–(12), we conclude that (9) can be approximated by

[m̂
(v)

i ; b̂
(v)

m̂ ] = arg min
m ;b

� ln f(fygjm
(v)

i ; b
(v)
m )

�

m

k=1

ln k +

m

k=1

ln (N2 � k) : (13)

Now we examine the termln f(fygjm
(v)

i ; b
(v)
m ). To simplify the

presentation, first we assume that

ln f(fygjm
(v)

i ; b
(v)
m ) = ln f(fygijm

(v)

i ; b
(v)
m )

+ ln f(fyg(�i)jm
(v)

i ; b
(v)
m ) (14)

where fygi denotes the vectors from theith row, and fyg(�i)
represents the complete vector image without theith row. If, in
addition

ln f(fyg(�i)jm
(v)

i ; b
(v)
m ) = ln f(fyg(�i)) (15)

this entails that (13) can be expressed as

(m̂
(v)

i ; b̂
(v)

m̂ ) = arg min
m ;b

� ln f [fygijm
(v)

i ; b
(v)
m ]

�

m

k=1

ln k +

m

k=1

ln (N2 � k) : (16)

The assumptions (14) and (15) are rather strong, since they imply
independence between the observed vectors from theith row and the

rest of the vector image, given the number of vertical edges and their
locations in theith row. However, as discussed in this work, there
is a way to relax them.

Next, from our assumptions we may write

ln f(fygijm
(v)

i ; b
(v)
m ) =

m +1

k=1

ln f(fygi ) (17)

where f(fygi ) is the marginal probability distribution function
of the vectorsyij between b(v)

(k�1)m
and b

(v)

km (by assumption
b0m = 1, and b(m +1)m = N2 + 1). So, we need to determine
ln f(fygi ). We use

f(fygi ) =
���

f(fygi j���i )f(���i )d���i (18)

where

f(fygi j���i ) =

b �1

j=b

f(yij j���i ): (19)

Here, ���i is the set of parameters of the multivariate Gaussian
function given by (1),���i is the parameter space of���i , andf(���i ),
the prior probability distribution function of���i . We assume that the
prior mean and covariance are independent, or

f(���i ) = f(���i )f(���i ): (20)

If the range of intensity values of each element of���i is [xmin; xmax],
then for f(���i ) we adopt

f(���i ) =
1

K
q
1

(21)

whereK1 = xmax � xmin. For f(���i ) we write

f(���i ) =
1

K
q
2

q

l=1

1

�l
; �l 2 [�min; �max]: (22)

whereK2 = ln �max � ln �min:

To evaluate the integral in (18), we use (19)–(22). Under the
given assumptions, the final result cannot be given in a closed
form. Therefore, we resort to an approximation that allows for an
easier computation of (18), and a result that has an interesting
interpretation. If we expand the logarithm off(fygi j���i )f(���i )

around the maximum likelihood estimate of���i , �̂��i , we obtain [7]

ln [f(fygi j���i )f(���i )]

' ln f(fygi j�̂��i ) + ln f(�̂��i )

�
1

2
(���i � �̂��i )

T
Hi (���i � �̂��i ) (23)

whereHi is the Hessian matrix [7] whose size is2q � 2q, and
which can be approximated by

Hi = diag
ni

�̂21
;

ni

2�̂41
;
ni

�̂22
;

ni

2�̂42
; � � � ;

ni

�̂2q
;

ni

2�̂4q
:

(24)

When the approximation off(fygi j���i )f(���i ) by (23) is substi-
tuted in (18) and the integration carried out, we obtain

ln f(fygi ) ' ln f(fygi j�̂��i ) + ln f(�̂��i )

+ q ln (2�)�
1

2

q

l=1

ln
n2i

2�̂6l
: (25)
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Since

ln f(fygi j�̂��i ) = �
ni

2

q

l=1

ln (2��̂
2

l )�
qni

2
(26)

we rewrite (25) as

ln f(fygi ) ' �
ni � 2

2

q

l=1

ln �̂
2

l �
q(ni � 2)

2
ln (2�)

�
qni

2
� q ln(C1C2)� q ln ni +

q

2
ln 2: (27)

From (17) and (27) and after dropping irrelevant terms, we can finally
write the criterion (16) as shown in (5) and (6).
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