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Uniform Random Parameter Generation of Stable
Minimum-Phase Real ARMA ( ) Processes

Edward R. Beadle,Member, IEEE,and Petar M. Djuríc, Member, IEEE

Abstract—An algorithm to randomly generate the parameters
of stable invertible autoregressive moving average processes of or-
der (p; q)—ARMA ( p; q)—is presented. The AR and MA portions
are independent of each other, and their respective parameters
have jointly uniform distributions with support defined by stabil-
ity and invertibility considerations. The uniform density insures
that each possible model is equally likely. The algorithm uses the
Levinson–Durbin recursion to guarantee the poles and zeros are
inside the unit circle, thus avoiding coefficient resampling typical
of “generate and test” methods. To initialize the Levinson–Durbin
recursion for each model order, the reflection coefficients are
generated using a rejection sampling technique.

Index Terms—Bayesian parameter estimation, Gibbs sampling,
Levinson–Durbin algorithm, system identification.

I. INTRODUCTION

A PROBLEM common in many engineering fields is the
estimation of parameters of an unknown system excited

by white noise given an observed output data sequence.
For stochastic linear time-invariant systems, the most often
employed methods use the power spectral density, from which
a stable minimum phase transfer function can be derived by
spectral factorization. This type of analysis occurs in the areas
of system identification [3] and adaptive signal processing
[2]. Other uses of an input-output relations are for building
models of random processes, such as in parametric time series
modeling [4], [7]. For linear processes, the models are built
by assuming that the observed data sequence was generated
by exciting a linear system with white noise. Among the
random process descriptions, the ARMA ( ) type has been
widely used in analytic studies in signal processing. Within this
class, generally speaking, the stable minimum-phase ARMA
models are preferred. Nonminimum-phase signal models can
necessitate the inclusion of inherently unstable filters into
the processing structure in order to implement the overall
processing function.

In the above applications, during the course of the analysis,
it is sometimes required to generate stable minimum phase
system models completely at random. A specific example is
Bayesian parametric estimation of a time series where the
process coefficients are to be estimated using a technique such
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as the Gibbs sampler [5]. In situations where the process
parameters appear as location parameters in the likelihood
function, the most appropriate probability density function
(pdf) for the process coefficients, the Jeffreys’ prior, is uniform
[1]. A uniform joint pdf on the AR and MA parameters
respectively implies that all the possible stable invertible
models are equally likely.

A straightforward but inefficient way to randomly generate
a stable invertible ARMA ( ) system with uniform pdf on
the coefficients are the generate and test methods. If either
the AR or MA polynomial, or both, possess zeros not in
the interior of the unit circle, then that polynomial must be
completely regenerated and retested. For high order systems,
the repeating of the generation and test is computationally
inefficient process. In this letter, for generation of the ARMA
parameters, we propose an approach that does not require
testing. The method, which is based on the Levinson–Durbin
recursion algorithm, guarantees that the parameters are drawn
from a uniform pdf over the stability and invertibility regions
of the process.

II. A LGORITHM DEVELOPMENT

The algorithm presented is intended for use with the MA
and AR portions separately, as it guarantees the synthesis of
an arbitrary degree polynomial with zeros inside the unit circle
and uniform pdf on the coefficients. Thus, a stable minimum-
phase ARMA system can be realized by cascading a stable
AR and minimum-phase MA system, each realized with the
method. For the moment, we discuss the synthesis of only
the AR( ) portion of an ARMA ( ) system. Synthesis
of the MA ( ) portion follows similarly. The polynomial
corresponding to the normalized AR() process is given by

(1)

where . The parameters of the AR() process,
, can be generated by the well-known Levin-

son–Durbin recursion relations [6]

(2)

where , and
. The Levinson–Durbin algorithm

automatically enforces the stability constraint for the
zero locations for polynomials of arbitrary degree. However,
the uniform joint pdf requirement on the coefficients still
needs attention. Straightforward construction of a pdf in
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Fig. 1. Theoretical (solid line) and experimental (dashed line) cumulative
distribution functions of thea1; 2 coefficient.

with support defined by the zero placement criteria is
nontrivial. The following lemma reduces the burden of this
calculation to a simple closed-form result useful for the
AR and MA portions separately. The result relies on the
Jacobian of each recursion in (2), assuming is given,
to transform the pdf to the pdf

.
Lemma 1: If is drawn from a uniform pdf whose

support is ( , 1), , and is drawn from
a pdf proportional to

(3)

where is the Jacobian of the th recursion and
, then the Levinson–Durbin recursion (2) synthesizes

coefficients, , such that their joint pdf is uniform
over the region of stability and zero elsewhere.

Proof: The case for is trivial as no recursion
is required. So consider , and define the set

as the region of support for such
that

const (4)

and all the zeros of are on the interior
of the unit circle. For any the transformations in
(2) are 1 : 1 in , because . Then assuming
each const, the recursion yields

, where is
the Jacobian of the th recursion of (2), considering
given. The Jacobians are expressed as

...
... (5)

So (4) is satisfied when
for and . Also, with

and the determined by

Fig. 2. Theoretical (solid line) and experimental (dashed line) cumulative
distribution functions of thea2; 2 coefficient.

Levinson–Durbin’s recursion (2), all the zeros of
, with , are guaranteed to be on the

interior of the unit circle. Therefore,
with a uniform joint pdf.

The recursive form of the Jacobians, , is
derived from (5) with replacing the appropriate . For

, each matrix has the form

...
... (6)

Then can be found using co-factor expansions, and
noting the sign pattern, we can write

(7)

By direct calculation, with , we have

(8)

(9)

(10)

Using (7) and (8)–(10), we obtain by induction

(11)

Since , (11) yields the recursion

for (12)

If we replace with , and use the definition , the
recursive relationship (3) follows.

Q.E.D.
Further, note that the polynomial is a continuous

function on the closed interval , and that is
bounded on . Therefore, satisfies the condi-
tions for using rejection sampling [9] to generate the values of
each . Rejection sampling is well suited for this particular
case, however, other methods for implementing random draws
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could also be used [8]. Combining the rejection sampling
technique with the lemma, polynomials of appropriate degree
can be generated to produce the AR(), MA( ), and ARMA
( ) systems with guaranteed stability and minimum-phase
properties. In addition, the model generated has been chosen
from all the possible stable and invertible systems completely
at random because of the uniform joint pdf on the coefficients.
The procedure is explicitly outlined below.

III. SYNTHESIS PROCEDURE

The procedure given here synthesizes an ARMA ()
system with each reflection coefficient .

Step 1)
Set .
Draw from the pdf .

Step 2)
Let .
Draw from a pdf proportional to .
Use (2) with to determine .

Step 3)
Let .
Draw from a pdf proportional to .
Use (2) with to determine , and .

...
Step p)

Let .
Draw from a pdf proportional to .
Use (2) with to determine .

Finally, use the so obtained coefficients to form the AR
polynomial. Repeat the procedure (with replacing ) to
generate the MA coefficients.

IV. EXAMPLE

To illustrate the results of the synthesis procedure, 2500
independent sets of coefficients of an AR(2) process were
generated. Figs. 1 and 2 show the theoretical and empirical
cumulative distribution functions of the process coefficients

and . Fig. 3 displays the scatter diagram of the
individual outcomes. The experiment clearly shows agreement
between the obtained and desired results. The algorithm gener-
ates the coefficients with a pdf that is uniform over the stability
(invertibility) region.

Fig. 3. Scatter diagram of 2500 independent draws ofa1; 2 anda2; 2.

V. CONCLUSIONS

We have proposed a synthesis method that generates the co-
efficients of a stable and invertible ARMA ( ) process such
that the generated coefficients are drawn from a uniform pdf.
The method uses the Levinson–Durbin’s recursion algorithm
to place the poles and zeros within the unit circle, and thereby
guarantees a stable and invertible system. Lastly, the approach
presented here is a single-pass synthesis algorithm, which is
suitable for a digital computer program, since it avoids the
redundant looping of the “generate and test” methods.
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