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Asymptotic MAP Criteria for Model Selection

Petar M. DjurE, Member, IEEE

Abstract—The two most popular model selection rules in the the criterion. A common fallacy of the AIC is that it penalizes
signal processing literature have been the Akaike’s criterion for overmodeling the data independently of the “type” of
AIC and the Rissanen'’s principle of minimum description length parameters (amplitude, phase, frequency, damping factor, time
MDL. These rules are similar in form in that they both consist of . ' ’ ’ . ’
data and penalty terms. Their data terms are identical, but the delay, etc.) used in the models. For example, if we compare
penalties are different, the MDL being more stringent toward two models, with the same number of unknown parameters,
overparameterization. The AIC penalizes for each additional their penalties will be the same, despite the difference in their
model parameter with an equal incremental amount of penalty, - structures. In most of the signal processing literature on model
regardless of the parameter's role in the model. In most of the  ggjaction, the MDL shares the same feature, that is, every
literature on model selection, the MDL appears in a form that - ,
also suggests equal penalty for every unknown parameter. To m_ode_l pa_rameter contributes to the_model S ‘_’Vﬁ‘_ra” penalty
this MDL Criterion’ we refer to as the naive MDL. In this paper, W|th |dent|Ca| amount. We refer to th|S MDL criterion as the
we show that identical penalization for every parameter is not naive MDL.
appropriate and that the penalty has to depend on the model |n this paper, we show that the penalization strongly depends
structure and type of model parameters. The approach to showing on the types of models that are being used and that, in

this is Bayesian, and it relies on large sample theory. We derive : . . .
maximum a posterioriMAP) rules for several different families of general, it cannot be Slmply'ol')taln'ed by counting the number
competing models and obtain forms that are similar to the AIC Of unknown parameters. This implies that one shawtuse
and the naive MDL. For some families, however, we find that the AIC or the naive MDL without careful examination of
the derived penalties are different. In those cases, our extensivethe models under investigation. It should be noted that many
simulations show that the MAP rule outperforms the AIC and  yagearchers have recognized the poor performance of these
the naive MDL. R . . . .
criteria in certain scenarios and have tried to improve them
by modifying the penalties in a more or lead hocfashion
I. INTRODUCTION [9], [13].
COMMON task in science and engineering is the se- To obtain the new rules, we used Bayes’ theory and large
lection of a model from a set of competing models. Isample approximations [14], [19]. We followed the derivations
signal processing, this problem is of great interest becausd10], [12], [15], and [19] and carefully investigated the re-
the observed data are usually distorted and comprised softs of five different families of models. They include models
unknown number of signal components or even unknown typek sinusoidal signals with known frequencies, polynomials,
of signals. Then, one is faced with the problem of choosingaaitoregressions, models of sinusoidal signals with unknown
model for the data that describes them best in some predefifi@giuencies, and models of chirp-type signals. In some of these
sense. Many examples can be found in a variety of arezases, we obtained rules with different penalties from those of
such as underwater acoustics, vibration analysis, and medit@® AIC and the naive MDL. The computer simulations show
imaging. The model selection is clearly a multiple hypothesibat in those cases, the MAP rule has the best performance.
testing problem for which an optimal solution in the classical The paper is organized as follows. In Section Il, we for-
sense does not exist. mulate the problem, and in Section Ill, we briefly outline
Researchers in signal and image processing often addréws MAP criterion and present the general solution. Then, in
this problem by utilizing two popular model selection rulesSection 1V, we exploit it on five different sets of models, and
the AIC [1] and MDL [17]. More recent references where thein Section V, we discuss some relevant issues. We present
are applied include [9], [13], [16], and [20]-[23]. The twosome simulation results that show the performance of the rules
criteria were derived under asymptotical assumptions usiptpposed here as well as the performance of the AIC and the
information and coding theoretic reasoning. naive MDL in Section VI. Finally, we conclude the paper with
The AIC and MDL consist of two terms: a data term and &ection VII providing some final remarks.
penalty term. As the model complexity increases, the data term
usually decreases, whereas the penalty term always increasedl. FORMULATION OF THE MODEL SELETION PROBLEM

The best model is the one that yields the minimum value ofA data vectory of length N is observed. There are
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space@; C R™+, with m; denoting the length of the vectorwhere
0. For example, if thekth model fork > 1 representsk f(y | M) marginal density of the data given they are

sinusoids in additive noisey.(-) is given by generated by the modelt,;
. o (M) prior probability of My,;
Mi: gy, 0) = s1(0) +e @) f(y) marginal density of the data, which is obtained
wheres; (8) is the signal vector that represefktsuperimposed by
sinusoidsg is the vector of signal parameters (the amplitudes, a1
phases, and frequences of the sinusoias) = 3%, ande is the fy) = Z £y | Mi)p(My). )

additive noise. The probability density function of the noise is
parameterized by, and it will be denoted by (e | ¢), where

¢ € &, ®,. C R™, andn, is the number of parameters T0 find the MAP model, we evaluajgM, | y) for k € Z,
necessary to describe the densfiy(e | ¢). The functional and select the model that has the maximp(\1y | y).
forms of fi(e | ¢) and gx(y,e,8) are assumed known, putFormally, this is carried out according to

the parameter§ and ¢ are unknown.

k=0

MS = arg d My,

The problem that we address here is the following: Given ng(lez??zq){p( w1y}

the observed vectoy and the set of candidate models Fly | Mp)p(My) (8)
{Mo, My, ..., M,_1}, choose the best model that describes T8 ez, { () }

the datay, where the best model is the one that has the
maximum a posteriorprobability. Without loss of generality, where s € Z,.
it is supposed that the prior probability of each model is We already assumed that the models have equal prior
p(M;) = 1, that is, there is no prior preference toward anprobabilities, i.e.,
of the models. In addition, it is tacitly assumed that one of 1
the examined models may be the noise model whose function pMp) ==, keZz )
g(-) is given by 7
and therefore, they do not affect the model selection in (8).
9(y:e,0) =e. (3) This is also the case with the marginal dengify) since it is

It should be noted that the models in the set do not need" t a function oiM;. Consequently, we may d_rop_the fac_tors
be related or nested. p(My) and f(y) from the model selection criterion, which

Before proceeding, we recall the forms of the AIC and nai\}gen becomes
MDL selection rules. They are given by M. = are 3 Mo 10
s s = arg (Mﬁ§2§zq>{f(y | My} (10)
AIC: M, =arg min {-2Inf(y | ¥, M) + 2d}.
(Mi:k€Zg) Clearly, to find the MAP solution, we have to evaluate the

(4) marginal density of the data for each model. This density can
be found from

and
OLe A~ s (i sty | .t Fy 1m0 = [ gy 19 MOSw Mg )
(Mk:kCZq)
dy, o N 5 wheref(y | ¢, My,) is the density ofy obtained from (1) and
T o (5) f(e| ¢), ¥ is the model's parameter spack;, = O, U Py,

and M,,) is the prior density off, wherey = [87 ¢T].
where M, is the selected modek € Z,;, v is the vector Notéf(tﬁa[[\llkk)c R F;nd dyp = 77¥k j_pnk v=16"9]

of model parameterg((y | 3, My,) is the probability density Obviously, the evaluation of the marginal densityy |
function of the data given the model parameters and the modjgll,k) requires, in general, multidimensional integration. Un-

t is the maximum likelihood o), anddj is the dimension fortynately, in most of the practical cases, the final result

of o, or dx = my + 1. cannot be put in a closed analytical form. There are two
ways to proceed. One is to employ a technique for numerical
[ll. THE MAP CRITERION integration (see, for example [6]) or to resort to approximations

The MAP criterion chooses the model with the largedpat will allow a closed-form solution. The first approach is
posterior probability. Let the posterior probability of1, Straightforward and usually more accurate but does not provide

be denoted byp(M;, | y). According to Bayes' theorem, much insight into the model selection problem. On the other

p(My, | y) is defined by hand, the approximation may not lead to as accurate model
selections, but the resulting closed-form solution may improve

p(My | y) = fy | Mi)p(M) (6) our understanding of the problem under study. We adopt the

fy) second approach and assume that we have long data vectors

1 . . ) . so that standard asymptotical approximations can be applied.
The models will be called nested if the simpler models in the sets are Und . lari diti dl d |
identical to the more complex models when some parameters of the more nder certain regularity conditions and large data samples

complex models are set to zero. [2], we can use Laplace’s method for integration and write
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(see the Appendix) complexity of the models, however, is not obvious since it
depends on the type of models that are being tested.
/ Fy | ¥, M) f(p | My) dyp When the observed data are independent and identically
Ty distributed, we can write

~ ) F Pl F(y | M) F( | My)  (12)

wherezﬁ is the maximum likelihood estimate op and H;,
is the Hessian of-In f(y | ¢, M) evaluated at, which is
also termed as the observed information matrix, or

[Hy| = O(N7T). (19)
This then reduces (14) to the naive MDL criterion, i.e.,

MAP: M, = arg min ){—lnf(y | @,Mk)

- Pl f(y | ¥, Ms) 13) d(Mk:kaq
e ty IHN}' (20)

The approximation is particularly good when the Iikelihooq_he expression (19), however, is not always valid. We will

function is highly peaked aroungh. This is usually the case ! . .
when the number of data samplasis large. Concerns for the show in the sequel that there are several typical signal process-
' ing families of models for which (20) will not be appropriate

accuracy of this approximation has led many researchers to I{}jection rule
exact calculations of (11) by applying Monte Carlo methods ‘

(71, [11].
Now, from (10), (11), and (12), and neglecting the terms of IV. EXAMPLES
order O(1), we deduce that the asymptotical MAP criterion To put things in perspective, we briefly investigate several
becomes different sets of models. The first three are nested linear
) models, whereas the fourth and the fifth are nested nonlinear
MAP: M, = arg min {—hlf(y | 1, My) models. In all these examples, except for the last one, we
(Mp:kCZy) . . .
assume that the noise vecwis real and zero mean Gaussian
+ llnlﬂkl}- (14) with a probability density function given by (15). In the last
2 example, the observed data are complex, and the easseero

The first term of the criterion decreases when the complexf§ean complex Gaussian whose probability density function is

of the model increases, and at the same time, by contrast, 1 efe

the second term increases and acts as a penalty for using fle|o?) = W‘“P( )

additional parameters to model the data. Parenthetically, it

might be noted that the Hessian matrix in (14) can be replacefiere the real and imaginary components of the elements of

by the Fisher information matrix because in deriving (14), th@re independent and identically distributed with variafige

error it introduces is of smaller order than the errors due toln the first three examples, the examined models are given

the neglected terms of orde€p(1). by
For example, if i) the observed dagaare real, ii) f(e | ¢)

is a Gaussian density function whose form is

1 whereH;, is a knownN x m; observation matrix with rank
T
{22}

(21)

o2

My =Hpbp +e, ke Z, (22)

1
o N XP{ 5 g€ e (15) my, andé@, is the vector of unknown parameters.
(2ma?) 7 The AIC and the naive MDL selection rules (4) and (5) are

and iii) gx(y, e, 8) is given by (2), the loglikelihood has thenow simplified to

flelo®) =

form N
N AlIC: M, =arg min {5 Iné3 + mk} (23)
In f(y | 8,02, M;,) = const— o) In 2702 (Mi:k€Zq)
1 . and
—5 3 —s(8)" (y —s(6)) (16) N
20° MDL: M, = arg min {5 Ing;, + % lnN} (24)
and the Hessian becomes (Mi:k€Zq)
P Infyl8oi M) 8 Inf(yl8,0° M) wheres; is the estimated noise variance obtained by
Hi=| g2 008 e 2 1 OO . @
_ Ol f]0.0° M) _ 0% Inf(y|0.0 M) N
502507 52 (02 )2 Ok = ¥ Pyy. (25)

It is easy to show that the first term in (14) results in 1 o _ i
Here, P;- is a projection matrix defined by

- N N
~2 ~2 _
—lnf(y|80,6°, M) = 5 In276° + 5 (18) PL=1-H, (Ilfllk) 1H:IC (26)

Obviously, when we examine nested modei, decreases andI is anNV x N identity matrix. It might be noted that the
by including more parameters in the model, and so doesise modely = e is also included in the set of examined
—Inf(y | 6,6% My). The increase of: In|H;| with the models, withm;, = 0, ands] = +yTy.
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On the other hand, from (14), (17), and (18), it is easy . Polynomial Models

show that the MAP criterion can be approximated by Suppose next that the examined models are polynomials of
‘ . N, ., 1 - various degrees. The modeld;, are given again by (28), but
MAP: M, = arg (Mi{llirequ) {5 In 6y, + B In |Hk Hk|} the matrixH; is defined according to
(27)

H,=ho h; hy -+ hgo hp], £>1 (35
Note that we are still not able to make direct comparisons
of the MAP with the other two rules. Therefore, we proceegnere
by specifying the sets of models in more detail, and then, we
derive the MAP selection rules for each of them. =0 1 2 ... (N (36)

A. Sinusoids with Known Frequencies
INUSOICS Wi W quenci wherel € Z;. Thus, fork > 1, the modelAM;, refers to a

As a first example, let the models represent sets of sinusogliynomial of degreek — 1 embedded in noise. The number

with known frequencies but unknown phases and amplitudes.signal parameters isy, = k, and M, refers to the noise
Under My, the data represerit sinusoids distorted by noise mogel.

that can be expressed as Again, we first determine the AIC and the naive MDL
My:y = Hpby + e (28) criteria. They are
N
where AIC: M, =arg min {— Iné; + k} (37)
(My:kCZy) | 2
Hk = [hls hlc h25 h2c e hks hkc] (29)
and and
hi, =[0 sin(w;) sin(2w;) -+ sin((V = Dw)]" N k
[0 sin(w;) sin(2w;) sin(( Jwill . MDL: M, =arg min {— Inéi + = lnN}. (38)
h;,. =[1 cos(w;) cos(2w;) - - cos((N—1w,)] (MikeZy) | 2 2
(30
for i = 1,2,...,k and @, is the vector of amplitudes. In deriving the MAP criterion, it is straightforward to show
Without loss of generality, it is assumed that # 0 or w, that for largeN, H’—[Hk can be approximated by
i =1,2,... k. The set of frequencies; for i = 1,2,....k
is known, andw; # w;, for ¢ # j. Note that the model ok N N ]\""
sinusoids hasn; = 2k unknown signal parameters. So, the N2 1\_23 wh
AIC and the naive MDL become HIH, ~ | 2 3 ktl
. N ~ :k k:+1 : 21:\»71
. — v 2 N* N N
AIC: M, = arg (Mi{llirchq){ > Ing;, + 2k} (31) S e
and This further implies that
) . N 5 .
MDL: M, :arg(Mi{liréZq){51n0k+k1nN}. (32) | = O(Nk2+1)
To obtain the form of the MAP criterion, we examine the d
elements of the matriH}fHk. It is not difficult to show that
for the ¢5th element, we can write N L2
MAP: M, = arg min { Iné? 4+ — lnN}. (39)
[HyH,],, =0(Q1), i# (MikeZ,) | 2 2
T — i —
[HLHi];; = O(N), i=j This result is quite interesting since we see that the MAP

criterion is different from the AIC and the naive MDL. The
MAP penalty term is a quadratic function of the number of
|Hi Hy| = O(N?). (33) polynomial parameters, which implies that the MAP criterion

penalizes for overparameterization much more rigorously than
From (27) and (33), we deduce that the MAP criterion cafie AIC and the naive MDL. The MAP penalty for every

This further implies that

be approximated by additional parameter increases as the degree of the polynomial
_ N ) increases. For example, the penalty associated with the first
MAP: M, = arg o {— Ingy + MHN} (34) paramete, is 1 1n N, the penalty for the second parameter
Kik€Zy

01, %lnN, and so on. Not surprisingly, the more accurately
We notice that for this set of models, the MAP and the naiwge can determine the model parameters, the higher the penalty
MDL criteria areidentical to include them into the model.
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C. Autoregressive Models This entails thafH Hy| is of O(N*). With this result, it is

We assume now that the data are stationary and that they E¥jflent that the MAP rule can be approximated by
be modeled by an autoregressive (AR) model. For instance, if N
y g (AR) {—mﬁ+§mN} (48)

the AR model is ofkth order, we write MAP: M, = arg (Mi{llirelzq) 2

Thus, for AR models, the naive MDL and MAP criteria are
identical.

My =1+ by + -+ Oy—r + e
f—k+1,... N (40)

where theé;’s, i = 1,2,...,k are the AR parameters, andD. Sinusoids with Unknown Frequencies
thee,’s are zero mean independent and identically distributedoyr next example includes various sets of sinusoids as

Gaussian random variables. In addition, we assume that Competing models again, but this time, all the parameters of
the sinusoids are unknown. The models are described by

k>1 (49)

A(Z) =1— 012 — 0227 — - — 02" £0, 2| <1. (4)
_ _ _ _ My = H(wp)ay, + e,
Equation (40) can be rewritten in a vector-matrix form as

where 8, = [w} al], and the matrixH(wy;) is defined

Vit N = HipOp +epq1 v (42) by (29) and (30). The vecto®;, now consists of2k linear
and & nonlinear parameters. The linear parameters are the
where amplitudes, and the nonlinear are the frequencies. The other
—1 I assumptions are the same as in Example 1. The AIC and the
Y+, N = Wkt Y2 YN . naive MDL take the forms
eL+1,N = [Ck+1 Ck+2 CN] N
O, =[00 6 - 6" AIC: M, = arg (Mi{llirequ) {5 Ingj, + 3k} (50)
and and
N
Y o Y-l Y1 MDL: M, = arg min {— Ino;, + 3k lnN} (51)
Yr+1 Yk Y2 (My:keZy) | 2 2
H.=| . . . .
: : : where
ynv  UN- Yn—k ;2 1 :
N N-—1 N U]% _ NyTPJ_(wk)y (52)
The AIC and the naive MDL are given by q
an

AIC: M, =arg min

(Miez.) P (@) = I— H(@)(H  (@n) H(an)) "HT (én). (53)

{gin&k+k} (43)

The derivation of the MAP criterion is fairly technical, and
its details are presented in [5]. Here, we only outline the main
steps of the derivation. Recall that to obtain the MAP selection
rule, we have to solve (11). The set of parametgiis defined
] o ) by ¢ = [87 o). First, one integrates out the linear parameters
To 'derlve the MAP criterion we proceed as follows. First, WE,.. We adopt an improper prior fat;, and for the associated
claim that for largeNV, [H{Hy| = O(N*). Indeed, we can pronortionality constant in the solution, we assume that is of
write orderO(1). Then, the standard deviatieris integrated out. As
a prior for o, we use the improper Jeffreys’ prigi{o) o %
Finally, we integrate out the frequencies, for which we

and

. N k
MDL: M, = arg (Mi{lliICqu) {5 Iné;i + 3 lnN}. (44)

HIH, = NR (45)

where assume a uniform prior. To carry out the integration, we exploit
. . . the Taylor expansion used for obtaining (12) and get
i1 712 1,k N ok
5 5 \ — ~ ~ _1
R - 7?1 7?2 7?k (46) f(y|/\/tk)o<1“< 5 >|HT(wk)H(wk)| 2
. . . . R _ N—2k ___ 3k _
i1 Tr2 Pk x (y'PH(@)y) 2 NFR|
>
and kE>1 (54)
N whereT'(-) is the standard Gamma function, aRdis a matrix
Fij = izyt_iﬂyt_wrl_ (47) Wwhose determinant is of ordep(1). The analysis of (54)
N —r shows that the MAP selection rule can be approximated by

[3]
For large ¥, the elements;;, ¢,5 € Zpy1 tend to the
MAP: M, = arg min {

autocorrelationr(¢ — j) = E(y—; w—j;) of the process,
respectively, and the determinant®fremains of orde(1). (Misk€Zg)

N
—In

. 5k

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on April 30,2010 at 17:26:51 UTC from IEEE Xplore. Restrictions apply.



DJURIC: ASYMPTOTIC MAP CRITERIA FOR MODEL SELECTION 2731

Therefore, the MAP is different from the AIC and the naive The derivation of the MAP rule follows the same lines as
MDL, and once again, it has the most stringent penaltthe derivation of the MAP rule in the previous example. It
As in the case of polynomials, the parameters do not coshows that the final form of the rule is

tribute necessarily equal penalties to overparameterization.

Each amplitude yields a penalty equal {dn N, whereas MAP: M, = arg (MH-llirelz ) {Nhlf}z

each frequency yield§ In V. It is interesting to observe that s

the penalty in (55) can directly be obtained by using the + (K% + 2k + 2){A = 6(k)) lnN}. (61)
Fisher information matrixZ;. In other words, for largeV, 2

In|Zi|? ~ 3 In N. The same criterion has been proposed ihis result can also be deduced from the determinant of the
[8], where the MDL criterion has been properly exploited. Fisher information matrix.

E. Chirp Signals F. Discussion
As our final example, we consider the noise and the follow- An important issue for our approach of model selection is
ing three models: the accuracy of the made approximations. When the regularity
e _ conditions are satisfied, the relative error of the Laplace
My =lpate k=123 (56)  method for integration is of orde@(N—!), that is, if the
where integral in (12) is denoted by/ and its approximation on
exp(jwto) the right-hand side by7, then [11]
N exp(jw(to + 1)) J=J(1+O0(N)). (62)
1= .
) : If the inverse of the expected information matrix is used, the
Lexp(jw(N —1 —.tO))2 relative error becomes of ordé}( N ~%).
[ ‘eXP(J(OétoQJr Wto)) In this paper, we have assumed that the priors are non-
b — exp(j(ato +1)° + w(to + 1)) informative, and that their omission in the evaluation of the
T : integral 7 contributes to its overall relative error a value of
Lexp((a(IN — 1 — £9)% + w(N — 1 — t5))) order O(1). We have also neglected another term of order

- O(1): the factor (27)%/2 in (12). We could have retained
and (57), shown at the bottom of the page. In addition, W these terms, and by doing so, we could have obtained
havej = v/~1. Note that now,y is a vector of complex refined model selection rules. This, however, would have
observations that represent noisy chirp-type signals, and {guired and extensive analysis of the priors for the model
noise vectoe has the density function (21). The unknown pasarameters, which is a problem we wanted to alleviate in the
rameters are the complex amplitudand the phase parametergaper. In Bayesian model selection, the assignment of priors

w, a, and 3. The AIC and the naive MDL become is well recognized and considered to be nontrivial. When the
AIC: M, =arg  min {Nln 52 4+ (k+2)(1 - 6(k))} number of observed data is I_arge enough, these omissions are
(M:kCZa)) acceptable. The work on refined model selection rules where

(58) the priors cannot be ignored will be presented elsewhere.
The form of the penalty can be obtained with relative ease
from the determinant of the Fisher information matrix, and its
MDL: M, — arg  min {Nln 52 behavior can be found as a function_M Wh_enN bgcomes _
(My:kCZa}) very large. Although the use of the Fisher information matrix
(k+2)(1 - 8(k)) th} increases the relative error ¢f to the order ofO(N—%),

and

9 (59) itis acceptable to apply it because we have dropped terms
_ _ _ ) that cause relative errors of ordéx(1). It is also important
where the estimate of the noise variance undi¢x is found 5 notice that the integral in (12) is approximated for every
from model M, and that the most significant point about it is not so
L, 1 1 M A 2 much the accuracy of the approximation but the preservation
Tk = N‘ <I - Nhk(e)hk (0)>y (60) of ranking among the integral values after the approximations.
. The examples in this section clearly show that model
with @ being the estimated phase parameterdff, andé(k) selection rules that penalize for model complexity have to be
is the Kronecker delta function. examined carefully before they are applied. Gramnotuse

exp (5 (Bty + atf + wio))

exp(J Sta 24w
by = p(i(B(to +1)° + alto + 1)° + w(to + 1)) . 57)

expU(AN = 1= 10)° + (N = 1= to)? +w(N = 1~ )
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the AIC and the naive MDL rules in every scenario. In this Finally, a few comments on the relationship between the
context, it is important to point out that all the parametenglDL and the MAP model selection criteria are in order. Recall
of a model do not necessarily contribute equal penalties. Rbat the MDL rule chooses the model described by the shortest
example, in the case of polynomial models, the coefficient thedde length, and in general, it does not always choose the same
multiplies hy adds a penalty o% In N, the coefficient that model, as does the MAP criterion. The naive MDL has been
multiplies h; a penalty%lnN, and so on. Similarly, in the used in many situations whereln f(y | ¥, M) does not
case of sinusoids with unknown frequencies, the penalty fgrow proportionally with N and that isinappropriate Nor-
each unknown amplitude and phase%iih N, and for each mally, when the data come from i.i.d processes, the negative
unknown frequency, it is% In N. Obviously, the penalty is loglikelihood does grow proportionally witlv, and the use of
larger if the achievable accuracy of the estimated parametiee naive MDL is then justified. Recently, Rissanen derived
is larger. a formula for the ideal code length of models that are not

Why does the MAP rule penalize discriminatively? Amecessarily models of i.i.d. processes, and he found that their
interesting insight might be gained by analyzing the simpleode lengthi(y | M) is given by [18]

example of a constant signal in Gaussian noise. y.dbe . d N
generated according to ly|M)=-lnf(y|¢¥,M)+ ?’“ 1n2—
w
Moy =hoflo +e (63) +in [ V) dy (67)
v

wheree has the density from (15) with* known and equal
to one,d, is an unknown constant, aldg) is a vector of ones.
Suppose that we have to choose from

where 7 is the Fisher information matrix. For (67) to hold,
it is required that the maximum likelihood estimates satisfy
the central limit theorem as well as some weak smoothness
Mi:y =hoby +hi0; +e (64) conditions. Since the square root of the determinant of the
Fisher information matrix very often is not integrable, Ris-
and sanen developed modifications of (67). For the regression
roblem and the family of Gaussian distributions derived in
Moy = hofio + hof> +e (65) F18], the obtained moc)i/el selection rules are identical to our
where MAP selection criteria only after appropriate approximations.

T _
hy =0 1 2 ... N-1] V. SIMULATIONS

and We validated the performance of the AIC, the naive MDL,
- ) and MAP rules by Monte Carlo simulations on observations
h; =0 1 4 - (N-1)7 generated according to Examples 2 and 5. Extensive exami-
nation of Example 4 is given in [5]. The results there show
;Zus’bg,:ﬁ Qgﬁt;?r??ﬁés t:]uaevem?)?j;al nlérlr}be(rjscg E:;?rggte :ﬁﬁﬂét the MAP criterion provides much more accurate model
y 0- SUPP selections than the AIC and the naive MDL. The Examples 1

likelihood terms f(y | 6o, 61, Mu) and f(y | 02, Ma) 3o ot analyzed because the naive MDL and MAP
have identical values, say, féx = 6, = 0. Then, the AIC . . .
have identical forms for the models cited there.

and MDL rules would treat the two models as equally good, In the first set of experiments, we simulated polynomial-type

whereas our criterion would find that the penalty.®t; is sianals embedded in Gaussian noise according to
greater than the penalty @#1; and, therefore, would consider g g

M a better model for the data. y=Hs0;+e (68)
One interpretation for this choice is the following. If we
perturb the parameter®, and é, by the same amounng, Wherefz =[1 4.5 —0.2 63]". Throughout the experimert;
it is interesting to examine the changes in the associaté@s changed to achieve a desired signal-to-noise ratio (SNR),
loglikelihoods£; and £, caused by these perturbations. If wavhich was defined by
denote the changes kYL, andAL,, respectively, we readily 02hl Pih,

find that the probability of the evekL; > AL, is given by SNR= 10log;, (69)

o2

P(ALy > ALy) = P<Z > (h§h2 - thh1)|A9| ) where P5 is obtained from (26) fork = 2. The SNR was
2y/hTh, — 2hTh, + hTh, varied in the range from 0-30 dB in steps of 1 dB. For each
(66) SNR, there were 1000 trials. The length of the data vectors
was kept constant and equal to 50 samples,¢anwds set to 7.
where Z is the standard normal random variable. A5 Thus, the most complex model was the polynomial of degree
increases, this probability tends to zero quickly. Thereforg, A similar example with different parameters can be found
we conclude that a small perturbation &f would affect the in [4].
loglikelihood £; much less than the same perturbatiorﬁ@f The results are displayed in Fig. 1 (a)—(c). They show the
the loglikelihoodZ,. Thus, the MAP rule simply chooses theprobabilities of correct estimation, overparameterization, and
more robust model of the two. underparameterization of the AIC, the naive MDL, and MAP,
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F T TABLE |
% » PERFORMANCE COMPARISON OF THEAIC, MDL, AND MAP CRITERIA WHEN THE
Sosf S SNR = 10 dB. THE ENTRIESREPRESENT THENUMBER OF TIMES A PARTICULAR
= Ll T MopeL WAs SeLECTED OuT oF 1000 TRIALS. THE CORRECT MODEL s My
TR
w
0 .
0 5 SNR (dB) Mo JM] M2 /Mg M4 /\/i5 Ms
a
@ AlIC 0 0 0 66 | 718 | 142 | 74
> 1 T r T . T
% MDL | 0 0 0 185 | 749 | 33 13
Sos| E
S R S MAP| 0 | 0 | 0 [997]| 3 | 0 | 0
w obk===== r-—"=-—-5=-"77= o St - ====1
0 5 10 15 20 25 30
SNR (dB)
(b) TABLE I
PERFORMANCE COMPARISON OF THEAIC, MDL, AND MAP CRITERIA WHEN THE
= 1 T T T SNR= 20 dB. THE ENTRIESREPRESENT THENUMBER OF TIMES A PARTICULAR
=R MobeL WAs SeLecTeD OuT oF 1000 TriALs. THE CORRECT MODEL Is My
< T .
505 AN 1
= SN Mo | My | My | Ms | My | M5 | Mo
w . e Nme L . .
% 5 10 15 20 25 30
SNR (dB) AIC 0 0 0 0 | 764 | 135 | 101
(©)
MDL | 0 0 0 0 1929 | 48 | 23
Fig. 1. (a) Probability of correct estimation versus SNR. (b) Probability of
overestimation versus SNR. (c) Probability of underestimation versus SNR. MAP | © 0 0 9 1998 | 0 0
The solid curve refers to the MAP rule, the dashed to MDL, and the dotted to

AIC. The sequences had 50 samples, and for each SNR, there were 1000 trials.

out of 1000 trials. For SNR= 10 dB, the MAP criterion

300 ; . . SN0 . . ; almost always selected the second degree polynomial and
for SNR = 20 dB almost always the correct, third-degree
polynomial. The performance of the AIC was slightly better for
> 1oor ] 20 dB than for 10 dB, and of the naive MDL much better for 20

o»/"m\ dB but still with a significant number of overparameterizations.
ook Note that 23 times out of 1000, the naive MDL selected
: . y : : ' : y ’ polynomials of even fifth degree.

t Clearly, the MAP rule did not perform well when the

SNR = 10dB. Since the MAP rule is derived under asymptotic
assumptions, it is obvious that the approximation for this
number of samples and SNR is not accurate enough. Thus,
application of the MAP rule for low SNR’s and/or small
number of samples is not recommended.

In the next experiment, we simulated chirp-type signals

R . . . : - - : : ] according to (56) and (57). The SNR defined by
5 10 15 20 25 30 35 40 45 50
t |CL|2
SNR=10log,, —&
010 o2

Fig. 2. Upper plot displays a third-degree polynomial embedded in noise for (70)

SNR = 10 dB. The lower figure displays a third-degree polynomial in noise
for SNR = 20 dB. was set to 12 dB, the data length A0 = 31, and¢g = —15.

First, we generated a complex sinusoid whose frequency was

vel hat f , w = 27 0.1, and a = exp(j). There were four different
respectively. We observe that for SNR's above 20 dB, tri‘ﬁodels because we also included the noise only model. The

MAP criterion has perfect performance, whereas the AIC andlrect model istt,. The number of trials was again 1000.
the naive MDL tend to overestimate the polynomial degre@ye estimated the nonlinear parameters of all the models by
For lower SNR’s than 20 dB, the MAP criterion choosege method described in [3]. The results of the simulations are
polynomials of smaller degree than the correct one. shown in Table Ill. The MAP criterion performed perfectly.
To obtain a better perspective on the performance of thfe AIC had correct selection in about 70% of the trials and
three rules, we tabulated the results obtained for SNR’s eqya naive MDL around 90%. These two criteria sometimes
to 10 and 20 dB, respectively. In Fig. 2, we show ongelected even the most complex model in the set.
realization of the observed data for each of these SNR'’s, and irNext, we generated a chirp signal by keeping all the
Tables | and II, we list the results. Note that the correct modghrameters as in the previous experiment exceptithat).15.
is M, (a polynomial of third degree). The tables show th&herefore, the correct model %15. The results are shown in
number of times the selection rules chose a particular modelble 1V. The MAP criterion repeated the perfect performance
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TABLE 111
PERFORMANCE CoMPARISON OF THEAIC, MDL, AND MAP
CRITERIA FOR CHIRP-TYPE SIGNALS. THE ENTRIES REPRESENT
THE NUMBER OF TIMES A PARTICULAR MODEL WAS SELECTED
Out oF 1000 TRIALS. THE CoRRECT MODEL Is M

c) all

[ )i ~ i) (%ﬂ)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 10, OCTOBER 1998

the partial derivatives Jdg.(¢)/9v; and
2go(1)) /O O exist and are continuous in a
neighborhoodV — % of 1);

d) there exists a consta6t < 1 such thatgz(e)/g2(¢h) <

Cforaly e ¥ - N;

e) g1(¢) is continuous in the neighborhood @b, and

q(¥) # 0,

then, whenN — oo

)| (ga()™
(71)

where [H(v)| is the Hessian determinant of log g2()

Mo | My | My | M3
AIC 0 706 | 130 § 110
MDL | 0 907 | 63 30
MAP| O 1000 O 0
TABLE IV

PerRFORMANCE CoMPARISON OF THEAIC, MDL, AND MAP
CRITERIA FOR CHIRP-TYPE SIGNALS. THE ENTRIES REPRESENT
THE NUMBER OF TIMES A PARTICULAR MODEL WAS SELECTED

Out oF 1000 TRIALS. THE CORRECT MODEL Is M»

Mo | My | My | M
AIC | 0 | 0 | 802|198
MDL| 0 | 0 | 904 | 96 and
MAP| 0 | 0 |1000| 0

by selecting the correct model in all 1000 trials. The naiv.
MDL did so in around 90% and the AIC in about 80% of th
total number of trials. The incorrect selections were always
related to overparameterizations.

(1]
VI.
In this paper, we addressed the model selection proble%]
from a Bayesian point of view and using large sample theoryl3l
We found that the asymptotical MAP rule, in general, ha§4
different penalties for model overparameterization than the
AIC and the naive MDL. In the cases where it differs from the 5]
naive MDL and AIC, the computer simulations showed that thé
MAP had the best performance. When the number of sampl€§]
is not large enough or the SNR is not sufficiently high, the,
MAP rule would usually choose a simpler model than the one

CONCLUDING REMARKS

evaluated atp = 1.

Proof: See [2]. O

The sign ~ in the above equations denotes asymptotic
equivalence, which means that the ratio of the two sides in
(71) tends to 1 agvV — oc. Comparing (11) and (71), we
easily identify the functiong;, and g, as

a(¥) = f(¢ | My) (72)

n) =en{ plufiy v M0} 03

_Itis clear then that the priof (¢ | M) has to be continuous
groundzp and nonzero atp. To check the remaining regularity
%onditions is also relatively straightforward.
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