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Asymptotic MAP Criteria for Model Selection
Petar M. Djuríc, Member, IEEE

Abstract—The two most popular model selection rules in the
signal processing literature have been the Akaike’s criterion
AIC and the Rissanen’s principle of minimum description length
MDL. These rules are similar in form in that they both consist of
data and penalty terms. Their data terms are identical, but the
penalties are different, the MDL being more stringent toward
overparameterization. The AIC penalizes for each additional
model parameter with an equal incremental amount of penalty,
regardless of the parameter’s role in the model. In most of the
literature on model selection, the MDL appears in a form that
also suggests equal penalty for every unknown parameter. To
this MDL criterion, we refer to as the naive MDL. In this paper,
we show that identical penalization for every parameter is not
appropriate and that the penalty has to depend on the model
structure and type of model parameters. The approach to showing
this is Bayesian, and it relies on large sample theory. We derive
maximum a posteriori(MAP) rules for several different families of
competing models and obtain forms that are similar to the AIC
and the naive MDL. For some families, however, we find that
the derived penalties are different. In those cases, our extensive
simulations show that the MAP rule outperforms the AIC and
the naive MDL.

I. INTRODUCTION

A COMMON task in science and engineering is the se-
lection of a model from a set of competing models. In

signal processing, this problem is of great interest because
the observed data are usually distorted and comprised of
unknown number of signal components or even unknown types
of signals. Then, one is faced with the problem of choosing a
model for the data that describes them best in some predefined
sense. Many examples can be found in a variety of areas
such as underwater acoustics, vibration analysis, and medical
imaging. The model selection is clearly a multiple hypothesis
testing problem for which an optimal solution in the classical
sense does not exist.

Researchers in signal and image processing often address
this problem by utilizing two popular model selection rules:
the AIC [1] and MDL [17]. More recent references where they
are applied include [9], [13], [16], and [20]–[23]. The two
criteria were derived under asymptotical assumptions using
information and coding theoretic reasoning.

The AIC and MDL consist of two terms: a data term and a
penalty term. As the model complexity increases, the data term
usually decreases, whereas the penalty term always increases.
The best model is the one that yields the minimum value of
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the criterion. A common fallacy of the AIC is that it penalizes
for overmodeling the data independently of the “type” of
parameters (amplitude, phase, frequency, damping factor, time
delay, etc.) used in the models. For example, if we compare
two models, with the same number of unknown parameters,
their penalties will be the same, despite the difference in their
structures. In most of the signal processing literature on model
selection, the MDL shares the same feature, that is, every
model parameter contributes to the model’s overall penalty
with identical amount. We refer to this MDL criterion as the
naive MDL.

In this paper, we show that the penalization strongly depends
on the types of models that are being used and that, in
general, it cannot be simply obtained by counting the number
of unknown parameters. This implies that one shouldnot use
the AIC or the naive MDL without careful examination of
the models under investigation. It should be noted that many
researchers have recognized the poor performance of these
criteria in certain scenarios and have tried to improve them
by modifying the penalties in a more or lessad hoc fashion
[9], [13].

To obtain the new rules, we used Bayes’ theory and large
sample approximations [14], [19]. We followed the derivations
in [10], [12], [15], and [19] and carefully investigated the re-
sults of five different families of models. They include models
of sinusoidal signals with known frequencies, polynomials,
autoregressions, models of sinusoidal signals with unknown
frequencies, and models of chirp-type signals. In some of these
cases, we obtained rules with different penalties from those of
the AIC and the naive MDL. The computer simulations show
that in those cases, the MAP rule has the best performance.

The paper is organized as follows. In Section II, we for-
mulate the problem, and in Section III, we briefly outline
the MAP criterion and present the general solution. Then, in
Section IV, we exploit it on five different sets of models, and
in Section V, we discuss some relevant issues. We present
some simulation results that show the performance of the rules
proposed here as well as the performance of the AIC and the
naive MDL in Section VI. Finally, we conclude the paper with
Section VII providing some final remarks.

II. FORMULATION OF THE MODEL SELETION PROBLEM

A data vector of length is observed. There are
candidate models for whose generic forms are given by

(1)

where is a vector function that represents theth
model, , is a noise vector, and is
a vector of model parameters taking values in the parameter
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space , with denoting the length of the vector
. For example, if the th model for represents

sinusoids in additive noise, is given by

(2)

where is the signal vector that representssuperimposed
sinusoids, is the vector of signal parameters (the amplitudes,
phases, and frequences of the sinusoids), , and is the
additive noise. The probability density function of the noise is
parameterized by , and it will be denoted by , where

, and is the number of parameters
necessary to describe the density . The functional
forms of and are assumed known, but
the parameters and are unknown.

The problem that we address here is the following: Given
the observed vector and the set of candidate models

, choose the best model that describes
the data , where the best model is the one that has the
maximum a posterioriprobability. Without loss of generality,
it is supposed that the prior probability of each model is

, that is, there is no prior preference toward any
of the models. In addition, it is tacitly assumed that one of
the examined models may be the noise model whose function

is given by

(3)

It should be noted that the models in the set do not need to
be related or nested.1

Before proceeding, we recall the forms of the AIC and naive
MDL selection rules. They are given by

AIC

(4)

and

MDL

(5)

where is the selected model, , is the vector
of model parameters, is the probability density
function of the data given the model parameters and the model,

is the maximum likelihood of , and is the dimension
of , or .

III. T HE MAP CRITERION

The MAP criterion chooses the model with the largest
posterior probability. Let the posterior probability of
be denoted by . According to Bayes’ theorem,

is defined by

(6)

1The models will be called nested if the simpler models in the sets are
identical to the more complex models when some parameters of the more
complex models are set to zero.

where

marginal density of the data given they are
generated by the model ;
prior probability of ;
marginal density of the data, which is obtained
by

(7)

To find the MAP model, we evaluate for
and select the model that has the maximum .
Formally, this is carried out according to

(8)

where
We already assumed that the models have equal prior

probabilities, i.e.,

(9)

and therefore, they do not affect the model selection in (8).
This is also the case with the marginal density since it is
not a function of . Consequently, we may drop the factors

and from the model selection criterion, which
then becomes

(10)

Clearly, to find the MAP solution, we have to evaluate the
marginal density of the data for each model. This density can
be found from

(11)

where is the density of obtained from (1) and
is the model’s parameter space, ,

and is the prior density of , where .
Note that , and .

Obviously, the evaluation of the marginal density
requires, in general, multidimensional integration. Un-

fortunately, in most of the practical cases, the final result
cannot be put in a closed analytical form. There are two
ways to proceed. One is to employ a technique for numerical
integration (see, for example [6]) or to resort to approximations
that will allow a closed-form solution. The first approach is
straightforward and usually more accurate but does not provide
much insight into the model selection problem. On the other
hand, the approximation may not lead to as accurate model
selections, but the resulting closed-form solution may improve
our understanding of the problem under study. We adopt the
second approach and assume that we have long data vectors
so that standard asymptotical approximations can be applied.

Under certain regularity conditions and large data samples
[2], we can use Laplace’s method for integration and write
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(see the Appendix)

(12)

where is the maximum likelihood estimate of , and
is the Hessian of evaluated at , which is
also termed as the observed information matrix, or

(13)

The approximation is particularly good when the likelihood
function is highly peaked around. This is usually the case
when the number of data samplesis large. Concerns for the
accuracy of this approximation has led many researchers to try
exact calculations of (11) by applying Monte Carlo methods
[7], [11].

Now, from (10), (11), and (12), and neglecting the terms of
order , we deduce that the asymptotical MAP criterion
becomes

MAP

(14)

The first term of the criterion decreases when the complexity
of the model increases, and at the same time, by contrast,
the second term increases and acts as a penalty for using
additional parameters to model the data. Parenthetically, it
might be noted that the Hessian matrix in (14) can be replaced
by the Fisher information matrix because in deriving (14), the
error it introduces is of smaller order than the errors due to
the neglected terms of order .

For example, if i) the observed dataare real, ii)
is a Gaussian density function whose form is

(15)

and iii) is given by (2), the loglikelihood has the
form

const

(16)

and the Hessian becomes

(17)

It is easy to show that the first term in (14) results in

(18)

Obviously, when we examine nested models, decreases
by including more parameters in the model, and so does

. The increase of with the

complexity of the models, however, is not obvious since it
depends on the type of models that are being tested.

When the observed data are independent and identically
distributed, we can write

(19)

This then reduces (14) to the naive MDL criterion, i.e.,

MAP

(20)

The expression (19), however, is not always valid. We will
show in the sequel that there are several typical signal process-
ing families of models for which (20) will not be appropriate
selection rule.

IV. EXAMPLES

To put things in perspective, we briefly investigate several
different sets of models. The first three are nested linear
models, whereas the fourth and the fifth are nested nonlinear
models. In all these examples, except for the last one, we
assume that the noise vectoris real and zero mean Gaussian
with a probability density function given by (15). In the last
example, the observed data are complex, and the noiseis zero
mean complex Gaussian whose probability density function is

(21)

where the real and imaginary components of the elements of
are independent and identically distributed with variance.

In the first three examples, the examined models are given
by

(22)

where is a known observation matrix with rank
, and is the vector of unknown parameters.

The AIC and the naive MDL selection rules (4) and (5) are
now simplified to

AIC (23)

and

MDL (24)

where is the estimated noise variance obtained by

(25)

Here, is a projection matrix defined by

(26)

and is an identity matrix. It might be noted that the
noise model is also included in the set of examined
models, with , and .
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On the other hand, from (14), (17), and (18), it is easy to
show that the MAP criterion can be approximated by

(27)

Note that we are still not able to make direct comparisons
of the MAP with the other two rules. Therefore, we proceed
by specifying the sets of models in more detail, and then, we
derive the MAP selection rules for each of them.

A. Sinusoids with Known Frequencies

As a first example, let the models represent sets of sinusoids
with known frequencies but unknown phases and amplitudes.
Under , the data represent sinusoids distorted by noise
that can be expressed as

(28)

where

(29)

and

(30)
for , and is the vector of amplitudes.
Without loss of generality, it is assumed that or

. The set of frequencies for
is known, and , for . Note that the model of
sinusoids has unknown signal parameters. So, the
AIC and the naive MDL become

AIC (31)

and

MDL (32)

To obtain the form of the MAP criterion, we examine the
elements of the matrix . It is not difficult to show that
for the th element, we can write

This further implies that

(33)

From (27) and (33), we deduce that the MAP criterion can
be approximated by

MAP (34)

We notice that for this set of models, the MAP and the naive
MDL criteria are identical.

B. Polynomial Models

Suppose next that the examined models are polynomials of
various degrees. The models are given again by (28), but
the matrix is defined according to

(35)

where

(36)

where . Thus, for , the model refers to a
polynomial of degree embedded in noise. The number
of signal parameters is , and refers to the noise
model.

Again, we first determine the AIC and the naive MDL
criteria. They are

AIC (37)

and

MDL (38)

In deriving the MAP criterion, it is straightforward to show
that for large , can be approximated by

...
...

...
...

This further implies that

and

MAP (39)

This result is quite interesting since we see that the MAP
criterion is different from the AIC and the naive MDL. The
MAP penalty term is a quadratic function of the number of
polynomial parameters, which implies that the MAP criterion
penalizes for overparameterization much more rigorously than
the AIC and the naive MDL. The MAP penalty for every
additional parameter increases as the degree of the polynomial
increases. For example, the penalty associated with the first
parameter is , the penalty for the second parameter

, , and so on. Not surprisingly, the more accurately
we can determine the model parameters, the higher the penalty
to include them into the model.
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C. Autoregressive Models

We assume now that the data are stationary and that they can
be modeled by an autoregressive (AR) model. For instance, if
the AR model is of th order, we write

(40)

where the ’s, are the AR parameters, and
the ’s are zero mean independent and identically distributed
Gaussian random variables. In addition, we assume that

(41)

Equation (40) can be rewritten in a vector-matrix form as

(42)

where

and

...
...

...
...

The AIC and the naive MDL are given by

AIC (43)

and

MDL (44)

To derive the MAP criterion we proceed as follows. First, we
claim that for large . Indeed, we can
write

(45)

where

...
...

...
...

(46)

and

(47)

For large , the elements tend to the
autocorrelation of the process,
respectively, and the determinant ofremains of order .

This entails that is of . With this result, it is
evident that the MAP rule can be approximated by

MAP (48)

Thus, for AR models, the naive MDL and MAP criteria are
identical.

D. Sinusoids with Unknown Frequencies

Our next example includes various sets of sinusoids as
competing models again, but this time, all the parameters of
the sinusoids are unknown. The models are described by

(49)

where , and the matrix is defined
by (29) and (30). The vector now consists of linear
and nonlinear parameters. The linear parameters are the
amplitudes, and the nonlinear are the frequencies. The other
assumptions are the same as in Example 1. The AIC and the
naive MDL take the forms

AIC (50)

and

MDL (51)

where

(52)

and

(53)

The derivation of the MAP criterion is fairly technical, and
its details are presented in [5]. Here, we only outline the main
steps of the derivation. Recall that to obtain the MAP selection
rule, we have to solve (11). The set of parametersis defined
by . First, one integrates out the linear parameters

. We adopt an improper prior for , and for the associated
proportionality constant in the solution, we assume that is of
order . Then, the standard deviationis integrated out. As
a prior for , we use the improper Jeffreys’ prior .
Finally, we integrate out the frequencies for which we
assume a uniform prior. To carry out the integration, we exploit
the Taylor expansion used for obtaining (12) and get

(54)

where is the standard Gamma function, andis a matrix
whose determinant is of order . The analysis of (54)
shows that the MAP selection rule can be approximated by
[5]

MAP (55)
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Therefore, the MAP is different from the AIC and the naive
MDL, and once again, it has the most stringent penalty.
As in the case of polynomials, the parameters do not con-
tribute necessarily equal penalties to overparameterization.
Each amplitude yields a penalty equal to , whereas
each frequency yields . It is interesting to observe that
the penalty in (55) can directly be obtained by using the
Fisher information matrix . In other words, for large ,

. The same criterion has been proposed in
[8], where the MDL criterion has been properly exploited.

E. Chirp Signals

As our final example, we consider the noise and the follow-
ing three models:

(56)

where

...

...

and (57), shown at the bottom of the page. In addition, we
have Note that now, is a vector of complex
observations that represent noisy chirp-type signals, and the
noise vector has the density function (21). The unknown pa-
rameters are the complex amplitudeand the phase parameters

, , and . The AIC and the naive MDL become

AIC

(58)

and

MDL

(59)

where the estimate of the noise variance under is found
from

(60)

with being the estimated phase parameters of, and
is the Kronecker delta function.

The derivation of the MAP rule follows the same lines as
the derivation of the MAP rule in the previous example. It
shows that the final form of the rule is

MAP

(61)

This result can also be deduced from the determinant of the
Fisher information matrix.

F. Discussion

An important issue for our approach of model selection is
the accuracy of the made approximations. When the regularity
conditions are satisfied, the relative error of the Laplace
method for integration is of order , that is, if the
integral in (12) is denoted by and its approximation on
the right-hand side by , then [11]

(62)

If the inverse of the expected information matrix is used, the
relative error becomes of order .

In this paper, we have assumed that the priors are non-
informative, and that their omission in the evaluation of the
integral contributes to its overall relative error a value of
order . We have also neglected another term of order

: the factor in (12). We could have retained
all these terms, and by doing so, we could have obtained
refined model selection rules. This, however, would have
required and extensive analysis of the priors for the model
parameters, which is a problem we wanted to alleviate in the
paper. In Bayesian model selection, the assignment of priors
is well recognized and considered to be nontrivial. When the
number of observed data is large enough, these omissions are
acceptable. The work on refined model selection rules where
the priors cannot be ignored will be presented elsewhere.

The form of the penalty can be obtained with relative ease
from the determinant of the Fisher information matrix, and its
behavior can be found as a function of when becomes
very large. Although the use of the Fisher information matrix
increases the relative error of to the order of ,
it is acceptable to apply it because we have dropped terms
that cause relative errors of order . It is also important
to notice that the integral in (12) is approximated for every
model and that the most significant point about it is not so
much the accuracy of the approximation but the preservation
of ranking among the integral values after the approximations.

The examples in this section clearly show that model
selection rules that penalize for model complexity have to be
examined carefully before they are applied. Onecannot use

...
(57)
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the AIC and the naive MDL rules in every scenario. In this
context, it is important to point out that all the parameters
of a model do not necessarily contribute equal penalties. For
example, in the case of polynomial models, the coefficient that
multiplies adds a penalty of , the coefficient that
multiplies a penalty , and so on. Similarly, in the
case of sinusoids with unknown frequencies, the penalty for
each unknown amplitude and phase is , and for each
unknown frequency, it is . Obviously, the penalty is
larger if the achievable accuracy of the estimated parameter
is larger.

Why does the MAP rule penalize discriminatively? An
interesting insight might be gained by analyzing the simple
example of a constant signal in Gaussian noise. Letbe
generated according to

(63)

where has the density from (15) with known and equal
to one, is an unknown constant, and is a vector of ones.
Suppose that we have to choose from

(64)

and

(65)

where

and

Thus, the two models have equal number of parameters and
they both contain the true model . Suppose next that the
likelihood terms and
have identical values, say, for . Then, the AIC
and MDL rules would treat the two models as equally good,
whereas our criterion would find that the penalty of is
greater than the penalty of and, therefore, would consider

a better model for the data.
One interpretation for this choice is the following. If we

perturb the parameters and by the same amount ,
it is interesting to examine the changes in the associated
loglikelihoods and caused by these perturbations. If we
denote the changes by and , respectively, we readily
find that the probability of the event is given by

(66)

where is the standard normal random variable. As
increases, this probability tends to zero quickly. Therefore,
we conclude that a small perturbation of would affect the
loglikelihood much less than the same perturbation of
the loglikelihood . Thus, the MAP rule simply chooses the
more robust model of the two.

Finally, a few comments on the relationship between the
MDL and the MAP model selection criteria are in order. Recall
that the MDL rule chooses the model described by the shortest
code length, and in general, it does not always choose the same
model, as does the MAP criterion. The naive MDL has been
used in many situations where does not
grow proportionally with and that isinappropriate. Nor-
mally, when the data come from i.i.d processes, the negative
loglikelihood does grow proportionally with , and the use of
the naive MDL is then justified. Recently, Rissanen derived
a formula for the ideal code length of models that are not
necessarily models of i.i.d. processes, and he found that their
code length is given by [18]

(67)

where is the Fisher information matrix. For (67) to hold,
it is required that the maximum likelihood estimates satisfy
the central limit theorem as well as some weak smoothness
conditions. Since the square root of the determinant of the
Fisher information matrix very often is not integrable, Ris-
sanen developed modifications of (67). For the regression
problem and the family of Gaussian distributions derived in
[18], the obtained model selection rules are identical to our
MAP selection criteria only after appropriate approximations.

V. SIMULATIONS

We validated the performance of the AIC, the naive MDL,
and MAP rules by Monte Carlo simulations on observations
generated according to Examples 2 and 5. Extensive exami-
nation of Example 4 is given in [5]. The results there show
that the MAP criterion provides much more accurate model
selections than the AIC and the naive MDL. The Examples 1
and 3 were not analyzed because the naive MDL and MAP
have identical forms for the models cited there.

In the first set of experiments, we simulated polynomial-type
signals embedded in Gaussian noise according to

(68)

where . Throughout the experiment,
was changed to achieve a desired signal-to-noise ratio (SNR),
which was defined by

SNR (69)

where is obtained from (26) for . The SNR was
varied in the range from 0–30 dB in steps of 1 dB. For each
SNR, there were 1000 trials. The length of the data vectors
was kept constant and equal to 50 samples, andwas set to 7.
Thus, the most complex model was the polynomial of degree
5. A similar example with different parameters can be found
in [4].

The results are displayed in Fig. 1 (a)–(c). They show the
probabilities of correct estimation, overparameterization, and
underparameterization of the AIC, the naive MDL, and MAP,
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(a)

(b)

(c)

Fig. 1. (a) Probability of correct estimation versus SNR. (b) Probability of
overestimation versus SNR. (c) Probability of underestimation versus SNR.
The solid curve refers to the MAP rule, the dashed to MDL, and the dotted to
AIC. The sequences had 50 samples, and for each SNR, there were 1000 trials.

Fig. 2. Upper plot displays a third-degree polynomial embedded in noise for
SNR= 10 dB. The lower figure displays a third-degree polynomial in noise
for SNR = 20 dB.

respectively. We observe that for SNR’s above 20 dB, the
MAP criterion has perfect performance, whereas the AIC and
the naive MDL tend to overestimate the polynomial degree.
For lower SNR’s than 20 dB, the MAP criterion chooses
polynomials of smaller degree than the correct one.

To obtain a better perspective on the performance of the
three rules, we tabulated the results obtained for SNR’s equal
to 10 and 20 dB, respectively. In Fig. 2, we show one
realization of the observed data for each of these SNR’s, and in
Tables I and II, we list the results. Note that the correct model
is (a polynomial of third degree). The tables show the
number of times the selection rules chose a particular model

TABLE I
PERFORMANCECOMPARISON OF THEAIC, MDL, AND MAP CRITERIA WHEN THE

SNR= 10 dB. THE ENTRIESREPRESENT THENUMBER OF TIMES A PARTICULAR

MODEL WAS SELECTED OUT OF 1000 TRIALS. THE CORRECT MODEL ISM4

TABLE II
PERFORMANCECOMPARISON OF THEAIC, MDL, AND MAP CRITERIA WHEN THE

SNR= 20 dB. THE ENTRIESREPRESENT THENUMBER OF TIMES A PARTICULAR

MODEL WAS SELECTED OUT OF 1000 TRIALS. THE CORRECT MODEL ISM4

out of 1000 trials. For SNR dB, the MAP criterion
almost always selected the second degree polynomial and
for SNR dB almost always the correct, third-degree
polynomial. The performance of the AIC was slightly better for
20 dB than for 10 dB, and of the naive MDL much better for 20
dB but still with a significant number of overparameterizations.
Note that 23 times out of 1000, the naive MDL selected
polynomials of even fifth degree.

Clearly, the MAP rule did not perform well when the
SNR dB. Since the MAP rule is derived under asymptotic
assumptions, it is obvious that the approximation for this
number of samples and SNR is not accurate enough. Thus,
application of the MAP rule for low SNR’s and/or small
number of samples is not recommended.

In the next experiment, we simulated chirp-type signals
according to (56) and (57). The SNR defined by

SNR (70)

was set to 12 dB, the data length to , and .
First, we generated a complex sinusoid whose frequency was

, and . There were four different
models because we also included the noise only model. The
correct model is . The number of trials was again 1000.
We estimated the nonlinear parameters of all the models by
the method described in [3]. The results of the simulations are
shown in Table III. The MAP criterion performed perfectly.
The AIC had correct selection in about 70% of the trials and
the naive MDL around 90%. These two criteria sometimes
selected even the most complex model in the set.

Next, we generated a chirp signal by keeping all the
parameters as in the previous experiment except that .
Therefore, the correct model is . The results are shown in
Table IV. The MAP criterion repeated the perfect performance
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TABLE III
PERFORMANCE COMPARISON OF THEAIC, MDL, AND MAP

CRITERIA FOR CHIRP-TYPE SIGNALS. THE ENTRIES REPRESENT

THE NUMBER OF TIMES A PARTICULAR MODEL WAS SELECTED

OUT OF 1000 TRIALS. THE CORRECT MODEL ISM1

TABLE IV
PERFORMANCE COMPARISON OF THEAIC, MDL, AND MAP

CRITERIA FOR CHIRP-TYPE SIGNALS. THE ENTRIES REPRESENT

THE NUMBER OF TIMES A PARTICULAR MODEL WAS SELECTED

OUT OF 1000 TRIALS. THE CORRECT MODEL ISM2

by selecting the correct model in all 1000 trials. The naive
MDL did so in around 90% and the AIC in about 80% of the
total number of trials. The incorrect selections were always
related to overparameterizations.

VI. CONCLUDING REMARKS

In this paper, we addressed the model selection problem
from a Bayesian point of view and using large sample theory.
We found that the asymptotical MAP rule, in general, has
different penalties for model overparameterization than the
AIC and the naive MDL. In the cases where it differs from the
naive MDL and AIC, the computer simulations showed that the
MAP had the best performance. When the number of samples
is not large enough or the SNR is not sufficiently high, the
MAP rule would usually choose a simpler model than the one
that generated the data. The approximations used in this paper
can be improved, which will lead eventually to even better
selection performance. This, however, would require careful
investigation of the employed priors for the parameters.

APPENDIX

Here, we quote a theorem from [2] that provides the
conditions for the applicability of the Laplace integration
method and the result used in (12).

Theorem: Let and be real-valued functions in
. If it is assumed that the following conditions hold:

a) has an absolute maximum at an interior point
of , and ;

b) there exists a constant such that is
absolutely integrable on ;

c) all the partial derivatives and
exist and are continuous in a

neighborhood of ;
d) there exists a constant such that

for all ;
e) is continuous in the neighborhood of , and

;

then, when

(71)
where is the Hessian determinant of
evaluated at .

Proof: See [2].
The sign in the above equations denotes asymptotic

equivalence, which means that the ratio of the two sides in
(71) tends to 1 as . Comparing (11) and (71), we
easily identify the functions and as

(72)

and

(73)

It is clear then that the prior has to be continuous
around and nonzero at . To check the remaining regularity
conditions is also relatively straightforward.
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