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ABSTRACT
Continuous tracking of the device location in 3D space is a pop-
ular form of user input, especially for virtual/augmented reality
(VR/AR), video games and health rehabilitation. Conventional in-
ertial based approaches are well known for inaccuracy caused by
large error dri�s. Computer vision approaches can produce accu-
racy tracking but have privacy concerns and are subject to lighting
conditions and computation complexity. Recent work exploits ac-
curate acoustic distance measurements for high precision tracking.
However, they require additional hardware (e.g., multiple external
speakers), which adds to the costs and installation e�orts, thus
limiting the convenience and usability. In this paper, we propose
BatTracker, which incorporates inertial and acoustic data for robust,
high precision and infrastructure-free tracking in indoor environ-
ments. BatTracker leverages echoes from nearby objects and uses
distance measurements from them to correct error accumulation in
inertial based device position prediction. It incorporates Doppler
shi�s and echo amplitudes to reliably identify the association be-
tween echoes and objects despite noisy signals from multi-path
re�ection and clu�ered environment. A probabilistic algorithm
creates, prunes and evolves multiple hypotheses based on measure-
ment evidences to accommodate uncertainty in device position.
Experiments in real environments show that BatTracker can track
a mobile device’s movements in 3D space at sub-cm level accuracy,
comparable to the state-of-the-art infrastructure based approaches,
while eliminating the needs of any additional hardware.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools;

KEYWORDS
device tracking, mobile sensing, acoustics, infrastructure-free

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SenSys ’17, Del�, Netherlands
© 2017 ACM. 978-1-4503-5459-2/17/11. . . $15.00
DOI: 10.1145/3131672.3131689

ACM Reference format:
Bing Zhou1, Mohammed Elbadry2, Ruipeng Gao3, Fan Ye1. 2017. BatTracker:
High Precision Infrastructure-free Mobile Device Tracking in Indoor Envi-
ronments. In Proceedings of SenSys ’17, Del�, Netherlands, November 6–8,
2017, 14 pages.
DOI: 10.1145/3131672.3131689

1 INTRODUCTION
Tracking the continuous movements thus locations of a device in
an indoor space (e.g., part of a room area, or in front of a TV/game
console) is a form of human-computer interaction, popular in many
applications including virtual/augmented reality (VR/AR), video
games and health rehabilitation. Using inertial sensors (e.g., embed-
ded in the device) is the most straightforward approach. However,
they su�er from large dri� errors over time [15, 22]. To combat such
errors, additional infrastructure is usually installed. �e state-of-
the-art VR systems (e.g., HTC vive [1], Oculus [5]) rely on multiple
base stations or cameras to track users in a small area (HTC vive
recommended playable area is 3.5m2, and Oculus recommends a
maximum playable area of 2.5× 2.5m2 with three-sensor roomscale
setup); they increase the cost by several hundred dollars and require
installation e�orts. Some computer vision based approaches may
achieve high tracking accuracy [3, 8, 34]. A representative one,
the Microso� Kinect [3], leverages a depth sensor with a range of
0.8 − 4m. However, they require a visually distinct target, and their
performance is subject to lighting conditions. Besides, cameras
may raise privacy concerns. RF signals such as Wi-Fi has been
widely used for tracking, however they usually require customized
hardware and have a limited accuracy due to the high RF signal
propagation speed [30, 32, 37]. Some recent work [19, 40] has lever-
aged acoustics for high-precision device tracking by estimating the
distances to multiple anchor points. �ey still require additional
infrastructure (e.g., multiple external speakers), which increases
the cost and adds con�guration e�orts. Even though these speakers
may be available in users’ environment (e.g., speakers on a laptop,
TV), they are usually not separated in ideal locations to serve as
anchor points. Users still need to play the designed sound on a
laptop, or hack the TV audio system.

In this paper, we propose BatTracker, the �rst high precision,
infrastructure-free mobile device tracking system in 3D space with
a range comparable to existing commercial solutions [1, 3, 5]. �e
device continuously emits acoustic signals that bounce o� sur-
faces of nearby objects (e.g., walls, ceilings). �e echoes are re-
ceived and relative distances to those reference objects are in-
ferred. �e distance estimations are used to correct dri� errors
in position prediction from inertial data. Unlike inertial-only ap-
proaches [15, 22], BatTracker leverages acoustic signals capable of
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accurate distance measurements. It is not a�ected by lighting con-
ditions and does not cause privacy concerns. Compared to recent
acoustic approaches [19, 40], it uses echoes from nearby objects
instead of dedicated external anchor points (e.g. speakers), thus
eliminating the needs of any additional infrastructure.

Despite such bene�ts, accurate, robust and infrastructure-free
device tracking based on echoes is far from straightforward. Due
to the existence of multiple surrounding objects, many echoes, not
just those bouncing o� objects of large surfaces, but also those from
smaller objects or over multiple surfaces (i.e, multi-path), will be
received. Reliably associating echoes to objects is critical to obtain
the correct distance measurements. �e device movement may
create occlusions (by the device, other objects or human body) of
the path, thus frequent missing of echoes from reference objects; it
can also produce signi�cant noises thus inaccurate acoustic mea-
surements. We must design robust algorithms to reliably associate
distance measurements to reference objects despite noisy data and
frequent missing of desired echoes.

We make the following contributions in this work:
• We achieve high-precision device tracking in 3D indoor en-

vironments by incorporating complementary inertial and
acoustics measurements, while eliminating the require-
ment of any additional hardware.

• We design an acoustic sensing technique that can produce
accurate distance measurements from the device to nearby
objects using echoes, and infer the device’s movement
velocity from Doppler shi�s.

• We follow a multi-hypothesis tracking framework, and
design a probabilistic tracking algorithm that fuses dis-
tance measurements, Doppler shi�s and echo amplitudes
to create, prune and evolve multiple hypotheses about the
device position over time, thus achieving robust and accu-
rate tracking.

• We build a prototype and conduct extensive experiments,
demonstrating that BatTracker can track mobile devices
in a typical room with a maximum error of < 1cm for 2D
tracking, and a 90-percentile error of ∼ 1cm for 3D.

To the best of our knowledge, BatTracker is the �rst work to
track mobile devices in indoor environments at sub-cm accuracy
without the requirement of any additional infrastructure.

2 BACKGROUND
�e most straightforward way for tracking is based on inertial sen-
sors. Accelerometer and gyroscope embedded in mobile devices
allow us to calculate both the direction and speed of the movement.
�eoretically, we can integrate acceleration to get velocity, and in-
tegrate velocity to get the moving distance. However, this approach
su�ers from large dri�s over time: the errors can accumulate to
meter level in a few seconds [15, 40].

Acoustics is a favorable sensing modality for ranging and track-
ing due to the slow sound propagation speed, hence higher accuracy.
Recent acoustic based device tracking work estimates distances
from the device to multiple anchor points, either by integrating
the device moving velocity, or directly from Frequency Modulated
Continuous Waveform (FMCW) [31] or propagation delay, then
triangulate the device location.
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Figure 1: Solid lines represent tracks to two reference ob-
jects. Dots at each time stamp are distance measurements
from acoustics, where grey ones are from clutters or noise
and black ones are from reference objects. Red circles repre-
sent missing measurements.

Existing work [40] leverages velocity estimated from Doppler
shi� for tracking, which turns out to be more reliable than inertial
tracking since it requires single integration. However, the error
accumulation is still non-negligible over slightly longer time pe-
riod(e.g., tens of seconds). Direct distance measurement does not
require integration hence eliminating error accumulation. However,
existing work (e.g., CAT [19]) requires infrastructure (e.g., multiple
external speakers) as anchor points, which adds to the costs and
installation/con�guration e�orts.

In consideration of the above, we decide to leverage echoes
from nearby objects with large surfaces (e.g., walls, ceiling/�oor,
large furniture) commonly existing indoors. BatTracker predicts
the device position using inertial data in a short recent time win-
dow, and immediately correct accumulated error using acoustic
measurements.

3 CHALLENGES
Accurate tracking leveraging echoes faces multiple challenges: i)
multi-path e�ects and clu�ers in a room make acoustic echoes
thus measurements inevitably noisy; measurements to desired ref-
erence objects may be frequently lost due to phone movements
or occlusion; ii) the echo-object association, i.e., which relative
distance/velocity measurements correspond to which objects, must
be reliably identi�ed; iii) multiple noisy and error-prone inputs
(including inertial, distance and velocity measurements) must be
fused e�ectively and e�ciently for robust, accurate tracking.

Figure 1 illustrates four problems in echo based tracking. To
simplify, assume two reference objects X, Y (e.g., two walls joining
at a room corner) exist and at each time point 5 echoes (some from
other objects and/or multipath) thus distance measurements are
obtained. As the device moves, we must reliably tell which distance
measurements are the relative distances to X, Y over time (i.e., the
two curves).

False track divergence. Since device movements are continuous,
the distance at next time slot should be close to the previous one.
�us a straightforward way is to use the closest distance measure-
ment in the next time slot. However, due to other objects and
multi-path in clu�ered environments, many other echoes thus dis-
tance measurements exist. �is method can easily diverge onto
a false trace if there exists a distance measurement coming from
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clu�er or noise but closer to the previous measurement. Case A
shows a distance represented by point P3 is closer to P1 than the
correct point P2, causing a false divergence.

One may assume moving velocity is constant in short time peri-
ods thus traces are smooth. However, sharp acceleration or turning
can still happen. �us the past “trend” may also cause false track
divergence. Case B shows that P2 is selected based on the trend,
but P3 is the corrent one due to a sharp turn in movements.

Track crossing. For 3D tracking, we need to maintain individual
distance tracks to at least three reference objects. Sometimes two
(or even more) distances become close to and cross each other. We
must �gure out which one corresponds to which when they pass
the crossing point (e.g., in case C, which of P2, P3 corresponds to X,
Y a�er crossing P1).

Missing data. Ideally, the speaker and microphone should be (at
least partially) facing the reference objects all the time for robust
measurements. However, facing away or opposite from reference
objects, or occlusion to them by other objects or the human body,
can all happen and cause echoes from desired reference objects
missing. Case D shows measurements P2 and P3 are missed, hence
P4 and P5 (from clu�er, multi-path) are incorrectly taken to update
the trace.

Track diverge a�er parallel/twist. �is case is more di�cult than
crossing because two traces become almost merged into one for
extended time. Using distance or velocity cannot tell which is
which when they diverge. Case E shows two tracks merge through
P1, P2, P3, then diverge into separate tracks. Neither closest distance
neighbor or smooth trend can help decide P4 and P5 to the correct
track.

4 BATTRACKER DESIGN
BatTracker incorporates two sensing modalities for accurate, robust,
and infrastructure-free 3D tracking: inertial sensors in a Motion
Model for track prediction and acoustics in an Observation Model
for track correction (Figure 2). Before tracking starts, a trace is
initialized by locating the device in the room coordinate system
using distances to reference objects (e.g., walls and ceiling in a
room, or furniture such as large dressers). Based on the motion
model, we predict the position of the device in the next time slot
by double integration of acceleration. �e short interval ensures
relatively small error accumulation. Multiple hypotheses on the
association between distance measurements and reference objects,
thus the device location, are derived by incorporating Doppler
shi�s and echo amplitudes. �e observation model evaluates the
strengths of evidences for each of these device location hypotheses,
and makes track spli�ing/pruning decisions to correct errors. �e
above prediction, association and correction steps are repeated for
continuous tracking.

4.1 Acoustic Sensing
�e acoustic sensing module of BatTracker consists of signal emit-
ting, recording, and a series of signal processing steps to produce
distances, amplitudes and Doppler shi�s, hence velocity measure-
ments for echo candidates from nearby objects in indoor envi-
ronment (Figure 3). Unlike some existing work [10, 17] that only
produces ranging measurements, we develop signal processing
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Figure 2: BatTracker uses inertial data in amotionmodel for
track prediction, acoustics in an observationmodel for track
correction, and fuse them into a multi-hypothesis tracking
framework for robust tracking.
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Figure 3: A particular sound signal and multiple signal pro-
cessing steps produce echo distance, amplitude and velocity
measurements.

techniques for accurate and reliable range measurement, and ad-
ditionally Doppler frequency shi�, thus both relative distance and
velocity to each object.

4.1.1 Emi�ing Signal Design. Existing acoustic ranging work
uses frequency modulated pulse signals that have a linear increas-
ing frequency to improve the ranging resolution [10]. However,
deriving frequency shi�s from such frequency modulated pulses is
di�cult. �us we choose signals with a constant frequency, chosen
at 17KHz, which is slightly audible to human. An even higher
frequency decreases the robust tracking ranges because of faster
signal power a�enuation. By se�ing a moderate volume, our de-
signed sound signal is nearly inaudible to most users, especially
under background noise (e.g., music, video games).

We choose a pulse length of 1ms . Such a short pulse length
reduces potential overlapping between echoes traveling similar
distances, thus improving the distance measurement resolution.
It also provides less sampling points for each echo as inputs for
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Doppler shi�s extraction, thus decreasing the accuracy of velocity
estimation. In BatTracker, we have a high accuracy requirement on
distance measurements, while velocity from Doppler shi� serves as
complementary inputs, hence we prefer a shorter pulse duration.

A Hanning window [13] is applied on the pulse to reshape its
envelop to increase its peak to side lobe ratio, thus producing higher
signal to noise ratio (SNR) for echoes. To ensure echoes from two
consecutive pulses do not overlap, there has to be enough gap in
between. From experiments, objects more than 5m away create
very weak echoes, which can be ignored. �us the minimum delay
between two pulses is 5m×2

343m/s ≈ 29.15ms , where 343m/s is the
sound propagation speed under a typical room temperature of
25◦C. We give a bit bu�er space and set it at 30ms . �is would allow
1000/(30 + 1) ≈ 32Hz measurement rate, su�cient for tracking the
device movements.

4.1.2 Acoustic Measurements Generation. We develop several
steps to generate distance and velocity candidates from received
signals.

Noise Removal. �e received signal will go through a Bu�er-
worth bandpass �lter with pass band of 17K ± 200Hz to remove
background noise, while preserving the frequency shi� caused by
the Doppler e�ect. Without such �ltering, weak re�ections can
be buried in the noise. �is step is critical for tracking in noisy
environments.

Locate Each Pulse. Next we cross-correlate the signal with the
designed pulse, a common technique [23] that produces a peak for
each echo, and obtain the upper envelop for the signal. We chop
the envelop into segments of small time windows of 31ms , each
containing echoes from one pulse only. To this end, we need to
�nd the starting points of these windows. Since the �rst peak will
always be the direct sound from the speaker to the microphone and
has the highest amplitude, they are used as the starting points.

Distance Estimation. For each emi�ed pulse, multiple peaks
corresponding to di�erent echoes from di�erent objects are de-
tected. Using a threshold, we can select only the top-K strongest
peaks, which are hopefully from larger, closer objects. By calculat-
ing the time delay between each echo and the starting point, we
can estimate the distances between the device and surrounding
objects. We also extract the amplitude for each echo, which is used
for data association in tracking algorithms.

Doppler Shi� Estimation. A�er locating each echo, we ana-
lyze the frequency fe of each received echo, which consists of 48
sampling points (1ms). As the sampling frequency fs = 48KHz,
taking fourier transform on 48 points will give us a frequency res-
olution of 48000

48 = 1KHz. We use a similar approach of arti�cial
padding of zero-valued points described in [40], and apply Short
Term Fourier Transform (STFT) to get 1Hz resolution. �e relative
velocity to each object where the echo comes from can be calculated
by the following equation:

v =
fd

2 · f · c (1)

where fd = fe − f is the Doppler frequency shi�, f = 17KHz is
the frequency of the designed signal, c is the sound propagation
speed. �e sign of fd indicates the direction of movement, where
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Figure 4: Microphone and speaker are at the bottom of the
mobile device, which is pointed to a corner in a room for
reliable echo detection.

fd > 0 means movements towards the object, fd < 0 those away
from the object. �is gives us a velocity resolution of ∼ 1cm/s .

Note that due to the very limited amounts of sampling points,
the velocity estimation from Doppler shi�s may not be very accu-
rate. Hence we do not use it directly for device moving velocity
estimation, but incorporate it as a complementary input for data
association improvement.

5 TRACKING ALGORITHM
We design algorithm for track initiation through simple movement
gestures, and a multi-hypothesis particle �ltering framework for
track updating. Inertial data serves as motion model for state pre-
diction, acoustic distance measurements are observations for state
correction. Echo amplitudes and velocities from Doppler shi�s
are leveraged for data association problem and importance weight
estimation.

5.1 Track Initiation
Track initiation is the process of �nding major reference objects
with stable echo re�ections, and determining the distances to each
of them, such that we can track such distances continuously. In
practise, two adjacent side walls and the ceiling can be a very
good reference object combination as they are relatively large and
clean. Figure 4 shows the reference coordinate and the device local
coordinate, the x-y plane is the ceiling, y-z and x-z planes are two
perpendicular side walls. �ere are two major challenges for track
initiation: i) how do we �nd out objects that create strong and
stable echoes, hence with less chance of data missing, and ii) how
to select three stable objects, and associate each of them to the x, y,
z directions in reference coordinate.

We solve the above problem by simple movements using a statis-
tic approach. Without loss of generality, we illustrate the process
of �nding reference object (e.g., x-z plane) in Figure 5. We per-
form the following two steps, track candidate generation and track
association for initiation.

i) Track candidate generation. We point the phone’s bo�om
(where speaker and microphone locate) to one direction (e.g., per-
pendicular to x-z plane), hold the phone still for a few seconds
(0 − 2.7s in Figure 5). In this step, we try to �nd out objects that
create stable measurements. �e horizontal line between 0 − 2.7s
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Figure 5: Track initiation process in one direction, which
consists of track candidate generation, track association and
�nal track selection.

corresponds to nearby objects from multiple directions. We use a
simple density based clustering approach to locate these candidates,
and keep the top-K candidates with least measurement variance
as stable potential track candidates. In this example, we can easily
notice that there are 5 stable candidates as marked in Figure 5. Note
that these stable echoes may come from any direction, hence we
still need to �gure out which one is from x-z plane along y axis.

ii) Track association. We make minute movement back and for-
ward along y axis several times (2.7 − 6s in Figure 5). During this
moving period, echoes coming along y axis shows a strong robust-
ness to noise (e.g., track candidate 1, 3, 5). Since the movement
is minute in a small range, we can easily track the distance mea-
surements of such track candidates using a naive nearest neighbor
method with a range constraint. We derive the moving accelera-
tion by double deviation of the distance measurements, and cross-
correlate this derived acceleration with the one measured from
inertial sensor to get the similarity. Track candidates from x-z
plane have the highest similarity since they have the highest match
to the movement along y axis. In such way, track candidate 2, 4 are
�ltered out. Now we know track 1, 3, 5 are coming along y axis,
and we select the one with highest cross-correlation similarity (e.g,
track 1) as our �nal initial track.

We do the above steps for each direction to �nd reference objects.
Typically, it takes a few seconds for moving the device along one
direction, hence the whole track initiation can normally be �nished
in < 30s .

5.2 Track Updating
We update the track over time based on the sensing data from iner-
tial sensors and acoustics, where inertial data serves as motion data
for device position prediction, and acoustic measurements serve as
observations for position correction. �e most challenging problem
is caused by the clu�ered nature of indoor environments, which
creates lots of undesired echoes, hence making it hard to associate
distance measurements to our reference objects. We start from
introducing the motion model and observation model in our design,
then present how the challenges are solved using a probabilistic
Multi-Hypothesis Tracking (MHT) framework.

MHT has been used in computer vision and radar applications
for human or aircra�s tracking [24, 29]. MHT allows a track to be
updated by more than one measurement at each update, spawning
multiple possible tracks, and it calculates the probability of each
track and typically only reports the most probable of all the tracks.
Extended Kalman Filter (EKF) and particle �lters are commonly
used in MHT problems [12, 14]. A more detailed description of MHT
can be found in [7]. Note that MHT is only a general framework,
the critical task is the detailed design of track initialization and
state update algorithms, and how to adapt MHT to our speci�c
inertial/acoustic tracking problem.

5.2.1 Models. Following the MHT framework, we design the
motion model and observation model for our tracking system.

MotionModel. Device position and velocity are de�ned as state
vector s(t) = [x(t),y(t), z(t), Ûx(t), Ûy(t), Ûz(t)]′, where [x(t),y(t), z(t)]
represents the device position in reference coordinate (i.e, room),
[ Ûx(t), Ûy(t), Ûz(t)] is the corresponding velocity along each axis.

�e absolute acceleration without gravity along each axis in
the device’s local coordinate is obtained from composite sensor
linear acceleration from Android API, while the absolute device
orientation is obtained from composite sensor game rotation vec-
tor. We transform the linear acceleration in device coordinate into
reference coordinate based on device orientation, and leverage the
transformed acceleration for state prediction. �e state update
equation can be derived from a motion model on the state vector.
Based on the acceleration, we model the target motion with veloc-
ity and acceleration along three axes. �e resulting state update
equation is as follows:

ŝ(t + 4t) = A(t)s(t) + B(t)µ(t) + ε(t) (2)

where ŝ(t + 4t) is the predicted state at time t + 4t , 4t is the
inertial data sampling interval, A(t) and B(t) are motion matrix
from physical model x(t +4t) = x(t)+ Ûx(t)4t + 1

2a4t
2+ε(t), where

a is the linear acceleration and ε(t) ∼ N(0, Σu ) is the motion noise
to capture the uncertainty. Since the acoustic sampling rate is
lower than inertial, we keep updating the state during time interval
[t , t + τ ], where τ is the time interval between adjacent acoustic
measurements. �is inertial based motion prediction happens every
acoustic sampling cycle (e.g., ∼ 30ms in our implementation), then
the predicted location is corrected by acoustic measurements, thus
the accumulation error over this short period is su�ciently small
to be negligible.

Observation Model. �e observation consists of range esti-
mates to nearby objects at time t , which is represented as d(t) =
{d1(t),d2(t), ...,dN (t)}. �is observation model can be visualized
as shown in Figure 5. To minimize the possibility of missing data,
we generate N distance candidates at each time slot, which are
represented as black dots in Figure 5 with a time interval τ . Note
that a larger N can decrease the data missing probability, however
it brings more clu�er/noise measurements. As a balance between
two cases, we set N = 15 in our experiments. �e state s(t) consists
of phone location and velocity at time t , hence we still need velocity
observations. �ere are actually two choices in our design: velocity
derived from Doppler shi�, and inferred by device position changes.
Due to the limited sampling points for Doppler shi� extraction,
the velocity estimation is not robust enough as direct observations
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(evaluated in Section 6.1). Hence we select the later solution, ve-
locity can be easily estimated by dividing position changes by time
interval. We estimate the velocity in a time window of multiple
τs to reduce the error. In our implementation, τ = 31ms is a very
small interval, a small distance error can lead to a large error in
velocity estimation as τ is the denominator.

It is assumed that distance measurements at each time t are nor-
mally distributed around the true ranges to objects with variance σ 2

r
and a data missing probability PM . �ese measurements may also
include spurious peaks due to clu�ers or noises. Consider the ob-
servation d(t) = {d1(t),d2(t), ...,dN (t)}, the range candidates di (t)
may correspond to one or multiple reference objects, or the clut-
ters. Hence, we de�ne a set R̂(t) = {zm (t)}N

3
m=1 that consists of the

all possible unordered combinations zm (t) = {di (t),dj (t),dk (t)},
within which di (t),dj (t) and dk (t) are distances to the three refer-
ence objects. In our case of 3 perpendicular surfaces in a corner, the
3 distances will uniquely determine the location of the device. Since
the distance to each reference object can be the same, hence we
can have N 3 possible combinations, which is a non-trivial amount.
We reduce the number of combinations by measurement validation,
which removes measurements that are “far away” from predicted
location:

R(t) = {zm (t) ⊆ R̂(t) : [zm (t) − ẑ(t)]′S−1[zm (t) − ẑ(t)] ≤ γ } (3)

where R(t) is the set of validated measurement at time t , ẑ(t) is
the predicted position from predicted state ŝ(t), γ is a threshold to
limit the number of validated measurements, S = diaд{σ 2

r ,σ
2
r ,σ

2
r }

is the covariance matrix of the measurements, which describes the
uncertainty.

5.2.2 ProbabilisticMulti-Hypothesis Tracking. �e tracking prob-
lem is formulated as a Sequential Monte Carlo (SMC) problem,
speci�cally, a variation of particle �ltering framework with multi-
hypothesis tracking capability. We maintain a collection of K(t)
“particle clouds”, and each cloud represents a possible state esti-
mate of a possible track, i.e, a track hypothesis. �e kth particle
cloud {snk (t)}

Nk (t )
n=1 consists of a collection of Nk (t) “particles”. Each

particle has the concrete values for each dimension of a state s(t),
representing a possible device position and velocity at time t . �e
total number of particles of all the particle clouds sum up to a
constant number N =

∑K (t )
k=1 Nk (t). �e framework operates on

discrete time with an interval τ and repeats multiple steps for each
time slot: track update, track spli�ing, track pruning and track
estimation.

We introduce the high-level design of these steps, and elaborate
each step a�erwards. Track update predicts the state s(t) of each par-
ticle in each existing particle clouds according to the motion model.
Track spli�ing splits each particle cloud into “particle sub-clouds”
when multiple validated measurements are available, and computes
the weight for each sub-cloud. Track pruning removes sub-clouds
with a weight less than a certain threshold, normalizes the weights
of remaining sub-clouds, then repopulating the number of parti-
cles within each sub-cloud to form a new set of particle clouds
with a total number of particles of N . Track estimation returns the
weighted mean of all the particles as the estimate of current state.
Figure 6 shows the above steps, illustrating how particle clouds
evolve, and life cycles. In such a way, we can maintain multiple
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Figure 6: Tracks are represented by particle clouds, which
are updated by motion model and split into multiple sub-
clouds according to validated measurements. �ose clouds
with a weight lower than a threshold are pruned.

potential “correct” track hypotheses by multiple particle clouds,
and leverage future measurements to kill the “incorrect” ones.

Track Update. �e state ®s(t) = {s1(t), s2(t), ..., sK (t )(t)} con-
sists of all the particle clouds sk (t) indexed by k , where K(t) is the
total number of particle clouds at time t . �e kth particle cloud at
time t is de�ned as:

sk (t) = {[x
n
k (t),y

n
k (t), z

n
k (t), Ûx

n
k (t), Ûy

n
k (t), Ûz

n
k (t)]}

Nk (t )
n=1 (4)

where Nk (t) is the total number of particles in this cloud. For each
iteration, the state represented by each particle is updated according
to the state update equation (2) in motion model.

Track Splitting. Given the state ®s(t) = {s1(t), s2(t), ..., sK (t )(t)}
at time t , each particle cloud sk (t) is updated according to the vali-
dated measurements from observation modelRk (t+τ ) = {{dm,k

x (t+

τ ),dm,k
y (t +τ ),dm,k

z (t +τ )}}
Mk (t+τ )
m=1 at time t +T , where Mk (t +τ )

is the number of validated measurements for the kth cloud. Mk (t +
τ ) = 0 means no validated measurement is available, i.e, data miss-
ing. We leverage all the Mk (t + τ ) validated measurements, and
update a fraction of particles according to each measurement, hence
spli�ing the particle cloud. A fraction of particles without update
is always preserved to capture the case of data missing. When
multiple validated measurements are available, we compute the
likelihood for each of them that it is the “correct” measurement
from our reference object using a probabilistic data association
approach.

Probabilistic data association. For each validated measurements
inRk (t+τ ), we may have two situations: the “correct” measurement
is captured, or missed. We denote the data missing probability as
PM (t), hence the weight for each measurement to be “correct” can
be de�ned by a normalized weights:

ωkm (t+τ ) =


L∗km (t+τ )

PM (t+τ )+
∑Mk (t+τ )
j=1 L∗kj (t+τ )

,m = 1, 2, ...,Mk (t + τ ),

PM (t+τ )

PM (t+τ )+
∑Mk (t+τ )
j=1 L∗kj (t+τ )

,m = 0,

(5)
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where PM (t + τ ) is the data missing probability at time t + τ , which
means the “correct” measurement is missed, and

L∗km (t + τ ) = p(z
k
m (t + τ )|ẑ

k (t + τ ))

= N[zkm (t); ẑk (t + τ ), S]

=
1
√

2πS
exp{−

1
2 [z

k
m (t + τ ) − ẑ

k (t + τ )]′S−1

[zkm (t + τ ) − ẑ
k (t + τ )]}

(6)

is the likelihood of the measurement zkm (t + τ ) originating from
the desired reference object rather than from clu�er, where ẑk (t+τ )
is the predicted device position at time t + τ from motion model, S
is the covariance matrix of measurements.

Data association enhancement. Now that we get an estimation of
how likely the distance measurement combination zkm (t + τ ) is the
“correct” one based on the similarity between predicted position and
distance measurement. However, due to the noisy inertial data, the
predicted position is not accurate enough for robust data association.
Besides, two close distance measurements can be easily confused.
Hence we further optimize the data association by incorporating
additional information from data: the velocity from Doppler shi�
and echo amplitude.

We de�ne velocity υkm (t + τ ) as the velocity measured from
Doppler shi� at time t + τ , and αkm (t + τ ) is the vector of echo
amplitudes. �e device movement is always continuous, hence
amplitudes are supposed to be continuous in very short time inter-
val. Since they are independent observations, we incorporate the
likelihood probability p(υkm (t +τ )|υ̂k (t +τ )) and p(αkm (t +τ )|αk (t))
to enhance the data association, where υ̂k (t + τ ) is the predicted
velocity from motion model, αk (t) is the vector of amplitudes at
time t . �us the integrated data likelihood can be formulated in a
product form as:

Lkm (t + τ ) = L
∗k
m (t + τ ) · p(υ

k
m (t + τ )|υ̂

k (t + τ )) · p(αkm (t + τ )|α
k (t))
(7)

We further estimate the data missing probability PM at each
time slot according to the pose (location and orientation) of the
device. For simplicity, the data missing probability PM can be
set as a constant value, hence we always split a �xed portion of
particles, and evolve this sub-cloud without measurement data. Due
to the physical layout of mobile phone and hardware constrains,
we �nd that the data missing probability is highly dependent on
the relative orientation of the phone to reference object, whereas
the distance to the object has less impact within a certain range.
Figure 4 shows a typical way of how we hold the phone for best
tracking performance: the phone points to a corner to get strong
echoes from three reference surfaces. In practise, a ceiling corner
in a room is a preferred choice. For clarity, Figure 4 shows the case
when the phone points to a bo�om corner. From experiments, we
found that θ has a strong impact of data missing from x-y plane,
while φ has a strong impact on both x-z and y-z plane. As data
missing from each reference object is independent, this data missing
probability PM (t) can be formulated as a product form as follows:

PM (t) = PMX (θ , t)PMY (φ, t)PMZ (φ, t) (8)

where PMX (θ , t), PMY (φ, t), PMZ (φ, t) are data missing probabili-
ties from each direction, which are approximated using polynomial
functions from experiment data in Section 6. We omit the distance
as it has negligible impact compared to orientation within our
tracking range.

Particle Cloud Spli�ing. Each particle cloud may have multiple
validated measurements, and their associated weights. We consider
one validated measurement zkm (t + τ ) at each time, hence our prob-
lem becomes a traditional particle �lter problem, which requires
weight calculation and resampling [43]. Based on this measurement,
we compute the weight for each particle within the kth cloud using
the same form in Equation 7, and resample a number of N k

m (t + τ )

particles to form a sub-cloud, where N k
m (t + τ ) is proportional to

ωkm (t + τ ) and
∑Mk (t+τ )
m=0 N k

m (t + τ ) = Nk (t).
Track Pruning. Each particle cloud is split into multiple sub-

clouds at each time slot. Without careful pruning, the number
of particle clouds will increase exponentially. Hence we need to
terminate some clouds and repopulate the remaining ones with
new particles. As shown in Figure 6, there’s only one particle cloud
when the track is initialized. �en it’s split into 4 sub-clouds, each
with a weight of ωi , which is the data likelihood. We compare ωi
to a pruning threshold λ, and terminate clouds with weights lower
than λ. In this example, the cloud with ω3 is terminated. �en we
normalize the weight of remaining particle clouds, and repopulate
each cloud by drawing new particles randomly from existing cloud
to maintain the total number of particles. As the tracking evolves,
the repopulated particle clouds are further split into multiple sub-
clouds, each with a weight proportional to the product of current
cloud weight and the data likelihood. �en we repeat the pruning,
weight normalization, and repopulation steps.

A particle cloud is split into multiple sub-clouds when multiple
validated measurements are available. By se�ing a proper threshold,
we keep the number of validated measurements within 10, typically
3 − 5. �e size of a cloud can increase or decrease during spli�ing
and pruning. A cloud with larger weights, might evolve with a
larger number of particles a�er each pruning step. On the contrary,
a cloud with low weights may evolve with a lower number of
particles, and disappear eventually.

Track Estimation. �e estimated state of tracking is the mean
of particle distributions and can be obtained as a weighted average
of all the particle clouds:

sE (t) = Σ
K (t )
i=0 ωisi (t) (9)

this estimated track is further smoothed using a moving average
�lter to reduce ji�ers.

Our multi-hypothesis tracking algorithm repeatedly performs
track update, track spli�ing, and track pruning over time, and
generates track estimation for device tracking.

6 EVALUATION
We use Huawei P9, a representative mobile phone of mainstream
design with speaker and one microphone located at the bo�om,
as our mobile device to evaluate BatTracker from two aspects:
acoustic measurements and tracking performance. We conduct
tracking experiments in a highly clu�ered laboratory with area of
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Figure 7: Distance candidate accuracy with and without
background noise.

∼ 15m2. Inertial data are sampled at 50Hz, and acoustic signal is
sampled at 48KHz.

6.1 Acoustic Measurements
Acoustic measurements consist of distance measurements to nearby
objects and relative moving velocities from Doppler shi�. We eval-
uate acoustic measurements using the following metrics: ranging
accuracy, data missing probability, and velocity from Doppler shi�.

Ranging Accuracy. �e ranging accuracy to reference objects
is critical for accurate tracking. To evaluate the ranging perfor-
mance, we select a plain wall in an empty space, and measure the
distance to the wall at di�erent locations using the mobile phone.
We vary the location thus the ground truth distance changes from
0.5 − 3m with steps of 0.5m, and we repeat 30 times at each loca-
tion 1. We also conduct the same measurement experiments in a
noisy environment by playing a mixed sound (di�erent kinds of
music and talk shows) from a nearby laptop at a normal volume.
Figure 7 shows the CDF for all the measurement errors of both
with and without background noise. In quiet environment, the
maximum error is within 2cm while the 90-percentile error is less
than 1cm. Errors under background noise have slightly larger maxi-
mum error of ∼ 2.5cm, however, there’s no signi�cant performance
deterioration. Both cases have a sub-cm level median error, which
lays the foundation for high precision tracking.

Data Missing Probability. Data missing is one of the most
challenging problems for robust tracking. Too much missing data in
a short period can easily cause a tracking failure. From experiments,
we �nd both the distance and relative orientation to an object have
an impact on data missing probability, and phone movement can
aggravate the problem. We evaluate the data missing probability
in two individual experiments: impact of distance and movement,
and impact of relative orientation.

Impact of distance and movement. A larger distance creates
weaker echo re�ections, which have lower signal to noise ratio
(SNR), hence such echoes may not be detected and missed. To
evaluate the impact of distance, we point the phone bo�om to a
plain wall, and vary the distance from 0.5 − 4m with steps of 0.5m.
We collect data for 10s at each location, which consists of ∼ 300
measurements. To simulate the movement, we repeat the above

1Further experiments show that distance beyond 3m has a high probability of data
missing, and causing tracking errors, thus not used.
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Figure 8: Data missing probability under di�erent distances
and relative orientations.

steps while wobbling the phone within a small range while collect-
ing data. For each measurement period, the measurement distances
are supposed to be continuous within a certain threshold. If no
measurement is present in this range, we count it as data missing.
We set this threshold as 3cm, and count the number of such outliers,
which are regarded as missing data. Figure 8(a) shows the data
missing probability of both static and wobbling situations. As we
can observe, measurement are very reliable with almost no missing
data within the range of 1.5m. When the phone is static, the data
missing probability remains at a low level (< 5%) up to 3m, and less
than 10% up to 4m, which turns out to be quite reliable. While the
phone is wobbling, the probability gets larger, however, it’s still
within 6% up to 3m.

Impact of relative orientation. �e relative orientation of the mo-
bile device to a reference object has a large impact on data missing
problem for two reasons: i) it determines the facing direction of
the speaker; ii) it determines the opening direction of the micro-
phone. Since the microphone on mobile devices is not designed
omnidirectional for application like BatTracker, the user needs to
hold the device in a particular way (explained later) to minimize
data missing probability.

We �rst evaluate the microphone sensitivity to sounds from
di�erent directions by analyzing the recording pulse amplitudes.
One phone emits the designed signal continuously as sound source,
simulating a mirrored speaker from a reference object. We use
another phone to record the sound with a distance of 1.5m away
from the sound source. Figure 9 shows the placement of two devices,
and the rotation axes. �e default orientation are de�ned as zero
when the microphone faces the speaker of the source, which has
the highest amplitudes. �en we rotate the receiving device along
x, y, z axis sequentially with a step of 30◦ for recording. We use a
bandpass �lter to remove low frequency components, and analyze
the amplitude of the �ltered signal, which is shown in Figure 9.
As we can observe, amplitude decreases slightly when the device
rotates along x axis away from 0◦, which is due to the slightly
blocking from the phone frame with a blocking distance of the
phone height. A�er that, it decreases a lot as the microphone faces
the opposite direction. Rotation along y axis does not change the
amplitude too much; the amplitude remains at a high level since the
microphone always faces the speaker. Similar to x axis, amplitude
also decreases when the device rotates along z axis away from
0◦. However, it decreases much faster as the signal is blocked by
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Figure 9: Normalized received signal amplitude under dif-
ferent rotations.

a distance of phone width. Figure 8(b) shows the data missing
probability with various rotation. As expected, we almost have no
missing data when the phone rotates along y axis. �e data missing
probability remains < 10% when rotating along x, y axis within the
range [−60◦, 60◦]. Rotation along z axis incurs higher data missing
probability than that along x axis. �e evaluation results are used
for parameter estimation in Equation 8 to approximate the data
missing probability. In most cases, we select three perpendicular
walls in a room corner as reference objects. To make a balance
among the three walls, we recommend the user points the bo�om
of the device to a corner with the phone screen facing sideways.
In this way, we can have a balance between two side walls, get
a reliable refection from the ceiling, and suppress the unwanted
clu�er echoes from ground.

Velocity from Doppler Shi�. We evaluate the accuracy of
velocity derived from Doppler shi�, and compare the distance es-
timations with inertial sensor and sound propagation time delay.
We choose a clean wall as reference object to simplify the data
association with a distance of 1.5m between the wall and device.
�en we move the phone back and forth, and compare the velocity
and ranging from di�erent schemes. Figure 10 shows the velocity
and ranging results. Velocity from Doppler shi� and time delay
(calculated from distance measurements) has high correspondence,
however, they di�ers a lot at some time periods (e.g., 5-6s in Fig-
ure 10(a)). �is is easy to explain, when echoes from di�erent
directions overlap, we can not extract accurate frequency shi� from
the mixed signal. Velocity from inertial sensor has a constant dri�,
which keeps increasing. Figure 10(b) shows integrated ranging
from Doppler shi� shows a high match to the time delay scheme,
while the inertial based result has a large accumulated error, which
goes up to 6m in a few seconds.

6.2 Tracking Performance
We evaluate the tracking performance from several aspects: track-
ing accuracy, various impact factors, comparison of di�erent algo-
rithms, and comparison with other work [19, 40].

Experiment Setup. We evaluate BatTracker in a highly clut-
tered laboratory with large tables and cabinets (Figure 11(a)). We
select the ceiling corner as potential reference objects. To quantify
the tracking error, we use a tilted box with drawn traces, and move
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Figure 10: Comparison of velocity and ranging from di�er-
ent schemes: inertial sensor, Doppler shi�, and sound prop-
agation time delay.

the mobile device along the traces. In such a way, we are able to
get accurate ground truth for comparison.

(a) Overview of experiment environment. (b) Tilted box with drawn traces.

Figure 11: We evaluate BatTracker in a highly cluttered lab-
oratory, and a tilted box with drawn traces used as ground
truth.

Tracking Accuracy. First, we evaluate the 3D tracking accu-
racy of BatTracker (2D tracking accuracy is evaluated later in the
comparison with other work). We move the phone along a double
circle “8” shape trace with a diameter of 10cm drawn on a tilted
box, as shown in Figure 11(b). Figure 12(a) shows the generated
traces and the ground truth. To quantify the error, we calculate the
nearest distance for each point in the generated trace to the points
in ground truth. Although this method does not perfectly capture
the real tracking error, it can provide a reasonable benchmark for
error quantifying. Figure 12(b) shows the CDF of 3D tracking error,
which is less than 1cm at 90-percentile, and the maximum error is
∼ 1.5cm.

Impact of the Number of Particles. We evaluate the impact
of number of particles on tracking accuracy. Figure 13 shows that
the 90-percentile error keeps decreasing from ∼ 5cm to ∼ 1cm
when the number of particles increases from 500 to 1500, then it
stays relatively stable. We also evaluate the number less than 500.
However, in such cases, too few particles can easily lead to tracking
failure, hence only present results with ≥ 500 particles.

Impact of Background Noise. To evaluate the robustness of
our scheme to background noise, we repeat the 3D tracking accu-
racy evaluation experiment under mixed background noise. We
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Figure 12: 3D tracking result and CDF.
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creases as the number of particles
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Figure 14: Impact of
background noise.

generate background noise using the same way as we evaluate
ranging accuracy. Figure 14 compares the tracking error with and
without background noise. Similar to the ranging evaluation under
background noise, we observe no signi�cant di�erence between
two cases, which indicates that BatTracker is very robust to back-
ground noise. Our designed signal is at 17KHz, which is far from
common sound noises (usually from 1−8KHz), hence we can easily
�lter out low frequency noises.

Impact of Di�erent Environments. Besides the laboratory
environment which has concrete walls, we also evaluate BatTracker
in two other typical environments, one bedroom with wooden walls
and a conference room with glass walls. No obvious performance
di�erence is observed, thus we omit those �gures.

Resistance to Track Initiation Error. To initialize a track, the
user needs to move the phone in three directions back and forth
sequentially to get the distances to three reference objects. �ese
minute movements may introduce initiation error since the device
can not be guaranteed to return back to the same location. To
evaluate the impact of initiation error on the tracking accuracy,
we manually add initiation error on the initial track. Figure 15(a)
shows a normal tracking result by initiation without additional
arti�cial error. Figure 15(b) shows the result by manually adding
an error of 15cm in y axis. We observe that the initiation error is
corrected near the beginning, and the overall tracking result is not
obviously impacted. We further increase the initiation error up to
25cm, and the result is shown in Figure 15(c). �e resulting track
has large error at the beginning, however, the track is automati-
cally recovered in a few time slots. �is is because our algorithm
maintains multiple hypotheses and those evolve along the accurate

measurements are assigned higher weights, hence preserved; while
those using the inaccurate initiation measurements are pruned.
�is demonstrates that our algorithm is robust to initiation error,
however, extreme initiation error may result in initiation failure.
From user experiments, users can easily move the device back to
the original position within 10cm for successful track initiation.
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Figure 15: Tracking results with di�erent level initiation er-
ror.

Comparison with Di�erent Algorithms. We compare the
performance of di�erent algorithms, which includes naive nearest
neighbor range-only tracking, inertial only tracking, single hypoth-
esis conventional particle �lter tracking, and our multi-hypothesis
tracking. We use the same data set (“ACM” wri�en in the air), and
apply the above algorithms for comparison. Figure 16(a) shows the
result from nearest neighbor algorithm. �is algorithm �nds the
nearest measurement at next time stamp to maintain tracking based
on the simple intuition that the track is continuous. However, the
track is lost at the peak of le�er “A”. �is demonstrates naive algo-
rithm can fail easily due to challenges we summarize in Section 3,
such as wrong data associate to a clu�er noise. Figure 16(b) shows
the result from inertial data only. We can notice a constant dri�
along y axis, which makes the track totally deviate from ground
truth. Figure 16(c) shows the result of single hypothesis particle
�lter tracking. �e result is much more robust compared to naive
algorithm, however, the track is lost at the last turning point of
le�er “M” due to track deviation caused by wrong data association.
Figure 16(d) shows the tracking result of BatTracker, which avoids
the track deviation that happens in Figure 16(c) by maintaining
multiple hypotheses, which contain the correct one and later it
prunes incorrect ones due to the lack of supporting measurement
evidences.

6.3 Drawing Evaluation
We evaluate the drawing capability of BatTracker, and compare the
performance with CAT [19] and AAMouse [40]. In this compar-
ison, BatTracker requires clean walls as reference objects, while
CAT/AAMouse require external speakers. We also show more
drawing examples to demonstrate the usability.

Comparison with CAT and AAMouse. We compare the per-
formance of BatTracker to the most recent acoustic based tracking
work CAT and AAMouse. CAT develops a FMCW based approach
which can accurately measure the distance from mobile device to
external speakers. �us the device position can be triangulated
from distances to multiple speakers. AAMouse shares the similar
hardware architecture as CAT. It estimates the relative moving
speed between mobile device and multiple speakers, hence tracks
mobile device movements.
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Figure 16: Tracking results of di�erent approaches. Naive
nearest neighbor tracking is easily lost, while the inertial
only tracking dri�s rapidly. Single hypothesis particle track-
ing is more robust but still lost due to track deviation. Bat-
Tracker’s multi-hypothesis tracking outperforms others.

To make the comparison straightforward, we adapt the same
ground truth drawing shapes as CAT: a double-circle, a triangle,
and a loop back. We draw such shapes on a paper box and move the
device along the drawings as shown in Figure 11(b). To quantify
the error, we calculate the nearest distance for each point in the
generated trace to those in the ground truth. Figure 17 shows the
traces produced by the three schemes, we can observe that both
BatTracker and CAT show a high match to ground truth without
obvious dri� error, while AAMouse shows obvious deviation from
the ground truth. To quantify the error, Figure 18 shows the track-
ing error CDF of all schemes. 2 In Figure 18(a), CAT has a maximum
error of ∼ 2cm, and a 90-percentile error of ∼ 1cm, which is an
obvious improvement compared to AAMouse. For the loop back,
AAMouse shows a large dri� error up to 6cm. Figure 18(b) shows
the error of BatTracker with a maximum error less than 1cm, while
the 90-percentile error is∼ 0.5cm, which turns out to be even higher
than CAT. Although the ranging accuracies of BatTracker and CAT
are comparable, the mechanism for tracking is di�erent. CAT mea-
sures the distances from device to anchor speakers, and triangulate
the location of the mobile device. Such triangulation can enlarge
the tracking error, and its accuracy is impacted by the distance
between anchor speakers and the initial position error. In contrast,
BatTracker measures distances to perpendicular reference planes
(e.g., walls) directly, thus avoids triangulation and eliminates such
error in CAT. Besides, our scheme is robust to track initiation error,
the overall tracking is not impacted by such errors. Additionally,
we smooth the tracking result with a moving average �lter, which
further reduces errors for human drawing.
2Results of CAT and AAMouse in Figure 17 and Figure 18 are from the CAT paper [19].

(a) BatTracker (b) CAT (c) AAMouse

Figure 17: Shapes created by BatTracker, CAT, and AA-
Mouse.

More Drawing Examples. We show more drawing examples
produced by BatTracker. We write “ I ♥ ACM Sensys” and draw
a spiral freely in a typical bedroom. For be�er readability, “I ♥”,
“ACM” and “Sensys” are wri�en separately. Figure 19 shows the
drawing shapes, which are easy to be recognized. Note that there
is a sharp jump at the beginning at the �rst le�er “S” in the word
“Sensys”. �is is caused by the initiation error, and corrected auto-
matically in a very short period. “Sensys” is wri�en with a span
over 1.5m in space, which shows our algorithm is able to keep high
accuracy over large distances. �e spiral shows BatTracker is able
to produce 3D tracking with free movements.

6.4 Computation Complexity
We implement the core tracking algorithms on Android devices,
and develop a real-time tracking application. All the computation
are done in real-time on the smart phone, while the tracking results
are streamed to laptop through Wi-Fi for display only. On the smart
phone screen, we also display all the raw distance measurements.
We vary the number of particles from 600 to 1800, and monitor
the allocated memory and CPU usage, which are listed in Table 1.
From our experiments, the allocated memory for BatTracker is less
than 15MB, while the CPU usage is from 16.5% − 19.65% when
the screen is on. Turning the screen o� will disable the graph
rendering, which cuts down the CPU usage by ∼ 6%. No obvious
lag is observed with particles within this range, which is su�cient
for our requirement. Further increasing particles to 3000 causes
serious lag, while the CPU usage is still under 30%, which indicates
the computation potential is not fully exploited. �ere’s still a large
room for optimization, such as a be�er multi-threading design. As
our test device HuaWei P9 is a middle-end smart phone released
more than one year ago, we believe most current and future smart
phones have su�cient resources to run our algorithms.

7 DISCUSSION
Potential Use. High precision, infrastructure-free device tracking
in indoor environments has broad application scenarios. �e latest
video games and VR devices rely on additional anchor devices for
high precision tracking, and gesture tracking requires inertial sen-
sors on wearable devices which are always inaccurate. To the best
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Figure 22: CDF of drawing error.

CAT consistently follows the original shapes much closer than the
Doppler based scheme.
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Figure 23: Patterns drawn by CAT (2 speakers) and AAMouse
(2 speakers) corresponding to the median error.

Mobile phone implementation:We also implement CAT on a mo-
bile phone (Nexus 4). The phone uses CAT to efficiently track its
own location using fast signal processing in [22] and the optimiza-
tion solving algorithm mentioned in Section 2.3. The total time
required to process audio samples and determine the position is 31
ms, lower than our processing interval (40ms). The CPU usage is
around 35%. The tracking accuracy of the mobile phone is the same
as that of the desktop version, because the only difference between
the two versions is where the signal processing and computation
are performed.
We make the phone running CAT to serve as a motion controller

for video games, including Crossy Road [43] and Fruit Ninja [35]
by mapping the phone’s movement into a cursor movement in games
using Windows API mouse_event. We ask 5 users to use our mo-
tion controller to play these games, and they find the performance
is comparable to a traditional mouse.

5. RELATED WORK
We classify the related work based on the types of the signals

and underlying techniques used for tracking and localization.

Audio based schemes: Audio signals are attractive for localization
and tracking due to its slow propagation speed, which improves
accuracy. Cricket [34] uses a combination of RF and ultrasound,
and achieves a median error of 12 cm with 6 beacon nodes. Com-
pared with Cricket, CAT improves the accuracy, and removes the
need of dense deployment and special hardware. [30] develops a
novel scheme that can estimate the propagation delay by having
both ends send and receive audio signals to cancel out the process-
ing time and clock difference. Based on [30], [49] develops a se-
ries of system approaches to make accurate distance ranging for
mobile gaming. Similar to [30], [49] relies on cross-correlation to
determine the propagation delay. To achieve high accuracy, 10-16
KHz bandwidth is used in [49]. In comparison, FMCW can achieve
more accurate estimation of propagation delay using more narrow
bandwidth (e.g., 2.5 KHz). FingerIO [26] develops a novel device-
free tracking scheme to track a moving finger near a smartphone
or a smartwatch. CAT differs from FingerIO in that it is a device
based tracking and works for a larger distance (e.g., a few meters),
but faces synchronization problem that does not exist in device-
free tracking. AAMouse [47] is closest to this paper. Different
from [47], we estimate the distance using a new FMCW-based ap-
proach in addition to velocity measurement and fuse the two using
an effective optimization framework to enhance the accuracy and
minimize error accumulation.
RF-based schemes: RF has been widely used for localization and
tracking. ArrayTrack [45] is a pioneering fine-grained tracking sys-
tem based on WiFi by using an array of antennas. It achieves a me-
dian error of 23 cm using 16 antennas. RF-IDraw [39] achieves
high resolution and low ambiguity by placing 8 RFID antennas
with different spacing. Its median error is 3.7 cm. WiDraw [36]
enables hand-free drawing in the air by estimating angle of arrival
(AoA) based on CSI. Its median error is within 5 cm when using 25
WiFi transmitters. mTrack [41] achieves high tracking accuracy by
leveraging the phase of 60 GHz RF signals as well as sophisticated
hardware (e.g., highly directional and steerable 60 GHz antennas).
Tagoram [46] uses commercial off-the-shelf RFID for localization
and tracking. When the target moves along an unknown track (as in
our context), the median error is 12 cm. In comparison, our system
can run on commodity hardware and achieve higher accuracy.
Other sensor based schemes: IMU sensors can also be used for
motion tracking. However, its tracking error accumulates rapidly
over time due to noisy measurements and the need of double in-
tegration [47]. Kinect [1] uses depth sensors and Wii [2] uses in-
frared cameras to track movement. They both require line-of-sight
and have limited accuracy. LeapMotion [19] uses sophisticated vi-
sion techniques to recognize a wide range of gestures. Compared
with the vision based techniques, audio-based approaches are gen-
erally more efficient and flexible: its signal processing cost is low
and it works under different lighting conditions and often without
line-of-sight (e.g., under small obstacles since there exists a detour
path close to the direct one or obstacles that do not significantly
attenuate the audio signal, such as cloth and paper).
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(a) Drawing error of CAT and AAMouse.
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(b) Drawing error of BatTracker.

Figure 18: �e drawing error comparison between di�erent schemes. �e results in �gure (a) are from the CAT paper [19], and
two �gures (a, b) are drawn separately because we do not have the raw data in �gure (a).
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Figure 19: “ I ♥ ACM Sensys” and a spiral drawn in the air.

Table 1: Allocated memory and CPU usage with di�erent
numbers of particles.

# particles 600 900 1200 1500 1800
Memory (MB) 9.56 11.52 12 12.33 13.02

CPU (screen on) 16.5% 17.74% 18% 18.36% 19.65%
CPU (screen o�) 9.6% 11% 11.7% 12.01% 13.74%

of our knowledge, BatTracker is the �rst to achieve high precision
tracking without any additional hardware, which makes it very
convenient and a�ractive for indoor device tracking.

Limitations. Despite the high accuracy and infrastructure-free
convenience we have, there exist multiple limitations which need
to be addressed in future work.

i) Tracking range. We limit the range of reliable tracking in our
current design within a space of 3 × 3 × 3m3, which is the size of a
typical bedroom and su�cient for many popular scenarios such as
video gaming, health rehabilitation training. However, the current
design is not designed for use in a larger space. Simply increasing
the gap between each acoustic measurement, thus increasing the

range, will decrease the update rate, thus the accuracy of tracking
trajectory.

ii) Device holding gesture. Due to the hardware limitations, users
have limited range of device rotation to ensure reliable acoustic
measurements. Rotating the device to an extreme orientation can
cause serious data miss, thus a tracking failure.

iii) Reference Objects. For optimal performance, BatTracker uses
three perpendicular planes as reference objects, which could be the
ceiling and side walls in a room, or large furniture such as closets,
cabinets, and tables. However, such objects are not always available.
Besides, the ambient environment may change with the movement
of the target, thus possibly the reference objects. Our current design
does not consider adaptive reference object selection.

iv) Track loss problem. Despite the sophisticated algorithms that
we propose for robust tracking, BatTracker still has a small chance
of track loss, especially when the device is not held properly or is
too far away from reference objects. Our current design can handle
moderate data missing cases, such as human body blocking when
people passing by. However the tracking can be lost if there are
signi�cant data loss during this period.

Future Work. Our future work for BatTracker focuses on im-
proving tracking robustness, especially dealing with track loss
problem. We will continue working on infrastructure-free tracking
from the following aspects:

i) Fast track recovery. We plan to design a mechanism for auto-
matical track loss detection and recovery. One intuition is from
the match between inertial data and acoustic measurements. A
lost track may show a strong inconsistency to the prediction from
inertial sensor, hence the data likelihoods tend to be very small.
By detecting such cases, we have the opportunity to detect track
loss. �en we try to �nd stable track candidates in a short period,
and associate these candidates to reference objects according to the
match of inertial data.
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ii) Utilize all the available objects. Our current design only utilizes
three large objects as reference, hence a large portion of measure-
ment information from other objects are not used. We will try
to leverage all stable re�ections, and build a more sophisticated
algorithm to improve robustness. By selecting reference objects
dynamically, the tracking range can be expanded.

iii) Customized hardware. BatTracker presents a novel approach
for mobile device tracking in indoor environments. However, due
to the hardware limitations, the device needs to be held in a partic-
ular way to minimize data missing problem. Adding customized
omnidirectional, high-sensitivity microphones or multiple orthog-
onal microphones into existing devices can enhance the tracking
robustness, while easing or eliminating the constraints on holding
gestures.

iv) Variations among di�erent smart phones. �e audio pipelines
and hardware performance may vary among di�erent make/models
of smart phones, which may impact the tracking performance. We
only tested a few phones including HuaWei P9 and Samsung Note3,
which prove to have similar performance. To make BatTracker
ubiquitous, more comprehensive tests on di�erent smart phones
are needed as our future work.

8 RELATEDWORK
Device tracking has been widely deployed for virtual reality and
augmented reality, with di�erent types of approaches in both academia
and industry. We classify the related work according to their re-
spective tracking techniques.

IMU Based Tracking. �ere are plenty of work using IMU sen-
sors to track walking users in indoor environments. Some [9, 22]
adopt dead-reckoning method using accelerometer and gyroscope
readings from dedicated customized hardware, which are not avail-
able in mobile devices, and they are still prone to a large margin
of errors from the double integration for distance computation.
Zee [28] further leverages the indoor map as constraints to im-
prove the tracking accuracy. In comparison, we focus on device
tracking, which requires tracking in 3D with much higher accuracy.
Our method leverages IMU sensors and microphone on commodity
mobile devices, thus is more �exible with no external hardware
requirements, and we demonstrate that it achieves be�er accu-
racy than previous IMU based gesture recognition [25] and device
tracking [6] approaches.

VisionBased Tracking. Kinect [3], Wii [4] and LeapMotion [2]
are all successful business products in the market for movement
tracking with customized hardware including special cameras and
depth sensors, whereas they all leverage dedicated devices and
require line-of-sight, thus limiting their generality. Tanskanen
et al. [34] combine vision and mobile sensory data to track the
phone and reconstruct the 3D representation of an object, and
Chen et al. [8] employ camera networks for multi-target tracking.
However, vision approaches always encounter computation and
energy bo�lenecks on commodity mobile devices, and they are
sensitive to lighting conditions and involve privacy issues. Com-
pared with vision approaches, our method uses acoustic and inertial
data, thus it can be easily deployed on commodity mobile devices,
and audio signal processing is much more lightweight than im-
ages. Acoustic sensing is not subject to light conditions, and has
no privacy concerns.

RF Based Tracking. Currently, mainstream indoor localization
research depends on RF signatures from certain IT infrastructures.
Among them, Cricket [30] assigns 6 indoor beacon nodes for RF
and ultrasound transmission, ArrayTrack [37] deploys an array
of 16 WiFi antennas, WiDraw [32] uses 25 WiFi transmi�ers and
angle-of-time estimation to enable hands-free drawing, and Tago-
ram [39] leverages RFID for accurate tracking. However, they all
rely on specialized devices to obtain high tracking accuracy. Be-
sides, WiSee [27] uses Doppler shi� of the WIFI signal for gesture
recognition, while tracking a device in 3D space is much more
complicated with much higher accuracy requirements. BatTracker
leverages acoustics, which has a signi�cantly lower propagation
speed compared to wireless signal for high accuracy tracking on
commodity devices.

Acoustic Based Tracking. Due to its slow propagation speed,
acoustic signals do seem the best �t for 3D device tracking, and
there are plenty of work pursuing higher tracking accuracy. Using
Doppler shi� of audio signals, researchers have designed Swad-
loon [11] for �ne-grained indoor localization, and Spartacus [33] for
gesture recognition. Besides, UbiK [35], AAMouse [40], LLAP [36],
and FingerIO [21] leverage phase shi� in received signals for near
�eld �nger gesture tracking. However, they can only track moving
object within a small range around half meter, which is not suitable
for tracking in room level. CAT [19] uses Frequency Modulated
Continuous Waveform (FMCW) to track the phone movements
at sub-cm accuracy, but it relies on external speakers and needs
con�guration e�orts. In comparison, our method is a mobile device
only approach with comparable sub-cm accuracy and combines
inertial and acoustic data for their complementary strength, thus
obtaining high tracking accuracy.

Despite device tracking, acoustics have also been widely used for
ranging, indoor localization, and context sensing. BeepBeep [26]
and SwordFight [42] estimate the distance between two mobile de-
vices. Liu et al. [16] estimate the acoustic ranging distances between
peer phones and treat them as constraints to improve localization ac-
curacy. GuoGuo [18] uses an anchor network that transmits spatial
beacon signals and obtains centimeter-level localization accuracy.
BatMapper [44] measures the distances to multiple surrounding
walls for indoor �oor plan construction, and leverages acoustic for
space classi�cation. In terms of context sensing from audio signals,
Yang et al. [38] detect driver phone use leveraging car speakers,
ApenaApp [20] monitors chest and abdomen breathing movements,
and DopEnc [41] identi�es person encounters. Compared to the
above work, BatTracker shares cross-correlation based echo de-
tection similar to some work [10, 16, 17]. However, we focus on
robust echo-object association despite echoes from many objects in
clu�ered environments, which has not been addressed in previous
work.

9 CONCLUSION
In this paper, we propose BatTracker, which incorporates inertial
and acoustic data for robust, high precision and infrastructure-free
tracking in indoor environments. BatTracker leverages echoes from
nearby objects instead of external infrastructure, thus requires less
cost, deployment e�orts, and is more convenient to use. A prob-
abilistic multi-hypothesis tracking algorithm creates, prunes and
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evolves multiple track hypotheses based on measurement evidences
to accommodate uncertainty in device position. Experiments in
real environments show that BatTracker can track a mobile device’s
movement in 3D space at sub-cm accuracy, comparable to the state-
of-the-art infrastructure based approaches, while eliminating the
needs of any additional hardware.
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