COMPUTER ORGANIZATION

AND.ESIGNpsaion ESE 345 Computer Architecture

THE HARDWARE/SOFTWARE INTERFACE

23 | | Performance and Energy

#== | Consumption

o0
- - oo

“‘computer performance” image
created by SDXL text-to-image
Al generative model 2023

\
‘\\\\ Stony Brook CA: Performance and Power
University

Defining Performance

= Which airplane has the best performance?

Passenger capacity Cruising range (miles)
irbus A380-500 pirbus A3s0-500
Boeing 777-200.R | Boeing 777-200.R |
BAC/Sud Concorde [BAC/Sud Concorde |G
Boeing 737 |GG Boeing 737 |G
0 200 400 600 800 1000 0 2000 4000 6000 8000 10000
Cruising speed (m.p.h.) Passenger throughput

(passengers x m.p.h.)

pirbus A3so-s00 -
Airbus A380-800 |GGG

Boeing 777-200.R |G _
Boeing 777-200.R N

BAC/sud Concorde | BAC/Sud Concorde I
Boeing 737 I
Boeing 737 | ’
0 20 40 60
0 500 1000 1500

x 10000

q\\\‘ Stony Brook

: " CA: Performance and Power
University

_IResponse Time and Throughput

= Response time
= How long it takes to do a task

= [hroughput

= Total work done per unit time
= €.9., tasks/transactions/... per hour

= How are response time and throughput affected
by
= Replacing the processor with a faster version?
= Adding more processors?

= We'll focus on response time for now...

\
‘\\\ [Sjtopy Brook CA: Performance and Power
niversity

I [
|Relative Performance

s Define Performance = 1/Execution Time
s XIS ntime faster than Y”

Performance, /Performance,
= Execution time, /Execution time, =n

Example: time taken to run a program
10son A, 15son B

Execution Timeg / Execution Time,
=15s/10s=1.5

So Ais 1.5 times faster than B

‘\\\‘ Stony Brook

: . CA: Performance and Power
University

I
_|Measuring Execution Time

= Elapsed time
» [otal response time, including all aspects
= Processing, I/0, OS overhead, idle time
» Determines system performance

s CPU time
= [iIme spent processing a given job
= Discounts /O time, other jobs’ shares
= Comprises user CPU time and system CPU
time
= Different programs are affected differently by
CPU and system performance

‘\\\‘ Stony Brook

: . CA: Performance and Power
University

LAnaIyze the Right Measurement!

CPU Time:

Measuring CPU time
(Ubuntu):

$ time <program name>
Real elapsed time— real 0mO0.095s
(in minutes and user 0mO0.013s
seconds) sys 0m0.008s Time the CPU

spends running
program under

Total response time =

CPU time + time spent measurement
waiting (for disk, 1/0, ..)
Guides system design Guides CPU design

‘\\\‘ Stony Brook

. : CA: Performance and Power 6
University

|CPU Clocking

= Operation of digital hardware governed by a
constant-rate clock

«—Clock period—

Clock (cycles) B
Data transfer
and computation < >< >< >
Update state <:> <:> <:>

Clock frequency (rate) = 1/Clock period

Clock period: duration of a clock cycle
e.g., 250ps = 0.25ns = 250x10-"%s

Clock frequency (rate): cycles per second
e.g., 4.0GHz = 4000MHz = 4.0x10°Hz = 1/250ps

‘\\\‘ Stony Brook

: . CA: Performance and Power
University

| CPU Time

CPU Time = CPU Clock Cyclesx Clock Cycle Time

CPU Clock Cycles
] Clock Rate
= Performance improved by
= Reducing number of clock cycles
= Increasing clock rate

» Hardware designer must often trade off clock
rate against cycle count

‘\\\‘ Stony Brook

: . CA: Performance and Power
University

_I CPU Time Example

= Computer A: 2GHz clock, 10s CPU time

= Designing Computer B

= Aim for 6s CPU time
= Can do faster clock, but causes 1.2 x clock cycles

= How fast must Computer B clock be?

_ Clock Cycles; 1.2xClock Cycles,

Clock Rate, = _ =
CPU Time, 6s

Clock Cycles, = CPU Time , xClock Rate ,
=10sx2GHz =20x10°

1.2x20%x10° _24><1O9
6S 6S

=4GHz

Clock Rate; =

‘\\\‘ Stony Brook

: . CA: Performance and Power
University

_Ilnstruction Count and CPI

Clock Cycles =
CPU Time =

nstruction Count x Cycles per Instruction
nstruction Count x CPIx Clock Cycle Time

nstruction Count x CPI

Clock Rate

= |nstruction Count (IC) for a program
» Determined by program, ISA and compiler

= Average cycles per instruction (CPl)
= Depends on program, CPU hardware and compiler

= If different instructions have different CPI
= Average CPI affected by instruction mix

‘\\\‘ Stony Brook

University

CA: Performance and Power

10

|CcPI Example

= Computer A: Cycle Time = 250ps, CPI =2.0
= Computer B: Cycle Time = 500ps, CPI =1.2

x Same |SA
= Which is faster, and by how much?

CPU TimeA = |nstruction Count x CPIA x Cycle TimeA

=[x2.0x250ps =1x500ps «—

A is faster...

CPU TimeB = Instruction Count x CPIB x Cycle Time|3

=1x1.2x500ps =I1x600ps
CPUTimeg _ 1x600ps

= —1.2«
CPUTime, Ix500ps

A

...by this much

‘\\\‘ Stony Brook

: . CA: Performance and Power
University

11

_IHow Calculate the 3 Components?

s Clock Cycle Time: in specification of computer
(Clock Rate in advertisements)
= Instruction Count:
= Count instructions in loop of small program
» Use simulator to count instructions
» Hardware counter in spec. register (most CPUs)

°CPI:

» Calculate: Execution Time / Clock cycle time
Instruction Count

* Hardware counter in special register (most CPUs)

‘\\\‘ Stony Brook

Uiversity CA: Performance and Power 12

|CPI in More Detail

n If different instruction classes take different
numbers of cycles

Clock Cycles =) (CPI, xInstruction Count;)
i=1

Weighted average CPI

CPI=

Clock Cycles Z”:

Instruction Count.
_ CPI. x |
Instruction Count “=

Instruction Count

— _/
V

Relative frequency

‘\\\‘ Stony Brook

Uiversity CA: Performance and Power 13

_'Calculating Average CPI

s First find CP/; for each individual instruction
(add, sub, and, etc.)

= Next use (when it's given) or calculate relative
frequency £, of each individual instruction

f.=ICi/IC

= Finally multiply these two for each instruction
and add them up ’7clo get final CPI

CPI = 2 f.* CPIi
=1

‘\\\‘ Stony Brook

University CA: Performance and Power 14

IExample with Bonus Points to Earn!

Op Freq; CPIl. Prod (% Time)

ALU 50% 1 D (33%)

Load 20% 2 4 (27%)

Store 15% 2 3 (20%)

Branch 15% 2 3 (20%)
Instruction Mix 1'5(Where time spent)

- What if you can make branch instructions twice as fast (CPI,= 1 cycle)

but clock rate (CR) will decrease by 12%? Will it be a speedup or slowdown

and how much?
New CPI = 1.35
Time before change = 1C*1.5/ CR = IC*1.5/CR
Time after change = 1C*1.35 / (0.88*CR) = IC*1.534/CR
Time before/Time after = IC*1.5*CR / IC*1.534*CR = 0.978 => 2.2% slowdown

‘\\\\ Stony Brook Speedup < 1 because the time after is greater than the time before the change

. . 1 5
University CA: Performance and Power

| Another CPI Example

= Alternative compiled code sequences using
instructions in classes A, B, C

Class A B C

CPI for class 1 2 3

IC in sequence 1 2 1 2

IC in sequence 2 4 1 1

Sequence 1: IC =5 Sequence 2: IC =6

Clock Cycles Clock Cycles
=2x1 + 1x2 + 2%x3 =4x1 + 1x2 + 1x3
=10 =9
Avg. CPI=10/5=2.0 Avg. CPI=9/6 = 1.5

‘\\\‘ Stony Brook

Uiversity CA: Performance and Power 16

_ | CPU Performance Law

CPU Time — Instructions y Clock cycles y Seconds

Program Instruction Clock cycle

CPU Time =Instruction Count x CPIx Clock Cycle Time

_ Instruction Count xCPI
Clock Rate

= Performance depends on
= Algorithm: affects IC, possibly CPI
= Programming language: affects IC, CPI
= Compiler: affects IC, CPI
= Instruction set architecture: affects IC, CPI, T,
= Processor microarchitecture (organization): affects CPI, T,
= Technology: affects T,

‘\\\‘ Stony Brook

Uiversity CA: Performance and Power 17

|
What Programs Measure for Comparison?

Ta ldeally run typical programs with typical input

before purchase,
or before even build machine

» Called a “workload”; For example:

» Engineer uses compiler, spreadsheet

» Author uses word processor, drawing program,
compression software

= In some situations it's hard to do

= Don’t have access to machine to “benchmark”
before purchase

= Don’t know workload in future

\
‘\\\ [Sjtr‘i’:\l% 12;"&01{ CA: Performance and Power 18

_'SPEC CPU Benchmarks

= Standard Performance Evaluation Corporation
(SPEC) www.spec.org

Elapsed time to execute a selection of programs
= Negligible 1/0O, so focuses on CPU performance

SPEC95: 8 integer (gcc, compress, li, ijpeg, perl, ...) & 10
floating-point (FP) programs (hydro2d, mgrid, applu, turbo3d, ...)

SPEC2000: 11 integer (gcc, bzip2, ...), 18 FP (mgrid, swim,
ma3id, ...)

Separate average for integer and FP
Benchmarks distributed in source code

Compiler, machine designers target benchmarks, so try to
change every 3 years

\
‘\\\ [Sjtr‘i’:\l% 12;"&01{ CA: Performance and Power 19

http://www.spec.org/

|
| How Summarize Suite Performance (1/4)

= Arithmetic average of execution time of all programs?

= But they vary by 4X in speed, so some would be
more important than others in arithmetic average

= Could add a weights per program, but how pick
weight?
» Different companies want different weights for their
products

= SPECRatio: Normalize execution times to reference
computer, yielding a ratio proportional to performance

time on reference computer
time on computer being rated

‘\\\‘ Stony Brook

Uiversity CA: Performance and Power 20

|
|How Summarize Suite Performance (2/4)

= If program SPECRatio on Computer A is
1.25 times bigger than Computer B, then

ExecutionTime

reference

SPECRatio ExecutionTime

1.25 = —
> SPECRatio, ExecutionTime

reference

ExecutionTime,

ExecutionTime, Performance

ExecutionTime, Performance,

* Note that when comparing 2 computers as a ratio, execution
times on the reference computer drop out, so choice of
reference computer is irrelevant

‘\\\‘ Stony Brook

: . CA: Performance and Power
University

21

|
| How Summarize Suite Performance (3/4)

= Since ratios, proper mean is geometric mean
(SPECRatio unitless, so arithmetic mean meaningless)

| n
GeometricMean = » H SPECRatio,

\l =1

1. Geometric mean of the ratios is the same as the ratio of the
geometric means

2. Ratio of geometric means
= Geometric mean of performance ratios
= choice of reference computer is irrelevant!

« These two points make geometric mean of ratios attractive to
summarize performance

\
‘\\\ Stony Brook CA: Performance and Power 22
University

| | SPECspeed 2017 Integer Benchmarks on a

1.8 GHz Intel Xeon E5-2650L

Execution Reference

Instruction Clock cycle time Time Time
Description Name Count x 10"9 CPI (seconds x 10*-9) (seconds) (seconds) SPECratio
Perl interpreter perlbench 2684 0.42 0.556 627 1774 2.83
GNU C compiler gcc 2322 0.67 0.556 863 3976 4.61
Route planning mcf 1786 1.22 0.556 1215 4721 3.89
Discrete Event
simulation - omnetpp 1107 0.82 0.556 507 1630 3.21
computer network
AML 1o HTM!‘ xalancbmk 1314 0.75 0.556 549 1417 2.58
conversion via XSLT
Video compression x264 4488 0.32 0.556 813 1763 217
Artificial Intelligence:
alpha-beta tree deepsjeng 2216 0.57 0.556 698 1432 2.05

search (Chess)

Artificial Intelligence:
Monte Carlo tree leela 2236 0.79 0.556 987 1703 1.73
search (Go)

Artificial Intelligence:

recursive solution exchange2 6683 0.46 0.556 1718 2939 1.71
generator (Sudoku)
General data 8533 1.32 0.556 6290 6182 0.98
compression
Geometric mean 2.36
\\\‘ Stony Brook
Ly DI CA: Performance and Power

University

| Critical thinking (CT) involves several key elements (in the
words of Al itself):

Skepticism: Critical thinkers approach information with a healthy dose of skepticism,
questioning assumptions and seeking evidence.

Is a single mean a good predictor of the performance of programs in
benchmark suite?

How much confidence you can have when using it to compare different
processors or to predict future performance on similar apps?

It's tough to make predictions, especially about the future.
Yogi Berra

‘\\\‘ Stony Brook

. E What'’s at stake for you here
University y 24

“|How Summarize Suite Performance (4/4)

Does a single mean well summarize performance of programs in
benchmark suite?

Can decide if mean a good predictor by characterizing variability of
distribution using standard deviation that describes variability
around the mean

Like geometric mean, geometric standard deviation is multiplicative
rather than arithmetic

Can simply take the logarithm of SPECRatios, compute the standard

mean and standard deviation, and then take the exponent to convert

back: 1

GeometricMean = exp(— X Z In(SPE CRCltiOi)j
n g

GeometricStDey = exp(StDev(ln(SPE CRCltiOi)))

The geometric standard deviation, denoted by g, is calculated as
follows: log o,=[1/n3 "-4(logx;—log G)?]"2.
where G="Vx,-X,-...-X,, is the geometric mean of SPECRatios (x . X,).

‘\\\‘ Stony Brook

Uiversity CA: Performance and Power 25

Example Standard Deviation: (1/3)

 GM and multiplicative StDev of SPECfp2000 for ltanium 2

14000
12000
10000 e
o GM = 2712
'ﬁ GStDev = 1.98
o’ 8000
2
O 6000 Itanium 2 is
L 2712/100 times
9 4000 \ as fast as Sun
\ Ultra 5 (GM), &
2000 - V \) "¢ range within 1
- Std. Deviation is
0 “Outside 1 StDev —— [13.72, 53.62]
P ER 2 R o5 2 8 28 3 3 3
iie8lg SaEsELc
= o 8 D
‘\\\‘ Stony Brook

University

CA: Performance and Power

26

Example Standard Deviation : (2/3)

 GM and multiplicative StDev of SPECfp2000 for AMD Athlon

14000
12000
o 10000
= GM = 2086
&U 8000 GStDev = 1.40
Q.
Y
QO 6000
&5
4000
2000 ‘f\'\v) o VL‘ a
¥/0ut3|de 1 StDev ——¥
O 1 1 1 1 1 1 1 1 1 1 1
ER2 2 83 ¢ % 2
258 ¢ % w

wupwise

sixtrack

2911

Athon is
2086/100 times
as fast as Sun
Ultra 5 (GM), &
range within 1
Std. Deviation is
[14.94, 29.11]

‘\\\‘ Stony Brook

University

CA: Performance and Power

27

Example Standard Deviation (3/3)

« GM and StDev Itanium 2 v Athlon

5.00

4.50

4.00

3.50
3.00

GM =1.30

GStDev =1.74

2.50

2.00

/\

Ratio Itanium 2 v. Athlon for SPECfp2000

2.27

1.50 - y — \\ / \
100 14 \/ ¢ \
0.50 = e
Outside 1 StDev
P ER2EZ2 3283 5 28 2835 8 Ratio execution times (At/It) =
: 53 28Eg 3% ESEES Ratio of SPECratios (It/At)
s o & '<7> Itanium 2 1.30X Athlon (GM),
1 St.Dev. Range [0.75,2.27]
\
‘\\\\ Stony Brook CA: Performance and Power 28

University

_IComments on Itanium 2 and Athlon

= Standard deviation of 1.98 for Itanium 2 is much
higher-- vs. 1.40--so results will differ more

widely from the mean, and therefore are likely
less predictable for ltanium 2

= Falling within one standard deviation:
= 10 of 14 benchmarks (71%) for ltanium 2
= 11 of 14 benchmarks (78%) for Athlon

= [hus, the results are quite compatible with a
lognormal distribution (expect 68%)

s Itanium 2 vs. Athlon St.Dev is 1.74, which is

high, so less confidence in claim that ltanium
1.30 times as fast as Athlon

= Indeed, Athlon faster on 6 of 14 programs

‘\\\‘ Stony Brook

Uiversity CA: Performance and Power 29

| Amdahr’s Law

. I . Fraction
ExTime _ =ExTime (1 — Fractlonenhanced)+ enhanced
- Speedup enhanced _]
Speedu ExTime 1
PECCUP e = Eleme - . Fraction
Eab. (1 — Fraction ,) + cohanee
Sp eedup enhanced

Best you could ever hope to do:

1
(1 - Fraction, nanced)

| F] — [

sPeedupmclximum =

‘\\\‘ Stony Brook

Uiversity CA: Performance and Power 30

| Amdahl’s Law Example

» New CPU 10X faster
= |/O bound server, so 60% time waiting for I/O

1

Speedup e = Fraction

enhanced

(1 — Fraction_,) +
Sp eedup enhanced

: L:1.56

(1-0.4)4 0% 064
10

* Apparently, its human nature to be attracted by 10X
faster, vs. keeping in perspective its just 1.6X faster

‘\\\‘ Stony Brook

: . CA: Performance and Power
University

I
| Question

s Speedup = 1
(1-F)+ F
S
Question: Suppose a program spends 80% of its
time in a square root routine. How much must you
speed up square root to make the program run 5
times faster?

(A)

(B) 20

(C) 100

(D) None of the above

‘\\\‘ Stony Brook

: . CA: Performance and Power
University

32

| Consequence of Amdahl’s Law

= [he amount of speedup that can be achieved
through parallelism is limited by the non-parallel
portion of your program!

20.00

——
18.00 ///
/ Parallel Portion
. 16.00 - — 50%
Tlme / — 75%
A 14.00 — 90%
Q. / —— 95%
=5 1200 //
O
Parallel Q 100 7 -
] (¢} /]
portion Q 8w —
m 6.00 //
Serial 4.00 ,////
portion 2.00 C’/f,,
1 2 3 45 TR TR T 4 g v 2 28 8 s 83
Number of Processors Number of Processors
\
q\\\\ Stony Brook CA: Performance and Power 33

University

l_ParaIIeI Speed-up Examples (1/2)

Zy+ Lyt ...+ 2y | X1 Xiao Yi1 Yo
+
| X101~ Xyo,10 Y101 Y1010
\ J - _ _ _
I I
Non-parallel part Parallel part

= 10 “scalar” operations (non-parallelizable)

= 100 parallelizable operations
= Say, element-wise addition of two 10x10 matrices.

= 110 operations

Partition 10 ways
and perform

on 10 parallel
processing units

= 100/110 = .909 Parallelizable, 10/110 = 0.091 Scalar

\
‘\\\\ Stony Brook CA: Performance and Power

University

34

_IParaIIeI Speed-up Examples (2/2)

Speedupw/ E= 1/[(1-F)+ F/S]

= Consider summing 10 scalar variables and two
10 by 10 matrices (matrix sum) on 10
Processors
Speedup = 1/(.091 + .909/10) = 1/0.1819=5.5

= What if there are 100 processors ?
Speedup = 1/(.091 + .909/100) = 1/0.10009 = 10.0

= What if the matrices are 100 by 100 (or 10,010
adds in total) on 10 processors?
Speedup = 1/(.001 + .999/10) = 1/0.1009 = 9.9

= What if there are 100 processors ?
Speedup = 1/(.001 + .999/100) = 1/0.01099 = 91

\
‘\\\ Stony Brook CA: Performance and Power
University

_IStrong and Weak Scaling

= [0 get good speedup on a multiprocessor while keeping
the problem size fixed is harder than getting good
speedup by increasing the size of the problem

» Strong scaling: When speedup is achieved on a
parallel processor without increasing the size of the
problem

» Weak scaling: When speedup is achieved on a
parallel processor by increasing the size of the
problem proportionally to the increase in the number
of processors (Gustafson's law)

= Load balancing is another important factor: every
processor doing same amount of work

= Just 1 unit with twice the load of others cuts speedup
almost in half (bottleneck!)

\
‘\\\ [Sjtr‘i’:\l% 12;"&01{ CA: Performance and Power 36

_IOther Performance Metrics

= MIPS — Million Instructions Per Second
Instruction count

MIPS =
Time(s)x10°
« MFLOPS - Million Floating-point Operations
Per Second
MFLOPS = Floatmg_.pomt_ops/pmgmm
Time(s)x10°
* PetaFLOPS - 10" Floating-point Operations
Per Second . |
PFLOPS = Floating point ops/ program

Time(s)x10"

‘\\\‘ Stony Brook

Uiversity CA: Performance and Power 37

_I Pitfall: MIPS as a Performance Metric

x MIPS: Millions of Instructions Per Second

= Doesn’t account for
= Differences in ISAs between computers
= Differences in complexity between instructions

Instruction count

MIPS = —— -
Execution time x10
B Instruction count _ Clock rate
~ Instruction counthPI><1O6 ~ CPIx10°
Clock rate

CPI varies between programs on a given CPU

‘\\\‘ Stony Brook

Uiversity CA: Performance and Power 38

| Uniprocessor Performance

Intel Core i7 4 cores 4.2 GHz (Boost to 4.5 GHz)

Intel Core i7 4 cores 4.0 GHz (Boost to 4.2 GHz)

Intel Core i7 4 cores 4.0 GHz (Boost to 4.2 GHz)
Intel Xeon 4 cores 3.7 GHz (Boost to 4.1 GHz)

100,000
10,0001
o
(o8]
~
e
X 1000
=

%
vt
8
€ 1001
©
£
2y
)
iy
10
1

T

1978

AX-11/780, 5 MHz

Intel Xeon 4 cores 3.6 GHz (Boost to 4.0 GHz)
Intel Xeon 4 cores 3.6 GHz (Boost to 4.0 GHz)
Intel Core i7 4 cores 3.4 GHz (boost to 3.8 GHz)
Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz)
Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz)
Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)
Intel Core Duo Extreme 2 cores, 3.0 GHz
Intel Core 2 Extreme 2 cores, 2.9 GHz

AMD Athlon 64, 2.8 GHz ——-
AMD Athlon, 2.6 GHz
Intel Xeon EE 3.2 GHz

Intel VC820 motherboard, 1.0 GHz Pentium IIl processor

Professional Workstation XP1000, 667 MHz 21264A
_ Digital AlphaServer 8400 6/575, 575 MHz 21264

23%l/year 12%/year 3.5%lyear|

IBM RS6000/540, 30 MHz,
MIPS M2000, 25 MHz
MIPS M/120, 16.7 MHz

25%/year

/'

I I I I I I I I I I I I I I I I I I
1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 201e~ 2012 2014 2016 2018

Constrained by power, instruction-level parallelism,
memory latency

\\‘ Stony Brook
University

CA: Performance and Power

39

| Supercomputing

= Today: clusters of multi-core CPUs + GPUs

= Frontier: The Exascale-class HPE Cray EX Supercomputer at Oak Ridge
National Laboratory (the fastest supercomputer in the world in 2023)
n 9,472 AMD Epyc 7453s "Trento" 64 core 2 GHz CPUs (606,208 cores) and
37,888 Instinct MI1250X GPUs (8,335,360 cores).

= the most efficient supercomputer: 62.68 gigaflops/watt.

Space 680 m’ (7,300 sq ft)

Speed 1.194 exaFLOPS (Rmax) /
1.67982 exaFLOPS (Rpeak)

Cost US$600 million (est. cost)

Purpose Scientific research and
development

Q\\\\ SioryBrook CA: Performance and Power 40

University

https://en.wikipedia.org/wiki/AMD_Epyc
https://en.wikipedia.org/wiki/Radeon_Instinct
https://en.wikipedia.org/wiki/FLOPS
https://en.wikipedia.org/wiki/FLOPS

_‘;I'gp 5 Supercomputers (TOP500, June 2023)

Rank System Cores

1

Frontier - HPE Cray EX235a, AMD Optimized 3rd 8,699,904

Generation EPYC 64C 2GHz, AMD Instinct MI250X,
Slingshot-11, HPE

DOE/SC/Oak Ridge National Laboratory

United States

Supercomputer Fugaku - Supercomputer Fugaku, 7,630,848
AB64FX 48C 2.2GHz, Tofu interconnect D, Fuijitsu

RIKEN Center for Computational Science

Japan
LUMI - HPE Cray EX235a, AMD Optimized 3rd 2,220,288

Generation EPYC 64C 2GHz, AMD Instinct MI250X,
Slingshot-11, HPE

EuroHPC/CSC
Finland
Leonardo - BullSequana XH2000, Xeon Platinum 8358 1,824,768

32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail
NVIDIA HDR100 Infiniband, Atos
EuroHPC/CINECA

ltaly
Summit - IBM Power System AC922, IBM POWER9 22C 2,414,592

3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBM

DOE/SC/Oak Ridge National Laboratory
United States

Rmax

(PFlop/s)

Rpeak
(PFlop/s)

1,194.00 1,679.82

442.01

309.10

238.70

148.60

537.21

428.70

304.47

200.79

Power (kW)

22 703

29,899

6,016

7,404

10,096

Q\\\\ SioryBrook CA: Performance and Power

University

41

https://www.top500.org/system/180047
https://www.top500.org/site/48553
https://www.top500.org/system/179807
https://www.top500.org/site/50831
https://www.top500.org/system/180048
https://www.top500.org/site/50908
https://www.top500.org/system/180128
https://www.top500.org/site/50944
https://www.top500.org/system/179397
https://www.top500.org/site/48553

‘ Power Trends

= Intel 80386 i .
consumed ~2W oo MO0 D67 3300 3500 35po 60
s 3.3 GHz Intel 1000 +
Core i7 ool

consumes 130 W

= Heat must be
dissipated from ’

L]
P (aaaiis]

Cleck Raade (MHE)

- = gm'ga *3.:rl = = g = = = 3 =
15 X 15 cm Ch|p Eg: :5,5: EE E* E_g: '=I'§ -t-E.. ﬁ .,.-.E u‘.-E -.r.-E E
= This is the limit of © T T 8% &z 55 2y pE e i3 81 %1
what can be FE £3 °F ©9F & g 8-

: 8 £ E 5 T © "%

cooled by air z 2 O £

-

= In CMOS IC technology

Power = Capacitive load x Voltage” x Frequency

+ BO
L 60

\ \ \

x40 oV — 1V x1000

CA: Performance and Power

q\\\‘ Stony Brook

University

I
_|Energy and Power

= Dynamic energy
» Transistor switch from0->1o0r1->0
= Y5 x Capacitive load x Voltage?

= Dynamic power
= Y5 x Capacitive load x Voltage? x Frequency switched

= Reducing clock rate reduces power, not
energy
s Static power consumption
= Currentg,;. X Voltage
= Scales with number of transistors
= [0 reduce: power gating

‘\\\‘ Stony Brook

: . CA: Performance and Power
University

43

Switching Energy: Fundamental Physics
Every logic transition dissipates energy.

Vv

1-0-1 } (-1-0

/L

i
Models inplts to ather E =Jdcv? é C
gates &wire capacitance) 0->1 9 dd ,,..) 1->0 9 dd

—

Strong result: Inﬁf‘p%ﬁd@ﬁfﬁ&nology.

How can we (1) Reduce # of clock transitions. But we have work to do ...

(1)
limit switching (2) Reduce Vdd. But lowering Vdd limits the clock speed ...
energy?

(3) Fewer circuits. But more transistors can do more work.
(4)

4) Reduce C per node. One reason why we scale processes.
44

q\\\‘ Stony Brook

University CA: Performance and Power

‘Second Factor: Leakage Currents
Even when a logic gate isn’t switching, it burns power.

Isub: Even when this nFet
is off, it passes an |off
—q leakage current.
OV =Viy — Vour
_J i leuy —= c We can engineer any loff
lue— LW T *t we like, but a lower loff also
<7 results in a lower lon, and thus a

lower maximum clock speed.

Intel’s 2006 processor designs,
leakage vs switching power

|gate: Ideal switches have

zero DC current. But modern
transistor gates are a few atoms

thick, and are not ideal.

A lot of work was
= Leakage done to get a ratio

= Dynamic this good ... 50/50
65nm is common.

.

q\\\‘ Stony Brook 45

University CA: Performance and Power

|
|Example of Quantifying Power

s Suppose 15% reduction in voltage
results in a 15% reduction in frequency.
What is impact on dynamic power?

Poweramamic =1/ 2 x CapacitiveLoad < Voltage « FrequencySwitched
=1/2+.85«CapacitiveLoad < (.85xVoltage) ~ FrequencySwitched

- (85)3 X OldPOWBdenamic
~ (0.6 x OldPOW€7"dynamic

‘\\\‘ Stony Brook

Uiversity CA: Performance and Power 46

_' Acknowledgements

= [hese slides contain material developed
and copyright by:
= Morgan Kauffmann (Elsevier, Inc.)
= Arvind (MIT)
= Krste Asanovic (MIT/UCB)
« Joel Emer (Intel/MIT)
= James Hoe (CMU)
= John Kubiatowicz (UCB)
»« David Patterson (UCB)
= Justin Hsia (UCB)

‘\\\‘ Stony Brook

: . CA: Performance and Power
University

47

