
To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. Th is proof copy is the copyright property of the publisher and
is confi dential until formal publication.

 An Introduction to Digital Design Using a
Hardware Design Language to Describe
and Model a Pipeline and More Pipelining
Illustrations

Th is online section covers hardware decription languages and then gives a dozen
examples of pipeline diagrams.

As mentioned in Appendix C, Verilog can describe processors for simulation
or with the intention that the Verilog specifi cation be synthesized. To achieve
acceptable synthesis results in size and speed, and a behavioral specifi cation
intended for synthesis must carefully delineate the highly combinational portions
of the design, such as a datapath, from the control. Th e datapath can then be
synthesized using available libraries. A Verilog specifi cation intended for synthesis
is usually longer and more complex.

We start with a behavioral model of the 5-stage pipeline. To illustrate the
dichotomy between behavioral and synthesizeable designs, we then give two
Verilog descriptions of a multiple-cycle-per-instruction MIPS processor: one
intended solely for simulations and one suitable for synthesis.

Using Verilog for Behavioral Specifi cation with Simulation
for the 5-Stage Pipeline
Figure e4.14.1 shows a Verilog behavioral description of the pipeline that handles
ALU instructions as well as loads and stores. It does not accommodate branches
(even incorrectly!), which we postpone including until later in the chapter.

Because Verilog lacks the ability to defi ne registers with named fi elds such as
structures in C, we use several independent registers for each pipeline register. We
name these registers with a prefi x using the same convention; hence, IFIDIR is the
IR portion of the IFID pipeline register.

Th is version is a behavioral description not intended for synthesis. Instructions
take the same number of clock cycles as our hardware design, but the control
is done in a simpler fashion by repeatedly decoding fi elds of the instruction in
each pipe stage. Because of this diff erence, the instruction register (IR) is needed
throughout the pipeline, and the entire IR is passed from pipe stage to pipe stage.
As you read the Verilog descriptions in this chapter, remember that the actions
in the always block all occur in parallel on every clock cycle. Since there are
no blocking assignments, the order of the events within the always block is
arbitrary.

4.14

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. Th is proof copy is the copyright property of the publisher and
is confi dential until formal publication.

 4.14 An Introduction to Digital Design Using a Hardware Design Language to describe 4.14-3

FIGURE e4.14.1 A Verilog behavorial model for the MIPS fi ve-stage pipeline, ignoring branch and data hazards. As
in the design earlier in Chapter 4, we use separate instruction and data memories, which would be implemented using separate caches as we
describe in Chapter 5. (continues on next page)

4.14-4 4.14 An Introduction to Digital Design Using a Hardware Design Language to Describe

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. Th is proof copy is the copyright property of the publisher and
is confi dential until formal publication.

FIGURE e4.14.1 A Verilog behavorial model for the MIPS fi ve-stage pipeline, ignoring branch and data hazards.
(Continued)

Implementing Forwarding in Verilog
To further extend the Verilog model, Figure e4.14.2 shows the addition of forwarding
logic for the case when the source and destination are ALU instructions. Neither
load stalls nor branches are handled; we will add these shortly. Th e changes from
the earlier Verilog description are highlighted.

Someone has proposed moving the write for a result from an ALU instruction
from the WB to the MEM stage, pointing out that this would reduce the maximum
length of forwards from an ALU instruction by one cycle. Which of the following
are accurate reasons not to consider such a change?

1. It would not actually change the forwarding logic, so it has no advantage.

2. It is impossible to implement this change under any circumstance since the
write for the ALU result must stay in the same pipe stage as the write for a
load result.

3. Moving the write for ALU instructions would create the possibility of writes
occurring from two diff erent instructions during the same clock cycle. Either
an extra write port would be required on the register fi le or a structural
hazard would be created.

4. Th e result of an ALU instruction is not available in time to do the write
during MEM.

Check
Yourself

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. Th is proof copy is the copyright property of the publisher and
is confi dential until formal publication.

 4.14 An Introduction to Digital Design Using a Hardware Design Language to describe 4.14-5

FIGURE e4.14.2 A behavioral defi nition of the fi ve-stage MIPS pipeline with bypassing to ALU operations and address
calculations. Th e code added to Figure e4.14.1 to handle bypassing is highlighted. Because these bypasses only require changing where the
ALU inputs come from, the only changes required are in the combinational logic responsible for selecting the ALU inputs. (continues on next
page)

4.14-6 4.14 An Introduction to Digital Design Using a Hardware Design Language to Describe

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. Th is proof copy is the copyright property of the publisher and
is confi dential until formal publication.

The Behavioral Verilog with Stall Detection
If we ignore branches, stalls for data hazards in the MIPS pipeline are confi ned
to one simple case: loads whose results are currently in the WB clock stage. Th us,
extending the Verilog to handle a load with a destination that is either an ALU
instruction or an eff ective address calculation is reasonably straightforward, and
Figure 4.13.3 shows the few additions needed.

Someone has asked about the possibility of data hazards occurring through
memory, as opposed to through a register. Which of the following statements about
such hazards are true?

1. Since memory accesses only occur in the MEM stage, all memory operations
are done in the same order as instruction execution, making such hazards
impossible in this pipeline.

2. Such hazards are possible in this pipeline; we just have not discussed them
yet.

3. No pipeline can ever have a hazard involving memory, since it is the
programmer’s job to keep the order of memory references accurate.

Check
Yourself

FIGURE e4.14.2 A behavioral defi nition of the fi ve-stage MIPS pipeline with bypassing to ALU operations and address
calculations. (Continued)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. Th is proof copy is the copyright property of the publisher and
is confi dential until formal publication.

 4.14 An Introduction to Digital Design Using a Hardware Design Language to describe 4.14-7

FIGURE e4.14.3 A behavioral defi nition of the fi ve-stage MIPS pipeline with stalls for loads when the destination
is an ALU instruction or effective address calculation. Th e changes from Figure e4.14.2 are highlighted. (continues on next page)

4.14-8 4.14 An Introduction to Digital Design Using a Hardware Design Language to Describe

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. Th is proof copy is the copyright property of the publisher and
is confi dential until formal publication.

FIGURE e4.14.3 A behavioral defi nition of the fi ve-stage MIPS pipeline with stalls for loads when the destination is
an ALU instruction or effective address calculation. (Continued)

4. Memory hazards may be possible in some pipelines, but they cannot occur
in this particular pipeline.

5. Although the pipeline control would be obligated to maintain ordering
among memory references to avoid hazards, it is impossible to design a
pipeline where the references could be out of order.

Implementing the Branch Hazard Logic in Verilog

We can extend our Verilog behavioral model to implement the control for branches.
We add the code to model branch equal using a “predict not taken” strategy. Th e
Verilog code is shown in Figure e4.14.4. It implements the branch hazard by
detecting a taken branch in ID and using that signal to squash the instruction in
IF (by setting the IR to 0, which is an eff ective no-op in MIPS-32); in addition,
the PC is assigned to the branch target. Note that to prevent an unexpected latch,
it is important that the PC is clearly assigned on every path through the always
block; hence, we assign the PC in a single if statement. Lastly, note that although
Figure e4.14.4 incorporates the basic logic for branches and control hazards, the
incorporation of branches requires additional bypassing and data hazard detection,
which we have not included.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. Th is proof copy is the copyright property of the publisher and
is confi dential until formal publication.

 4.14 An Introduction to Digital Design Using a Hardware Design Language to describe 4.14-9

FIGURE e4.14.4 A behavioral defi nition of the fi ve-stage MIPS pipeline with stalls for loads when the destination
is an ALU instruction or effective address calculation. Th e changes from Figure e4.14.3 are highlighted. (continues on next page)

4.14-10 4.14 An Introduction to Digital Design Using a Hardware Design Language to Describe

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. Th is proof copy is the copyright property of the publisher and
is confi dential until formal publication.

FIGURE e4.14.4 A behavioral defi nition of the fi ve-stage MIPS pipeline with stalls for loads when the destination is
an ALU instruction or effective address calculation. (Continued)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. Th is proof copy is the copyright property of the publisher and
is confi dential until formal publication.

 4.14 An Introduction to Digital Design Using a Hardware Design Language to describe 4.14-11

Using Verilog for Behavioral Specifi cation with Synthesis
To demonstate the contrasting types of Verilog, we show two descriptions of a
diff erent, nonpipelined implementation style of MIPS that uses multiple clock cycles
per instruction. (Since some instructors make a synthesizable description of the MIPS
pipe line project for a class, we chose not to include it here. It would also be long.)

Figure e4.14.5 gives a behavioral specifi cation of a multicycle implementation
of the MIPS processor. Because of the use of behavioral operations, it would be
diffi cult to synthesize a separate datapath and control unit with any reasonable
effi ciency. Th is version demonstrates another approach to the control by using a
Mealy fi nite-state machine (see discussion in Section C.10 of Appendix B). Th e
use of a Mealy machine, which allows the output to depend both on inputs and the
current state, allows us to decrease the total number of states.

Since a version of the MIPS design intended for synthesis is considerably more
complex, we have relied on a number of Verilog modules that were specifi ed in
Appendix B, including the following:

■ Th e 4-to-1 multiplexor shown in Figure B.4.2, and the 3-to-1 multiplexor that
can be trivially derived based on the 4-to-1 multiplexor.

■ Th e MIPS ALU shown in Figure B.5.15.

■ Th e MIPS ALU control defi ned in Figure B.5.16.

■ Th e MIPS register fi le defi ned in Figure B.8.11.

Now, let’s look at a Verilog version of the MIPS processor intended for synthesis.
Figure e4.14.6 shows the structural version of the MIPS datapath. Figure e4.14.7
uses the datapath module to specify the MIPS CPU. Th is version also demonstrates
another approach to implementing the control unit, as well as some optimizations
that rely on relationships between various control signals. Observe that the state
machine specifi cation only provides the sequencing actions.

Th e setting of the control lines is done with a series of assign statements that
depend on the state as well as the opcode fi eld of the instruction register. If one
were to fold the setting of the control into the state specifi cation, this would look
like a Mealy-style fi nite-state control unit. Because the setting of the control lines
is specifi ed using assign statements outside of the always block, most logic
synthesis systems will generate a small implementation of a fi nite-state machine
that determines the setting of the state register and then uses external logic to
derive the control inputs to the datapath.

In writing this version of the control, we have also taken advantage of a number
of insights about the relationship between various control signals as well as
situations where we don’t care about the control signal value; some examples of
these are given in the following elaboration.

4.14-12 4.14 An Introduction to Digital Design Using a Hardware Design Language to Describe

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. Th is proof copy is the copyright property of the publisher and
is confi dential until formal publication.

FIGURE e4.14.5 A behavioral specifi cation of the multicycle MIPS design. Th is has the same cycle behavior as the multicycle
design, but is purely for simulation and specifi cation. It cannot be used for synthesis. (continues on next page)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. Th is proof copy is the copyright property of the publisher and
is confi dential until formal publication.

 4.14 An Introduction to Digital Design Using a Hardware Design Language to describe 4.14-13

FIGURE e4.14.5 A behavioral specifi cation of the multicycle MIPS design. (Continued)

4.14-14 4.14 An Introduction to Digital Design Using a Hardware Design Language to Describe

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. Th is proof copy is the copyright property of the publisher and
is confi dential until formal publication.

FIGURE e4.14.6 A Verilog version of the multicycle MIPS datapath that is appropriate for synthesis. Th is datapath relies
on several units from Appendix B. Initial statements do not synthesize, and a version used for synthesis would have to incorporate a reset signal
that had this eff ect. Also note that resetting R0 to 0 on every clock is not the best way to ensure that R0 stays 0; instead, modifying the register
fi le module to produce 0 whenever R0 is read and to ignore writes to R0 would be a more effi cient solution. (continues on next page)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. Th is proof copy is the copyright property of the publisher and
is confi dential until formal publication.

 4.14 An Introduction to Digital Design Using a Hardware Design Language to describe 4.14-15

FIGURE e4.14.6 A Verilog version of the multicycle MIPS datapath that is appropriate for synthesis.

4.14-16 4.14 An Introduction to Digital Design Using a Hardware Design Language to Describe

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. Th is proof copy is the copyright property of the publisher and
is confi dential until formal publication.

FIGURE e4.14.7 The MIPS CPU using the datapath from Figure e4.14.6.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. Th is proof copy is the copyright property of the publisher and
is confi dential until formal publication.

 4.14 An Introduction to Digital Design Using a Hardware Design Language to describe 4.14-17

Elaboration: When specifying control, designers often take advantage of knowledge
of the control so as to simplify or shorten the control specifi cation. Here are a few
examples from the specifi cation in Figures e4.14.6 and e4.14.7.

1. MemtoReg is set only in two cases, and then it is always the inverse of
RegDst, so we just use the inverse of RegDst.

2. IRWrite is set only in state 1.

3. Th e ALU does not operate in every state and, when unused, can safely do
anything.

4. RegDst is 1 in only one case and can otherwise be set to 0. In practice it
might be better to set it explicitly when needed and otherwise set it to X, as
we do for IorD. First, it allows additional logic optimization possibilities
through the exploitation of don’t-care terms (see Appendix B for further
discussion and examples). Second, it is a more precise specifi cation, and
this allows the simulation to more closely model the hardware, possibly
uncovering additional errors in the specifi cation.

More Illustrations of Instruction Execution on the
Hardware
To reduce the cost of this book, in the third edition we moved sections and fi gures
that were used by a minority of instructors online. Th is subsection recaptures
those fi gures for readers who would like more supplemental material to better
understand pipelining. Th ese are all single-clock-cycle pipeline diagrams, which
take many fi gures to illustrate the execution of a sequence of instructions.

Th e three examples are respectively for code with no hazards, an example of
forwarding on the pipelined implementation, and an example of bypassing on the
pipelined implementation.

No Hazard Illustrations

On page 297, we gave the example code sequence

lw $10, 20($1)
sub $11, $2, $3
add $12, $3, $4
lw $13, 24($1)
add $14, $5, $6

Figures 4.43 and 4.44 showed the multiple-clock-cycle pipeline diagrams for this
two-instruction sequence executing across six clock cycles. Figures e4.14.8 through
e4.14.10 show the corresponding single-clock-cycle pipeline diagrams for these
two instructions. Note that the order of the instructions diff ers between these two
types of diagrams: the newest instruction is at the bottom and to the right of the
multiple-clock-cycle pipeline diagram, and it is on the left in the single-clock-cycle
pipeline diagram.

