To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and

is confidential until formal publication.

7.4 An Introduction to Digital Design Using a

m Hardware Design Language to Describe

7”74 and Model a Pipeline and More Pipelining
llustrations

This online section covers hardware decription languages and then gives a dozen
examples of pipeline diagrams.

As mentioned in Appendix C, Verilog can describe processors for simulation
or with the intention that the Verilog specification be synthesized. To achieve
acceptable synthesis results in size and speed, and a behavioral specification
intended for synthesis must carefully delineate the highly combinational portions
of the design, such as a datapath, from the control. The datapath can then be
synthesized using available libraries. A Verilog specification intended for synthesis
is usually longer and more complex.

We start with a behavioral model of the 5-stage pipeline. To illustrate the
dichotomy between behavioral and synthesizeable designs, we then give two
Verilog descriptions of a multiple-cycle-per-instruction MIPS processor: one
intended solely for simulations and one suitable for synthesis.

Using Verilog for Behavioral Specification with Simulation
for the 5-Stage Pipeline

Figure e4.14.1 shows a Verilog behavioral description of the pipeline that handles
ALU instructions as well as loads and stores. It does not accommodate branches
(even incorrectly!), which we postpone including until later in the chapter.

Because Verilog lacks the ability to define registers with named fields such as
structures in C, we use several independent registers for each pipeline register. We
name these registers with a prefix using the same convention; hence, IFIDIR is the
IR portion of the IFID pipeline register.

This version is a behavioral description not intended for synthesis. Instructions
take the same number of clock cycles as our hardware design, but the control
is done in a simpler fashion by repeatedly decoding fields of the instruction in
each pipe stage. Because of this difference, the instruction register (IR) is needed
throughout the pipeline, and the entire IR is passed from pipe stage to pipe stage.
As you read the Verilog descriptions in this chapter, remember that the actions
in the always block all occur in parallel on every clock cycle. Since there are
no blocking assignments, the order of the events within the always block is
arbitrary.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and

is confidential until formal publication.

4.14 An Introduction to Digital Design Using a Hardware Design Language to describe 4.14-3

module CPU (clock);

// Instruction opcodes
parameter LW = 6°b100011, SW = 6°b101011, BEQ = 6°b000100, no-op = 32°b00000_100000, ALUop = 6°b0;

input clock;
reg[31:0] PC, Regs[0:31], IMemory[0:1023], DMemory[0:1023], // separate memories
IFIDIR, IDEXA, IDEXB, IDEXIR, EXMEMIR, EXMEMB, // pipeline registers
EXMEMALUQut, MEMWBValue, MEMWBIR; // pipeline registers
wire [4:0] IDEXrs, IDEXrt, EXMEMrd, MEMWBrd, MEMWBrt; // Access register fields
wire [5:0] EXMEMop, MEMWBop, IDEXop; // Access opcodes
wire [31:0] Ain, Bin; // the ALU inputs

// These assignments define fields from the pipeline registers
assign IDEXrs = IDEXIR[25:217; // rs field
assign IDEXrt IDEXIR[20:167; // rt field
assign EXMEMrd = EXMEMIR[15:11]1; // rd field
assign MEMWBrd = MEMWBIR[15:11]1; //rd field
assign MEMWBrt MEMWBIR[20:161; //rt field--used for loads
assign EXMEMop EXMEMIR[31:261; // the opcode
assign MEMWBop = MEMWBIR[31:261; // the opcode
assign IDEXop = IDEXIR[31:267; // the opcode

// Inputs to the ALU come directly from the ID/EX pipeline registers
assign Ain = IDEXA;
assign Bin = IDEXB;

reg [5:0] i; //used to initialize registers

initial begin
PC = 0;
IFIDIR = no-op; IDEXIR = no-op; EXMEMIR = no-op; MEMWBIR = no-op; // put no-ops in pipeline registers
for (i=0;i<=31;i=1+1) Regs[i] = i; //initialize registers--just so they aren’t cares
end
always @ (posedge clock) begin
// Remember that ALL these actions happen every pipe stage and with the use of <= they happen in parallel!
// first instruction 1in the pipeline is being fetched

IFIDIR <= IMemory[PC>>21];
PC <= PC + 4;
end // Fetch & increment PC

// second instruction in pipeline is fetching registers
IDEXA <= Regs[IFIDIR[25:211]; IDEXB <= Regs[IFIDIR[20:16]]; // get two registers
IDEXIR <= IFIDIR; //pass along IR--can happen anywhere, since this affects next stage only!
// third instruction is doing address calculation or ALU operation
if ((IDEXop==LW) |(IDEXop==SW)) // address calculation
EXMEMALUQut <= IDEXA +{{16{IDEXIR[15]}}, IDEXIR[15:01};
else if (IDEXop==AlLUop) case (IDEXIR[5:0]) //case for the various R-type instructions
32: EXMEMALUOQut <= Ain + Bin; //add operation
default: ; //other R-type operations: subtract, SLT, etc.
endcase

FIGURE e4.14.1 A Verilog behavorial model for the MIPS five-stage pipeline, ignoring branch and data hazards. As
in the design earlier in Chapter 4, we use separate instruction and data memories, which would be implemented using separate caches as we
describe in Chapter 5. (continues on next page)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and

is confidential until formal publication.

4.14-4 4.14 An Introduction to Digital Design Using a Hardware Design Language to Describe

EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; //pass along the IR & B register

//Mem stage of pipeline

if (EXMEMop==AlLUop) MEMWBValue <= EXMEMALUOut; //pass along ALU result
else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUOuUt>>27;
else if (EXMEMop == SW) DMemory[EXMEMALUOut>>2] <=EXMEMB; //store
MEMWBIR <= EXMEMIR; //pass along IR

// the WB stage

if ((MEMWBop==ALUop) & (MEMWBrd != 0)) // update registers if ALU operation and destination not 0
Regs[MEMWBrd] <= MEMWBValue; // ALU operation

else if ((EXMEMop == LW)& (MEMWBrt != 0)) // Update registers if load and destination not 0
Regs[MEMWBrt]l <= MEMWBValue;

end
endmodule

FIGURE e4.14.1 A Verilog behavorial model for the MIPS five-stage pipeline, ignoring branch and data hazards.
(Continued)

Implementing Forwarding in Verilog

To further extend the Verilog model, Figure e4.14.2 shows the addition of forwarding
logic for the case when the source and destination are ALU instructions. Neither
load stalls nor branches are handled; we will add these shortly. The changes from
the earlier Verilog description are highlighted.

Check Someone has proposed moving the write for a result from an ALU instruction
Yourself from the WB to the MEM stage, pointing out that this would reduce the maximum
length of forwards from an ALU instruction by one cycle. Which of the following

are accurate reasons not to consider such a change?

1. It would not actually change the forwarding logic, so it has no advantage.

2. Itis impossible to implement this change under any circumstance since the
write for the ALU result must stay in the same pipe stage as the write for a
load result.

3. Moving the write for ALU instructions would create the possibility of writes
occurring from two different instructions during the same clock cycle. Either
an extra write port would be required on the register file or a structural
hazard would be created.

4. The result of an ALU instruction is not available in time to do the write
during MEM.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and

is confidential until formal publication.

4.14 An Introduction to Digital Design Using a Hardware Design Language to describe 4.145

module CPU (clock);
parameter LW = 6°b100011, SW = 6°b101011, BEQ = 6°b000100, no-op = 32°b00000_100000, ALUop = 6°b0;
input clock;
reg[31:0] PC, Regs[0:31], IMemory[0:1023], DMemory[0:1023], // separate memories
IFIDIR, IDEXA, IDEXB, IDEXIR, EXMEMIR, EXMEMB, // pipeline registers
EXMEMALUQut, MEMWBValue, MEMWBIR; // pipeline registers
wire [4:0] IDEXrs, IDEXrt, EXMEMrd, MEMWBrd, MEMWBrt; //hold register fields
wire [5:0] EXMEMop, MEMWBop, IDEXop; Hold opcodes
wire [31:0] Ain, Bin;

// declare the bypass signals
wire bypassAfromMEM, bypassAfromALUinWB,bypassBfromMEM, bypassBfromALUINWB,
bypassAfromLWinWB, bypassBfromLWinWB;

assign IDEXrs = IDEXIR[25:217; assign IDEXrt = IDEXIR[15:117; assign EXMEMrd = EXMEMIR[15:117;
assign MEMWBrd = MEMWBIR[20:16]; assign EXMEMop = EXMEMIR[31:26];

assign MEMWBrt = MEMWBIR[25:207;

assign MEMWBop = MEMWBIR[31:26]; assign IDEXop = IDEXIR[31:261];

// The bypass to input A from the MEM stage for an ALU operation
assign bypassAfromMEM = (IDEXrs == EXMEMrd) & (IDEXrs!=0) & (EXMEMop==AlLUop):; // yes, bypass

// The bypass to input B from the MEM stage for an ALU operation
assign bypassBfromMEM = (IDEXrt == EXMEMrd)&(IDEXrt!=0) & (EXMEMop==ALUop); // yes, bypass

// The bypass to input A from the WB stage for an ALU operation
assign bypassAfromALUinWB =(IDEXrs == MEMWBrd) & (IDEXrs!=0) & (MEMWBop==AlLUop);

// The bypass to input B from the WB stage for an ALU operation
assign bypassBfromALUinWB = (IDEXrt == MEMWBrd) & (IDEXrt!=0) & (MEMWBop==AlLUop); /

// The bypass to input A from the WB stage for an LW operation
assign bypassAfromLWinWB =(IDEXrs == MEMWBIR[20:161) & (IDEXrs!=0) & (MEMWBop==LW);

// The bypass to input B from the WB stage for an LW operation
assign bypassBfromLWinWB = (IDEXrt == MEMWBIR[20:16]) & (IDEXrt!=0) & (MEMWBop==LW);

// The A input to the ALU is bypassed from MEM if there is a bypass there,
// Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register
assign Ain = bypassAfromMEM? EXMEMALUOut :

(bypassAfromALUinWB | bypassAfromLWinWB)? MEMWBValue : IDEXA;

// The B input to the ALU is bypassed from MEM if there is a bypass there,
// Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register
assign Bin = bypassBfromMEM? EXMEMALUOut :

(bypassBfromALUinWB | bypassBfromLWinWB)? MEMWBValue: IDEXB;

reg [5:0] i; //used to initialize registers
initial begin
PC = 0;
IFIDIR = no-op; IDEXIR = no-op; EXMEMIR = no-op; MEMWBIR = no-op; // put no-ops in pipeline registers
for (i = 0;i<=31;i = i+1) Regs[i] = i; //initialize registers--just so they aren’t cares
end
always @ (posedge clock) begin
// first instruction in the pipeline is being fetched
IFIDIR <= IMemory[PC>>27;
PC <= PC + 4;
end // Fetch & increment PC

FIGURE e4.14.2 A behavioral definition of the five-stage MIPS pipeline with bypassing to ALU operations and address
calculations. The code added to Figure e4.14.1 to handle bypassing is highlighted. Because these bypasses only require changing where the
ALU inputs come from, the only changes required are in the combinational logic responsible for selecting the ALU inputs. (continues on next
page)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and

is confidential until formal publication.

4.14-6 4.14 An Introduction to Digital Design Using a Hardware Design Language to Describe

// second instruction is in register fetch
IDEXA <= Regs[IFIDIR[25:21]1]; IDEXB <= Regs[IFIDIR[20:16]]; // get two registers
IDEXIR <= IFIDIR; //pass along IR--can happen anywhere, since this affects next stage only!
// third instruction is doing address calculation or ALU operation
if ((IDEXop==LW) |(IDEXop==SW)) // address calculation & copy B
EXMEMALUOut <= IDEXA +{{16{IDEXIR[15]1}}, IDEXIR[15:01};

else if (IDEXop==ALUop) case (IDEXIR[5:0]) //case for the various R-type instructions
32: EXMEMALUOut <= Ain + Bin; //add operation
default: ; //other R-type operations: subtract, SLT, etc.
endcase

EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; //pass along the IR & B register

//Mem stage of pipeline

if (EXMEMop==AlLUop) MEMWBValue <= EXMEMALUOut; //pass along ALU result
else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUQuUt>>27;
else if (EXMEMop == SW) DMemory[EXMEMALUQut>>2] <=EXMEMB; //store

MEMWBIR <= EXMEMIR; //pass along IR

// the WB stage

if ((MEMWBop==AlLUop) & (MEMWBrd != 0)) Regs[MEMWBrd] <= MEMWBValue; // ALU operation
else if ((EXMEMop == LW)& (MEMWBrt != 0)) Regs[MEMWBrt] <= MEMWBValue;

end
endmodule

FIGURE e4.14.2 A behavioral definition of the five-stage MIPS pipeline with bypassing to ALU operations and address
calculations. (Continued)

The Behavioral Verilog with Stall Detection

If we ignore branches, stalls for data hazards in the MIPS pipeline are confined
to one simple case: loads whose results are currently in the WB clock stage. Thus,
extending the Verilog to handle a load with a destination that is either an ALU
instruction or an effective address calculation is reasonably straightforward, and
Figure 4.13.3 shows the few additions needed.

Check Someone has asked about the possibility of data hazards occurring through
Yourself memory,asopposed to through a register. Which of the following statements about
such hazards are true?

1. Since memory accesses only occur in the MEM stage, all memory operations
are done in the same order as instruction execution, making such hazards
impossible in this pipeline.

2. Such hazards are possible in this pipeline; we just have not discussed them
yet.

3. No pipeline can ever have a hazard involving memory, since it is the
programmer’s job to keep the order of memory references accurate.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and

is confidential until formal publication.

4.14 An Introduction to Digital Design Using a Hardware Design Language to describe 4.14-7

module CPU (clock);
parameter LW = 6°b100011, SW = 6°b101011, BEQ = 6°b000100, no-op = 32°b00000_100000, ALUop = 6°b0;
input clock;
reg[31:0] PC, Regs[0:31], IMemory[0:1023], DMemory[0:1023], // separate memories
IFIDIR, IDEXA, IDEXB, IDEXIR, EXMEMIR, EXMEMB, // pipeline registers
EXMEMALUOut, MEMWBValue, MEMWBIR; // pipeline registers
wire [4:0] IDEXrs, IDEXrt, EXMEMrd, MEMWBrd, MEMWBrt; //hold register fields
wire [5:0] EXMEMop, MEMWBop, IDEXop; Hold opcodes
wire [31:0] Ain, Bin;

// declare the bypass signals
wire stall, bypassAfromMEM, bypassAfromALUinWB,bypassBfromMEM, bypassBfromALUiInWB,
bypassAfromLWinWB, bypassBfromLWinWB;

assign IDEXrs = IDEXIR[25:217; assign IDEXrt = IDEXIR[15:117; assign EXMEMrd = EXMEMIR[15:117;
assign MEMWBrd = MEMWBIR[20:16]; assign EXMEMop = EXMEMIR[31:26];
assign MEMWBrt = MEMWBIR[25:201];

assign MEMWBop = MEMWBIR[31:26]; assign IDEXop = IDEXIR[31:261];
// The bypass to input A from the MEM stage for an ALU operation
assign bypassAfromMEM = (IDEXrs == EXMEMrd) & (IDEXrs!=0) & (EXMEMop==AlLUop); // yes, bypass
// The bypass to input B from the MEM stage for an ALU operation
assign bypassBfromMEM = (IDEXrt== EXMEMrd)&(IDEXrt!=0) & (EXMEMop==AlLUop); // yes, bypass
// The bypass to input A from the WB stage for an ALU operation
assign bypassAfromALUinWB =(IDEXrs == MEMWBrd) & (IDEXrs!=0) & (MEMWBop==AlLUop);
// The bypass to input B from the WB stage for an ALU operation
assign bypassBfromALUinWB = (IDEXrt==MEMWBrd) & (IDEXrt!=0) & (MEMWBop==AlLUop); /
// The bypass to input A from the WB stage for an LW operation
assign bypassAfromLWinWB =(IDEXrs ==MEMWBIR[20:16]) & (IDEXrs!=0) & (MEMWBop==LW);
// The bypass to input B from the WB stage for an LW operation
assign bypassBfromLWinWB = (IDEXrt==MEMWBIR[20:16]1) & (IDEXrt!=0) & (MEMWBop==LW);
// The A input to the ALU is bypassed from MEM if there is a bypass there,
// Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register
assign Ain = bypassAfromMEM? EXMEMALUOut :

(bypassAfromALUinWB | bypassAfromlLWinWB)? MEMWBValue : IDEXA;
// The B input to the ALU is bypassed from MEM if there is a bypass there,
// Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register
assign Bin = bypassBfromMEM? EXMEMALUOut :

(bypassBfromALUinWB | bypassBfromLWinWB)? MEMWBValue: IDEXB;

// The signal for detecting a stall based on the use of a result from LW
oad

assign stall = (MEMWBIR[31:26]==LW) && // source instruction is a
((((IDEXop==LW) | (IDEXop==SW)) && (IDEXrs==MEMWBrd)) | // stall for address calc
((IDEXop==ALUop) && ((IDEXrs==MEMWBrd)|(IDEXrt==MEMWBrd)))); // ALU use

reg [5:0] i; //used to initialize registers
initial begin
PC = 0;
IFIDIR = no-op; IDEXIR = no-op; EXMEMIR
for (i = 0;i<=31;i = i+1) Regs[i] =
end

= no-op; MEMWBIR = no-op; // put no-ops in pipeline registers
i; //initialize registers--just so they aren’t cares

always @ (posedge clock) begin

if (~stall) begin // the first three pipeline stages stall if there is a load hazard

FIGURE e4.14.3 A behavioral definition of the five-stage MIPS pipeline with stalls for loads when the destination
is an ALU instruction or effective address calculation. The changes from Figure e4.14.2 are highlighted. (continues on next page)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and

is confidential until formal publication.

4.14-8 4.14 An Introduction to Digital Design Using a Hardware Design Language to Describe

// first instruction 1in the pipeline is being fetched
IFIDIR <= IMemory[PC>>27;
PC <= PC + 4;

IDEXIR <= IFIDIR; //pass along IR--can happen anywhere, since this affects next stage only!

// second instruction is in register fetch
IDEXA <= Regs[IFIDIR[25:211]; IDEXB <= Regs[IFIDIR[20:16]11; // get two registers

// third instruction is doing address calculation or ALU operation
if ((IDEXop==LW) |(IDEXop==SW)) // address calculation & copy B
EXMEMALUOQut <= IDEXA +{{16{IDEXIR[15]}}, IDEXIR[15:01};
else if (IDEXop==ALUop) case (IDEXIR[5:0]) //case for the various R-type instructions
32: EXMEMALUQut <= Ain + Bin; //add operation
default: ; //other R-type operations: subtract, SLT, etc.
endcase
EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; //pass along the IR & B register
end

else EXMEMIR <= no-op; /Freeze first three stages of pipeline; inject a nop into the EX output

//Mem stage of pipeline
if (EXMEMop==ALUop) MEMWBValue <= EXMEMALUOut; //pass along ALU result
else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUQuUt>>21;
else if (EXMEMop == SW) DMemory[EXMEMALUOut>>2] <=EXMEMB; //store

MEMWBIR <= EXMEMIR; //pass along IR

// the WB stage

if ((MEMWBop==AlLUop) & (MEMWBrd != 0)) Regs[MEMWBrd] <= MEMWBValue; // ALU operation
else if ((EXMEMop == LW)& (MEMWBrt != 0)) Regs[MEMWBrt] <= MEMWBValue;

end
endmodule

FIGURE e4.14.3 A behavioral definition of the five-stage MIPS pipeline with stalls for loads when the destination is
an ALU instruction or effective address calculation. (Continued)

4. Memory hazards may be possible in some pipelines, but they cannot occur
in this particular pipeline.

5. Although the pipeline control would be obligated to maintain ordering
among memory references to avoid hazards, it is impossible to design a
pipeline where the references could be out of order.

Implementing the Branch Hazard Logic in Verilog

We can extend our Verilog behavioral model to implement the control for branches.
We add the code to model branch equal using a “predict not taken” strategy. The
Verilog code is shown in Figure e4.14.4. It implements the branch hazard by
detecting a taken branch in ID and using that signal to squash the instruction in
IF (by setting the IR to 0, which is an effective no-op in MIPS-32); in addition,
the PC is assigned to the branch target. Note that to prevent an unexpected latch,
it is important that the PC is clearly assigned on every path through the always
block; hence, we assign the PC in a single if statement. Lastly, note that although
Figure e4.14.4 incorporates the basic logic for branches and control hazards, the
incorporation of branches requires additional bypassing and data hazard detection,
which we have not included.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and

is confidential until formal publication.

4.14 An Introduction to Digital Design Using a Hardware Design Language to describe 4.14-9

module CPU (clock);
parameter LW = 6°b100011, SW = 6°b101011, BEQ = 6°b000100, no-op = 32’b0000000_0000000_0000000_0000000, ALUop = 6°b0;
input clock;

reg[31:0] PC, Regs[0:31], IMemory[0:1023], DMemory[0:1023], // separate memories

IFIDIR, IDEXA, IDEXB, IDEXIR, EXMEMIR, EXMEMB, // pipeline registers
EXMEMALUOut, MEMWBValue, MEMWBIR; // pipeline registers

wire [4:0] IDEXrs, IDEXrt, EXMEMrd, MEMWBrd; //hold register fields

wire [5:0] EXMEMop, MEMWBop, IDEXop; Hold opcodes

wire [31:0] Ain, Bin;

// declare the bypass signals

wire takebranch, stall, bypassAfromMEM, bypassAfromALUinWB,bypassBfromMEM, bypassBfromALUinWB,

bypassAfromLWinWB, bypassBfromLWinWB;

assign IDEXrs = IDEXIR[25:217; assign IDEXrt = IDEXIR[15:11]; assign EXMEMrd = EXMEMIR[15:117;

assign MEMWBrd = MEMWBIR[20:16]; assign EXMEMop = EXMEMIR[31:261];

assign MEMWBop = MEMWBIR[31:26]; assign IDEXop = IDEXIR[31:261];

// The bypass to input A from the MEM stage for an ALU operation

assign bypassAfromMEM = (IDEXrs == EXMEMrd) & (IDEXrs!=0) & (EXMEMop==AlLUop); // yes, bypass

// The bypass to input B from the MEM stage for an ALU operation

assign bypassBfromMEM = (IDEXrt == EXMEMrd)&(IDEXrt!=0) & (EXMEMop==AlLUop); // yes, bypass

// The bypass to input A from the WB stage for an ALU operation

assign bypassAfromALUinWB =(IDEXrs == MEMWBrd) & (IDEXrs!=0) & (MEMWBop==AlLUop);

// The bypass to input B from the WB stage for an ALU operation

assign bypassBfromALUinWB = (IDEXrt == MEMWBrd) & (IDEXrt!=0) & (MEMWBop==AlLUop); /

// The bypass to input A from the WB stage for an LW operation

assign bypassAfromLWinWB =(IDEXrs == MEMWBIR[20:16]) & (IDEXrs!=0) & (MEMWBop==LW);

// The bypass to input B from the WB stage for an LW operation

assign bypassBfromLWinWB = (IDEXrt == MEMWBIR[20:16]) & (IDEXrt!=0) & (MEMWBop==LW);

// The A input to the ALU is bypassed from MEM if there is a bypass there,

// Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register

assign Ain = bypassAfromMEM? EXMEMALUOut :

(bypassAfromALUinWB | bypassAfromLWinWB)? MEMWBValue : IDEXA;

// The B input to the ALU is bypassed from MEM if there is a bypass there,

// Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register

assign Bin = bypassBfromMEM? EXMEMALUOut :

(bypassBfromALUinWB | bypassBfromLWinWB)? MEMWBValue: IDEXB;
// The signal for detecting a stall based on the use of a result from LW
assign stall = (MEMWBIR[31:26]==LW) && // source instruction is a load
((C(IDEXop==LW)| (IDEXop==SW)) && (IDEXrs==MEMWBrd)) | // stall for address calc

((IDEXop==ALUop) && ((IDEXrs==MEMWBrd)|(IDEXrt==MEMWBrd)))); // ALU use

FIGURE e4.14.4 A behavioral definition of the five-stage MIPS pipeline with stalls for loads when the destination
is an ALU instruction or effective address calculation. The changes from Figure e4.14.3 are highlighted. (continues on next page)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and

is confidential until formal publication.

4.14-10 4.14 An Introduction to Digital Design Using a Hardware Design Language to Describe

/
/

// Signal for a taken branch: instruction is BEQ and registers are equal
(IFIDIR[31:26]==BEQ) && (Regs[IFIDIR[25:21]]== Regs[IFIDIR[20:16]]);
reg [5:0] i; //used to initialize registers
initial begin
PC = 0;
IFIDIR = no-op; IDEXIR = no-op; EXMEMIR = no-op; MEMWBIR = no-op; // put no-ops in pipeline registers

for (i = 0;i<=31;1 = i+l) Regs[i] = i; //initialize registers--just so they aren’t don’t cares
end

assign takebranch

always @ (posedge clock) begin
if (~stall) begin // the first three pipeline stages stall if there is a load hazard

if (~takebranch) begin // first instruction in the pipeline is being fetched normally
IFIDIR <= IMemory[PC>>27;
PC <= PC + 4;
end else begin // a taken branch is in ID; instruction in IF is wrong; insert a no-op and reset the PC
IFDIR <= no-op;
PC <= PC + 4 + ({{16{IFIDIR[1I5]}}, IFIDIR[15:0]1}<<2);
end

// second instruction is in register fetch
IDEXA <= Regs[IFIDIR[25:211]; IDEXB <= Regs[IFIDIR[20:16]11; // get two registers

// third instruction is doing address calculation or ALU operation
IDEXIR <= IFIDIR; //pass along IR
if ((IDEXop==LW) |(IDEXop==SW)) // address calculation & copy B
EXMEMALUQut <= IDEXA +{{16{IDEXIRLC15]}}, IDEXIR[15:01};
else if (IDEXop==ALUop) case (IDEXIR[5:0]) //case for the various R-type instructions
32: EXMEMALUOut <= Ain + Bin; //add operation
default: ; //other R-type operations: subtract, SLT, etc.
endcase
EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; //pass along the IR & B register
end
else EXMEMIR <= no-op; /Freeze first three stages of pipeline; inject a nop into the EX output
//Mem stage of pipeline
if (EXMEMop==AlLUop) MEMWBValue <= EXMEMALUOut; //pass along ALU result
else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUOuUt>>27;
else if (EXMEMop == SW) DMemory[EXMEMALUOut>>2] <=EXMEMB; //store
// the WB stage
MEMWBIR <= EXMEMIR; //pass along IR
if ((MEMWBop==ALUop) & (MEMWBrd != 0)) Regs[MEMWBrd] <= MEMWBValue; // ALU operation

else if ((EXMEMop == LW)& (MEMWBIR[20:16] != 0)) Regs[MEMWBIR[20:16]1] <= MEMWBValue;

end
endmodule

FIGURE e4.14.4 A behavioral definition of the five-stage MIPS pipeline with stalls for loads when the destination is
an ALU instruction or effective address calculation. (Continued)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and

is confidential until formal publication.

4.14 An Introduction to Digital Design Using a Hardware Design Language to describe 4.14-11

Using Verilog for Behavioral Specification with Synthesis

To demonstate the contrasting types of Verilog, we show two descriptions of a
different, nonpipelined implementation style of MIPS that uses multiple clock cycles
per instruction. (Since some instructors make a synthesizable description of the MIPS
pipe line project for a class, we chose not to include it here. It would also be long.)

Figure e4.14.5 gives a behavioral specification of a multicycle implementation
of the MIPS processor. Because of the use of behavioral operations, it would be
difficult to synthesize a separate datapath and control unit with any reasonable
efficiency. This version demonstrates another approach to the control by using a
Mealy finite-state machine (see discussion in Section C.10 of Appendix B). The
use of a Mealy machine, which allows the output to depend both on inputs and the
current state, allows us to decrease the total number of states.

Since a version of the MIPS design intended for synthesis is considerably more
complex, we have relied on a number of Verilog modules that were specified in
Appendix B, including the following:

m The 4-to-1 multiplexor shown in Figure B.4.2, and the 3-to-1 multiplexor that
can be trivially derived based on the 4-to-1 multiplexor.

m The MIPS ALU shown in Figure B.5.15.
m The MIPS ALU control defined in Figure B.5.16.
B The MIPS register file defined in Figure B.8.11.

Now, let’s look at a Verilog version of the MIPS processor intended for synthesis.
Figure e4.14.6 shows the structural version of the MIPS datapath. Figure e4.14.7
uses the datapath module to specify the MIPS CPU. This version also demonstrates
another approach to implementing the control unit, as well as some optimizations
that rely on relationships between various control signals. Observe that the state
machine specification only provides the sequencing actions.

The setting of the control lines is done with a series of assign statements that
depend on the state as well as the opcode field of the instruction register. If one
were to fold the setting of the control into the state specification, this would look
like a Mealy-style finite-state control unit. Because the setting of the control lines
is specified using assign statements outside of the always block, most logic
synthesis systems will generate a small implementation of a finite-state machine
that determines the setting of the state register and then uses external logic to
derive the control inputs to the datapath.

In writing this version of the control, we have also taken advantage of a number
of insights about the relationship between various control signals as well as
situations where we don’t care about the control signal value; some examples of
these are given in the following elaboration.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and

is confidential until formal publication.

4.14-12 4.14 An Introduction to Digital Design Using a Hardware Design Language to Describe

module CPU (clock);
parameter LW = 6°b100011, SW = 6°b101011, BEQ=6'b000100, J=6'd2;
input clock; //the clock is an external input

// The architecturally visible registers and scratch registers for implementation
reg [31:0] PC, Regs[0:31], Memory [0:1023], IR, ALUOut, MDR, A, B;

reg [2:0] state; // processor state

wire [5:0] opcode; //use to get opcode easily

wire [31:0] SignExtend,PCOffset; //used to get sign-extended offset field

assign opcode = IR[31:26]; //opcode is upper 6 bits

assign SignExtend = {{16{IR[15]}},IR[15:01}; //sign extension of lower 16 bits of instruction
assign PCOffset = SignExtend << 2; //PC offset is shifted

// set the PC to 0 and start the control in state 0
initial begin PC = 0; state = 1; end

//The state machine--triggered on a rising clock
always @(posedge clock) begin

Regs[0] = 0; //make RO 0 //shortcut way to make sure RO is always O
case (state) //action depends on the state
1: begin // first step: fetch the instruction, increment PC, go to next state

IR <= Memory[PC>>27;
PC <= PC + 4;
state = 2; //next state

end

2: begin // second step: Instruction decode, register fetch, also compute branch address

A <= Regs[IR[25:21]7;

B <= Regs[IR[20:16]11];

state = 3;

ALUOut <= PC + PCOffset; // compute PC-relative branch target

end

3: begin // third step: Load-store execution, ALU execution, Branch completion

state = 4; // default next state
if ((opcode==LW) |(opcode==SW)) ALUOut <= A + SignExtend; //compute effective address
else if (opcode==6"b0) case (IR[5:0]) //case for the various R-type instructions
32: ALUQut = A + B; //add operation
default: ALUOut = A; //other R-type operations: subtract, SLT, etc.
endcase

FIGURE e4.14.5 A behavioral specification of the multicycle MIPS design. This has the same cycle behavior as the multicycle
design, but is purely for simulation and specification. It cannot be used for synthesis. (continues on next page)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and

is confidential until formal publication.

4.14 An Introduction to Digital Design Using a Hardware Design Language to describe 4.14-13

else if (opcode == BEQ) begin
if (A==B) PC <= ALUOut; // branch taken--update PC
state = 1;

end

else if (opocde=J) begin
PC = (PC[31:28], IR[25:01,2°b00}; // the jump target PC
state = 1;

end //Jumps

else ; // other opcodes or exception for undefined instruction would go here
end

4: begin
if (opcode==6"b0) begin //ALU Operation
Regs[IR[15:11]] <= ALUOut; // write the result
state = 1;
end //R-type finishes
else if (opcode == LW) begin // load instruction

MDR <= Memory[ALUOut>>2]; // read the memory
state = 5; // next state

end
else if (opcode == LW) begin
Memory[ALUOut>>2] <= B; // write the memory
state = 1; // return to state 1
end //store finishes
else ; // other instructions go here
end

5: begin // LW is the only instruction still in execution
Regs[IR[20:161] = MDR; // write the MDR to the register

state = 1;
end //complete an LW instruction
endcase
end
endmodule

FIGURE e4.14.5 A behavioral specification of the multicycle MIPS design. (Continued)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and

is confidential until formal publication.

4.14-14 4.14 An Introduction to Digital Design Using a Hardware Design Language to Describe

module Datapath (ALUOp, RegDst, MemtoReg, MemRead, MemWrite, IorD, RegWrite, IRWrite,

PCWrite, PCWriteCond, ALUSrcA, ALUSrcB, PCSource, opcode, clock); // the control inputs + clock

input [1:0] ALUOp, ALUSrcB, PCSource; // 2-bit control signals

input RegDst, MemtoReg, MemRead, MemWrite, IorD, RegWrite, IRWrite, PCWrite, PCWriteCond,

ALUSrcA, clock; // 1-bit control signals

output [5:0] opcode ;// opcode is needed as an output by control

reg [31:0] PC, Memory [0:1023], MDR,IR, ALUOut; // CPU state + some temporaries

wire [31:0] A,B,SignExtendOffset, PCOffset, ALUResultOut, PCValue, JumpAddr, Writedata, ALUAin,
ALUBin,MemOut; / these are signals derived from registers

wire [3:0] ALUCtT; //. the ALU control Tines

wire Zero; the Zero out signal from the ALU

wire[4:0] Writereg;// the signal used to communicate the destination register

initial PC = 0; //start the PC at 0

// Read using word address with either ALUOut or PC as the address source
assign MemOut = MemRead ? Memory[(IorD ? ALUOut : PC)>>21:0;
assign opcode = IR[31:26]1;// opcode shortcut

// Get the write register address from one of two fields depending on RegDst
assign Writereg = RegDst ? IR[15:11]: IR[20:16];

// Get the write register data either from the ALUOut or from the MDR
assign Writedata = MemtoReg ? MDR : ALUOut;

// Sign-extend the lower half of the IR from load/store/branch offsets
assign SignExtendOffset = {{16{IR[15]}},IR[15:0]}; //sign-extend lower 16 bits;

// The branch offset is also shifted to make it a word offset
assign PCOffset = SignExtend0ffset << 2;

// The A input to the ALU is either the rs register or the PC
assign ALUAin = ALUSrcA ? A : PC; //ALU input is PC or A

// Compose the Jump address
assign JumpAddr = {PC[31:28], IR[25:01,2°b00}; //The jump address

FIGURE e4.14.6 A Verilog version of the multicycle MIPS datapath that is appropriate for synthesis. This datapath relies
on several units from Appendix B. Initial statements do not synthesize, and a version used for synthesis would have to incorporate a reset signal
that had this effect. Also note that resetting RO to 0 on every clock is not the best way to ensure that R0 stays 0; instead, modifying the register
file module to produce 0 whenever RO is read and to ignore writes to RO would be a more efficient solution. (continues on next page)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and

is confidential until formal publication.

4.14 An Introduction to Digital Design Using a Hardware Design Language to describe 4.14-15

// Input ALUOp is control-unit set and used to describe the instruction class as in Chapter 4
// Input IR[5:0] is the function code field for an ALU instruction
// Output ALUCt1 are the actual ALU control bits as in Chapter 4

ALUControl alucontroller (ALUOp,IR[5:0],ALUCt1); //ALU control unit

// Inputs are ALUResultOut (the incremented PC) , ALUOut (the branch address), the jump target address
// PCSource is the selector input and PCValue is the multiplexor output

Mult3tol PCdatasrc (ALUResultOut,ALUOut,JumpAddr, PCSource , PCValue);

// Inputs are register B,constant 4, sign-extended Tower half of IR, sign-extended Tower half of IR << 2
// ALUSrcB is the selector input
// ALUBin is the multiplexor output

Mult4tol ALUBinput (B,32°d4,SignExtendOffset,PCOffset,ALUSrcB,ALUBiN);

// Inputs are ALUCt1 (the ALU control), ALU value inputs (ALUAin, ALUBin)
// Outputs are ALUResultOut (the 32-bit output) and Zero (zero detection output)

MIPSALU ALU (ALUCt1, ALUAin, ALUBin, ALUResultOut,Zero); //the ALU

// Inputs are

// the rs and rt fields of the IR used to specify which registers to read,

// Writereg (the write register number), Writedata (the data to be written), RegWrite (indicates a
write), the clock

// Outputs are A and B, the registers read

registerfile regs (IR[25:217,IR[20:16],Writereg,Writedata,RegWrite,A,B,clock); //Register file

always @(posedge clock) begin if (MemWrite) Memory[ALUOuUt>>2] <= B; // Write memory--must be a store
ALUQut <= ALUResultOut; //Save the ALU result for use on a later clock cycle
if (IRWrite) IR <= MemQut; // Write the IR if an instruction fetch
MDR <= MemOut; // Always save the memory read value

// The PC is written both conditionally (controlled by PCWrite) and unconditionally
if (PCWrite || (PCWriteCond & Zero)) PC <=PCValue;

end
endmodule

FIGURE e4.14.6 A Verilog version of the multicycle MIPS datapath that is appropriate for synthesis.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and

is confidential until formal publication.

4.14-16 4.14 An Introduction to Digital Design Using a Hardware Design Language to Describe

module CPU (clock);
parameter LW = 6°b100011, SW = 6°b101011, BEQ = 6°b000100, J = 6°d2; //constants
input clock; reg [2:0] state;
wire [1:0] ALUOp, ALUSrcB, PCSource; wire [5:0] opcode;
wire RegDst, MemRead, MemWrite, IorD, RegWrite, IRWrite, PCWrite, PCWriteCond,
ALUSrcA, MemoryOp, IRWwrite, Mem2Reg;

Datapath MIPSDP (ALUOp,RegDst,Mem2Reg, MemRead, MemWrite, IorD, RegWrite,
IRWrite, PCWrite, PCWriteCond, ALUSrcA, ALUSrcB, PCSource, opcode, clock);

initial begin state = 1; end // start the state machine in state 1

assign IRWrite = (state==1);
assign Mem2Reg = ~ RegDst;
assign MemoryOp = (opcode==LW)|(opcode==SW); // a memory operation
assign ALUOp = ((state==1)|(state==2)|((state==3)&MemoryOp)) ? 2’b00 : // add
((state==3)&(opcode==BEQ)) ? 2°b01 : 2°b10; // subtract or use function code
assign RegDst = ((state==4)&(opcode==0)) ? 1 : 0;
assign MemRead = (state==1) | ((state==4)&(opcode==LW));
assign MemWrite = (state==4)&(opcode==SW);
assign lorD = (state==1) ? 0 : (state==4) ? 1 : X;
assign RegWrite = (state==5) | ((state==4) &(opcode==0));
assign PCWrite = (state==1) | ((state==3)&(opcode==J));
assign PCWriteCond = (state==3)&(opcode==BEQ);
assign ALUSrcA = ((state==1)|(state==2)) ? 0 :1;
assign ALUSrcB = ((state==1) | ((state==3)&(opcode==BEQ))) ? 2’b0l : (state==2) ? 2’bll
((state==3)&Memory0Op) ? 2’bl0 : 2°b00; // memory operation or other
assign PCSource = (state==1) ? 2°b00 : ((opcode==BEQ) ? 2°b01 : 2’bl0);

always @(posedge clock) begin // all state updates on a positive clock edge
case (state)
1: state
2: state
3: // third step: jumps and branches complete

2; //unconditional next state

3; //unconditional next state

state = ((opcode==BEQ) | (opcode==J)) ? 1 : 4;// branch or jump go back else next state
4: state = (opcode==LW) ? 5 : 1; //R-type and SW finish
5: state = 1; // go back

endcase
end

endmodule

FIGURE e4.14.7 The MIPS CPU using the datapath from Figure e4.14.6.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and

is confidential until formal publication.

4.14 An Introduction to Digital Design Using a Hardware Design Language to describe 4.1417

Elaboration: When specifying control, designers often take advantage of knowledge
of the control so as to simplify or shorten the control specification. Here are a few
examples from the specification in Figures €4.14.6 and €4.14.7.

1. MemtoReg is set only in two cases, and then it is always the inverse of
RegDst, so we just use the inverse of RegDst.

2. IRWrite isset only in state 1.

3. The ALU does not operate in every state and, when unused, can safely do
anything.

4. RegDst is 1 in only one case and can otherwise be set to 0. In practice it
might be better to set it explicitly when needed and otherwise set it to X, as
we do for TorD. First, it allows additional logic optimization possibilities
through the exploitation of don’t-care terms (see Appendix B for further
discussion and examples). Second, it is a more precise specification, and
this allows the simulation to more closely model the hardware, possibly
uncovering additional errors in the specification.

More lllustrations of Instruction Execution on the
Hardware

To reduce the cost of this book, in the third edition we moved sections and figures
that were used by a minority of instructors online. This subsection recaptures
those figures for readers who would like more supplemental material to better
understand pipelining. These are all single-clock-cycle pipeline diagrams, which
take many figures to illustrate the execution of a sequence of instructions.

The three examples are respectively for code with no hazards, an example of
forwarding on the pipelined implementation, and an example of bypassing on the
pipelined implementation.

No Hazard lllustrations
On page 297, we gave the example code sequence

Tw $10, 20($1)
sub $11, $2, $3
add $12, $3, $4
Tw $13, 24($1)
add $14, $5, $6

Figures 4.43 and 4.44 showed the multiple-clock-cycle pipeline diagrams for this
two-instruction sequence executing across six clock cycles. Figures e4.14.8 through
€4.14.10 show the corresponding single-clock-cycle pipeline diagrams for these
two instructions. Note that the order of the instructions differs between these two
types of diagrams: the newest instruction is at the bottom and to the right of the
multiple-clock-cycle pipeline diagram, and it is on the left in the single-clock-cycle
pipeline diagram.

