
1Designing a multicycle processor

ESE 545 Computer Architecture

Designing a Multicycle
Processor

Computer Architecture



2

Abstract View of a Single Cycle Processor

PC

N
ex

t P
C

R
eg

is
te

r
Fe

tc
h ALU R
eg

. 
W

rt

M
em

Ac
ce

ss

D
at

a
M

emIn
st

ru
ct

io
n

Fe
tc

h

R
es

ul
t S

to
re

AL
U

ct
r

R
eg

D
stAL
U

Sr
c

Ex
tO

p M
em

W
r

Ze
ro

nP
C

_s
el

R
eg

W
r

M
em

to
R

eg
M

em
R

d

Main
Control

ALU
control

op

func

Ex
t

Designing a multicycle processor



3

Single Cycle Implementation
n Calculate cycle time assuming negligible delays except:

n memory (200ps), 
ALU and adders (100ps), 
register file access (50ps)

Read
register 1

Read
register 2

Write
register

Write
data

Write
data

Registers ALU

Add

Zero

RegWrite

MemRead

MemWrite

PCSrc

MemtoReg

Read
data 1

Read
data 2

ALU operation4

Sign
extend

16 32

Instruction ALU
result

Add

ALU
result

M
u
x

M
u
x

M
u
x

ALUSrc

Address

Data
memory

Read
data

Shift
left 2

4

Read
address

Instruction
memory

PC

Designing a multicycle processor



4

Worst Case Timing (Load)
Clk

PC

Rs, Rt, Rd,
Op, Func

Clk-to-Q

ALUctr

Instruction Memoey Access Time

Old Value New Value

RegWr Old Value New Value

Delay through Control Logic

busA
Register File Access Time

Old Value New Value

busB

ALU Delay

Old Value New Value

Old Value New Value

New ValueOld Value

ExtOp Old Value New Value

ALUSrc Old Value New Value

MemtoReg Old Value New Value

Address Old Value New Value

busW Old Value New

Delay through Extender & Mux

Register
Write Occurs

Data Memory Access Time

Designing a multicycle processor



5

Where We are Headed
n Single Cycle Problems:

n what if we had a more complicated instruction like floating point?
n One Solution:

n use a “smaller” cycle time
n have different instructions take different numbers of cycles
n a “multicycle” datapath:

Designing a multicycle processor



6

Reducing Cycle Time
n Cut combinational dependency graph and insert register / latch

n Do same work in two fast cycles, rather than one slow one

n May be able to short-circuit path and remove some components for some 
instructions!

storage element

Acyclic 
Combinational
Logic

storage element

storage element

Acyclic 
Combinational
Logic (A)

storage element

storage element

Acyclic 
Combinational
Logic (B)

Þ

Designing a multicycle processor



7

Basic Limits on Cycle Time
n Next address logic

n PC <= branch ? PC + offset : PC + 4
n Instruction Fetch

n InstructionReg <= Mem[PC]
n Register Access

n A <= R[rs]
n ALU operation

n R <= A + B

PC

N
ex

t P
C

O
pe

ra
nd

Fe
tc

h Exec R
eg

. 
Fi

le

M
em

Ac
ce

ss

D
at

a
M

em

In
st

ru
ct

io
n

Fe
tc

h

R
es

ul
t S

to
re

AL
U

ct
r

R
eg

D
st

AL
U

Sr
c

Ex
tO

p

M
em

W
r

nP
C

_s
el

R
eg

W
r

M
em

to
R

er
M

em
R

d

Control

Designing a multicycle processor



8

Partitioning the CPI=1 Datapath
n Add registers between smallest steps

n Place enables on all registers

PC
N

ex
t P

C

O
pe

ra
nd

Fe
tc

h Exec R
eg

. 
Fi

le

M
em

Ac
ce

ss
D

at
a

M
em

In
st

ru
ct

io
n

Fe
tc

h

AL
U

ct
r

R
eg

D
st

AL
U

Sr
c

Ex
tO

p

M
em

W
r

nP
C

_s
el

R
eg

W
r

M
em

to
R

eg

M
em

R
d

Ze
ro

Designing a multicycle processor



9

n Break up the instructions into steps, each step takes a cycle
n balance the amount of work to be done
n restrict each cycle to use only one major functional unit

n At the end of a cycle
n store values for use in later cycles (easiest thing to do)
n introduce additional “internal” registers

Multicycle Approach 1/2

Read
register 1

Read
register 2

Write
register

Write
data

Registers ALU
Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

ALU
result

M
u
x

M
u
x

Shift
left 2

Instruction
register

PC 0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1
A

B 0
1
2
3

ALUOut

Instruction
[15–0]

Memory
data

register

Address

Write
data

Memory
MemData

4

Instruction
[15–11]

Designing a multicycle processor



10

n We will be reusing functional units
n ALU used to compute address and to increment PC
n Memory used for instruction and data

n Our control signals will not be determined directly by 
instruction
n e.g., what should the ALU do for a “subtract” 

instruction?
n We’ll use a finite state machine for control

Multicycle Approach 2/2

Designing a multicycle processor



11

Recall: Step-by-step Processor Design

Step 1: ISA => Logical Register Transfers

Step 2: Components of the Datapath

Step 3: RTL + Components => Datapath

Step 4: Datapath + Logical RTs => Physical RTs

Step 5: Physical RTs => Control

Designing a multicycle processor



12

Instructions from ISA Perspective
n Consider each instruction from perspective of ISA (at the 

logical register-transfer level).
n Example:  

n The add instruction changes a register.  
n Register specified by bits 15:11 of instruction.  
n Instruction specified by the PC.  
n New value is the sum (“op”) of two registers.  
n Registers specified by bits 25:21 and 20:16 of the instruction

Reg[Memory[PC][15:11]] <=  Reg[Memory[PC][25:21]] op          
Reg[Memory[PC][20:16]]

n In order to accomplish this we must break up the instruction.
(kind of like introducing variables when programming)

Designing a multicycle processor



13

Breaking Down an Instruction
n ISA definition of arithmetic:

Reg[Memory[PC][15:11]] <= Reg[Memory[PC][25:21]]  op
Reg[Memory[PC][20:16]]

n Could break down to:
n IR <= Memory[PC]
n A <= Reg[IR[25:21]]
n B <= Reg[IR[20:16]]
n ALUOut <= A op B
n Reg[IR[20:16]] <= ALUOut

n And do not forget an important part of the definition of arithmetic!
n PC <= PC + 4   

Designing a multicycle processor



14

Idea Behind a Multicycle Approach
n We define each instruction from the ISA perspective  (logical RTL)

n Break it down into steps following our rule that data flows through at 
most one major functional unit  (e.g., balance work across steps)

n Introduce new registers as needed  (e.g, A, B, ALUOut, MDR, etc.)

n Finally try and pack as much work into each step 
(avoid unnecessary cycles)

while also trying to share steps where possible
(minimizes control, helps to simplify solution)

n Result:  Our multicycle Implementation!

Designing a multicycle processor



15

Read
register 1

Read
register 2

Write
register

Write
data

Registers ALU
Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[31–26]

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

ALU
result

M
u
x

M
u
x

Shift
left 2

Shift
left 2

Instruction
register

PC 0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1
A

B 0
1
2
3

M
u
x

0

1

2

ALUOut

Instruction
[15–0]

Memory
data
register

Address

Write
data

Memory
MemData

4

Instruction
[15–11]

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

26 28

Outputs

Control

Op
[5–0]

ALU
control

PC [31–28]

Instruction [25-0]

Instruction [5–0]

Jump
address
[31–0]

Multicycle Processor

Designing a multicycle processor



16

n Instruction Fetch

n Instruction Decode and Register Fetch

n Execution, Memory Address Computation, or Branch 
Completion

n Memory Access or R-type instruction completion

n Write-back step

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!

Five Execution Steps

Designing a multicycle processor



17

n Use PC to get instruction and put it in the Instruction 
Register.

n Increment the PC by 4 and put the result back in the PC.
n Can be described succinctly using RTL "Register-Transfer 

Language"

IR <= Memory[PC];
PC <= PC + 4;

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?

Step 1:  Instruction Fetch

Designing a multicycle processor



18

n Read registers rs and rt in case we need them
n Compute the branch address in case the instruction is a 

branch
n (Physical) RTL:

A <= Reg[IR[25:21]];
B <= Reg[IR[20:16]];
ALUOut <= PC + (sign-extend(IR[15:0]) << 2);

n We aren't setting any control lines based on the 
instruction type 

(we are busy "decoding" it in our control logic)

Step 2:  Instruction Decode and Register Fetch

Designing a multicycle processor



19

n ALU is performing one of three functions, based on 
instruction type

n Memory Reference:

ALUOut <= A + sign-extend(IR[15:0]);

n R-type:

ALUOut <= A op B;

n Branch:

if (A==B) PC <= ALUOut;

Step 3 (Instruction Dependent)

Designing a multicycle processor



20

n Step 4
n Loads and stores access memory

MDR <= Memory[ALUOut];
or

Memory[ALUOut] <= B;

n R-type instructions finish

Reg[IR[15:11]] <= ALUOut;

The write actually takes place at the end of the cycle on the edge

n Write-back step 5

n Reg[IR[20:16]] <= MDR;

Which instruction needs this?

Step 4 (R-type or Memory-Access) and Write-Back Step 5

Designing a multicycle processor



21

Summary:

Designing a multicycle processor



22

n How many cycles will it take to execute this code? 

lw $t2, 0($t3)
lw $t3, 4($t3)
beq $t2, $t3, Label #assume not taken
add $t5, $t2, $t3
sw $t5, 8($t3)

Label: ...

n What is going on during the 8th cycle of execution?
n In what cycle does the actual addition of $t2 and $t3 takes place?

Simple Questions

Designing a multicycle processor



23

n Value of control signals is dependent upon:
n what instruction is being executed
n which step is being performed

n Use the information we’ve accumulated to specify a finite 
state machine
n specify the finite state machine graphically, or
n use microprogramming

n Implementation can be derived from specification

Implementing the Control for a Multicycle Processor

Designing a multicycle processor



24

n Finite state machines:
n a set of states and 
n next state function (determined by current state and the input)
n output function (determined by current state and possibly input)

n We’ll use a Moore machine for the output function 
n output based only on current state

Review:  Finite State Machines

Inputs

Current state

Outputs

Clock

Next-state
function

Output
function

Next
state

Designing a multicycle processor



25

Read
register 1

Read
register 2

Write
register

Write
data

Registers ALU
Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[31–26]

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

ALU
result

M
u
x

M
u
x

Shift
left 2

Shift
left 2

Instruction
register

PC 0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1
A

B 0
1
2
3

M
u
x

0

1

2

ALUOut

Instruction
[15–0]

Memory
data
register

Address

Write
data

Memory
MemData

4

Instruction
[15–11]

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

26 28

Outputs

Control

Op
[5–0]

ALU
control

PC [31–28]

Instruction [25-0]

Instruction [5–0]

Jump
address
[31–0]

Multicycle Processor

Designing a multicycle processor



26

Read
register 1

Read
register 2

Write
register

Write
data

Registers ALU
Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[31–26]

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

ALU
result

M
u
x

M
u
x

Shift
left 2

Shift
left 2

Instruction
register

PC 0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1
A

B 0
1
2
3

M
u
x

0

1

2

ALUOut

Instruction
[15–0]

Memory
data
register

Address

Write
data

Memory
MemData

4

Instruction
[15–11]

PCWriteCond
PCWrite

IorD
MemRead
MemWrite
MemtoReg
IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

26 28

Outputs

Control

Op
[5–0]

ALU
control

PC [31–28]

Instruction [25-0]

Instruction [5–0]

Jump
address
[31–0]

Multicycle
Processor

Designing a multicycle processor

State 0 (IF & PC+4)
§ IorD =0
§ MemRead=1
§ IRWrite=1
§ ALUSrcA=0
§ ALUScrB=01
§ ALUop=00(add)
§ PCSource =00
§ PCWrite=1

State 1 
(IDcd+RF)

§ ALUSrcA=0
§ ALUScrB=11
§ ALUop=00(add)



27

Read
register 1

Read
register 2

Write
register

Write
data

Registers ALU
Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[31–26]

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

ALU
result

M
u
x

M
u
x

Shift
left 2

Shift
left 2

Instruction
register

PC 0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1
A

B 0
1
2
3

M
u
x

0

1

2

ALUOut

Instruction
[15–0]

Memory
data
register

Address

Write
data

Memory
MemData

4

Instruction
[15–11]

PCWriteCond
PCWrite

IorD
MemRead
MemWrite
MemtoReg
IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

26 28

Outputs

Control

Op
[5–0]

ALU
control

PC [31–28]

Instruction [25-0]

Instruction [5–0]

Jump
address
[31–0]

Multicycle
Processor

Designing a multicycle processor

State 2 (op=Lw/Sw)

§ ALUSrcA=1
§ ALUScrB=10
§ ALUop=00(add)

State 3 
(op=Lw)

§ IorD=1
§ MemRead=1

State 4 (Write 
LWdata to 
Reg[Rt])

§ MemtoReg=1
§ RegDst=0
§ RegWr=1

From 
State 1

To State 0

State 5 
(op= Sw)

§ IorD=1
§ MemWrite=1



28

Read
register 1

Read
register 2

Write
register

Write
data

Registers ALU
Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[31–26]

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

ALU
result

M
u
x

M
u
x

Shift
left 2

Shift
left 2

Instruction
register

PC 0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1
A

B 0
1
2
3

M
u
x

0

1

2

ALUOut

Instruction
[15–0]

Memory
data
register

Address

Write
data

Memory
MemData

4

Instruction
[15–11]

PCWriteCond
PCWrite

IorD
MemRead
MemWrite
MemtoReg
IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

26 28

Outputs

Control

Op
[5–0]

ALU
control

PC [31–28]

Instruction [25-0]

Instruction [5–0]

Jump
address
[31–0]

Multicycle
Processor

Designing a multicycle processor

State 6 (op=R-type)

§ ALUSrcA=1
§ ALUScrB=00
§ ALUop=func

State 7
(Write 
ALUdata to 
Reg[Rd])

§ MemtoReg=0
§ RegDst=1
§ RegWr=1

From 
State 1

To State 0



29

Read
register 1

Read
register 2

Write
register

Write
data

Registers ALU
Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[31–26]

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

ALU
result

M
u
x

M
u
x

Shift
left 2

Shift
left 2

Instruction
register

PC 0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1
A

B 0
1
2
3

M
u
x

0

1

2

ALUOut

Instruction
[15–0]

Memory
data
register

Address

Write
data

Memory
MemData

4

Instruction
[15–11]

PCWriteCond
PCWrite

IorD
MemRead
MemWrite
MemtoReg
IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

26 28

Outputs

Control

Op
[5–0]

ALU
control

PC [31–28]

Instruction [25-0]

Instruction [5–0]

Jump
address
[31–0]

Multicycle
Processor

Designing a multicycle processor

State 8 (op=BEQ)

§ ALUSrcA=1
§ ALUScrB=00
§ ALUop=01(sub)
§ PCSource=01
§ PCWriteCond=1

From 
State 1

To State 0



30

Read
register 1

Read
register 2

Write
register

Write
data

Registers ALU
Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[31–26]

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

ALU
result

M
u
x

M
u
x

Shift
left 2

Shift
left 2

Instruction
register

PC 0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1
A

B 0
1
2
3

M
u
x

0

1

2

ALUOut

Instruction
[15–0]

Memory
data
register

Address

Write
data

Memory
MemData

4

Instruction
[15–11]

PCWriteCond
PCWrite

IorD
MemRead
MemWrite
MemtoReg
IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

26 28

Outputs

Control

Op
[5–0]

ALU
control

PC [31–28]

Instruction [25-0]

Instruction [5–0]

Jump
address
[31–0]

Multicycle
Processor

Designing a multicycle processor

State 9 (op=J)

§ PCSource=10
§ PCWrite=1

From 
State 1

To State 0



31

n Note:
n don’t care if not mentioned
n asserted if name only
n otherwise exact value

n How many state 
bits will we need?

Graphical Specification of FSM
MemRead

ALUSrcA = 0
IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

MemRead
IorD = 1

MemWrite
IorD = 1

RegDst = 1
RegWrite

MemtoReg = 0

RegDst = 1
RegWrite

MemtoReg = 0

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01

PCWriteCond
PCSource = 01

Instruction decode/
register fetch

Instruction fetch

0 1

Start

Jump
completion

9862

3

4

5 7

Memory read
completon step

R-type completion
Memory
access

Memory
access

Execution
Branch

completion
Memory address

computation

0

1

Designing a multicycle processor



32

n Implementation:
Finite State Machine for Control

PCW rite

PCW riteCond

Io rD

M em toReg

PCS ou rce

ALUO p

ALUS rcB

ALUS rcA

RegW rite

RegDst

NS3
NS2
NS1
NS0

O
p5

O
p 4

O
p 3

O
p 2

O
p 1

O
p 0

S
3

S
2

S
1

S
0

S ta te re gis te r

IRW rite

M emRead

M emW rite

Ins truct io n re g is te r
opcode fie ld

Ou tputs

Con tro l log ic

Inp uts

Designing a multicycle processor



33

PLA Implementation
Op5

Op4

Op3

Op2

Op1

Op0

S3

S2

S1

S0

IorD

IRWrite

MemRead
MemWrite

PCWrite
PCWriteCond

MemtoReg
PCSource1

ALUOp1

ALUSrcB0
ALUSrcA
RegWrite
RegDst
NS3
NS2
NS1
NS0

ALUSrcB1
ALUOp0

PCSource0

Designing a multicycle processor



34

n ROM = "Read Only Memory"
n values of memory locations are fixed ahead of time

n A ROM can be used to implement a truth table
n if the address is m-bits, we can address 2m entries in the ROM.
n our outputs are the bits of data that the address points to.

2m is the memory ”depth", and n is the "width"

ROM Implementation

m n

0 0 0 0 0 1 1

0 0 1 1 1 0 0
0 1 0 1 1 0 0

0 1 1 1 0 0 0 
1 0 0 0 0 0 0 

1 0 1 0 0 0 1
1 1 0 0 1 1 0

1 1 1 0 1 1 1

Designing a multicycle processor



35

n How many inputs are there?
6 bits for opcode, 4 bits for state = 10 address lines
(i.e., 210 = 1024 different addresses)

n How many outputs are there?
16 datapath-control outputs, 4 state bits = 20 outputs

n ROM is 210 x 20 = 20K bits    (and a rather unusual size)

n Rather wasteful, since for lots of the entries, the outputs 
are the same

— i.e., opcode is often ignored

ROM Implementation

Designing a multicycle processor



36

n Break up the table into two parts
— 4 state bits tell you the 16 outputs,    24 x 16 bits of ROM
— 10 bits tell you the 4 next state bits,  210 x 4 bits of ROM
— Total:  4.3K bits of ROM

n PLA is much smaller
— can share product terms
— only need entries that produce an active output
— can take into account don't cares

n Size is (#inputs ´ #product-terms) + (#outputs ´ #product-terms)
For this example  =  (10x17)+(20x17) = 510 PLA cells

n PLA cells usually about the size of a ROM cell (slightly bigger)

ROM vs PLA

Designing a multicycle processor



37

n Complex instructions:  the "next state" is often current state + 1

Another Implementation Style

Add rC t l

O u tp u ts

P LA o r ROM

S ta te

A dd res s se le c t log ic

O
p[
5–

0 ]

A d de r

Ins tru c tio n reg is te r
op co de fie ld

1

C on tro l u n it

In pu t

PCW rite
PCW riteC ond
IorD

Mem toR eg
PCSou rc e
ALUO p
ALUS rcB
ALUS rcA
R egW rite
R egD s t

IRW r ite

M em R ead
MemW rite

BW rite

Designing a multicycle processor



38

Details
Dispatch ROM 1 Dispatch ROM 2

Op Opcode name Value Op Opcode name Value
000000 R-format 0110 100011 lw 0011
000010 jmp 1001 101011 sw 0101
000100 beq 1000
100011 lw 0010
101011 sw 0010

State number Address-control action Value of AddrCtl
0 Use incremented state 3
1 Use dispatch ROM 1 1
2 Use dispatch ROM 2 2
3 Use incremented state 3
4 Replace state number by 0 0
5 Replace state number by 0 0
6 Use incremented state 3
7 Replace state number by 0 0
8 Replace state number by 0 0
9 Replace state number by 0 0

State

Adder

1

PLA or ROM

Mux
3 2 1 0

Dispatch ROM 1Dispatch ROM 2

0

AddrCtl

Address select logic

Instruction register
opcode field

Designing a multicycle processor



39

ISA to Microarchitecture Mapping
n ISA often designed with particular 

microarchitectural style in mind, e.g.,
Accumulator Þ hardwired, unpipelined
CISC Þ microcoded
RISC Þ hardwired, pipelined
VLIW Þ fixed-latency in-order parallel pipelines
JVM Þ software interpretation

nBut can be implemented with any 
microarchitectural style

– Intel Ivy Bridge: hardwired pipelined CISC (x86) 
machine (with some microcode support)

– Spike: Software-interpreted RISC-V machine
– ARM Jazelle: A hardware JVM processor

Designing a multicycle processor



40

Control versus Datapath
n As we already know, processor designs are split 

between datapath, where operations computed, and 
control, which sequences operations on datapath

§ Biggest challenge for early 
computer designers was getting 
control circuitry correct

§ Maurice Wilkes invented the 
idea of microprogramming to 
design the control unit of a 
processor for EDSAC-II, 1958

Condition?

Control

Main Memory

Address Data

Control Lines

Da
ta

pa
th

PC

In
st

. R
eg

.

Re
gi

st
er

s

AL
U

Instruction

Busy?

Designing a multicycle processor



41

Why Learn Microprogramming?
nTo show how to build very small processors with 
complex ISAs

nTo help you understand where CISC machines 
came from

nBecause still used in common machines (x86, 
IBM360, PowerPC)

nAs a gentle introduction into machine structures
nTo help understand how technology drove the 
move to RISC

Designing a multicycle processor



42

Microprogramming

n What are the “microinstructions” ?

PCWrite
PCWriteCond
IorD

MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite

AddrCtl

Outputs

Microcode memory

IRWrite

MemRead
MemWrite

RegDst

Control unit

Input

Microprogram counter

Address select logic

Adder

1

Instruction register
opcode field

BWrite

Datapath

Designing a multicycle processor



43

Microprogramming

Designing a multicycle processor

sequencer
control

micro-PC
µ-sequencer:
fetch,dispatch,
sequential

Dispatch
ROM

Opcode

Inputs

° Microprogramming is a fundamental concept
• implement an instruction set by building a very simple processor 

and interpreting the instructions
• essential for very complex instructions and when few register 

transfers are possible
• overkill when ISA matches datapath 1-1

µ-Code ROM

To Datapath

DecodeDecode

datapath control

microinstruction (µ)



44

Microprogramming

Designing a multicycle processor

° Microprogramming is a convenient method for 
implementing structured control state diagrams:

• Random logic replaced by microPC sequencer and ROM
• Each line of ROM called a µinstruction: 

contains sequencer control + values for control points
• limited state transitions: 

branch to zero, next sequential,
branch to µinstruction address from displatch ROM

° Horizontal µCode: one control bit in µInstruction 
for every control line in datapath

° Vertical µCode: groups of control-lines coded 
together in µInstruction (e.g. possible ALU dest)

° Control design reduces to Microprogramming
• Part of the design process is to develop a “language” that 

describes control and is easy for humans to understand 



45

“Macroinstruction” Interpretation

Designing a multicycle processor

Main
Memory

execution
unit

control
memory

CPU

ADD
SUB
ORI

DATA

.

.

.

User program 
plus Data

this can change!

ORI microsequence

e.g., Fetch Instruction
Fetch Operand(s)
Calculate OR
Save result

one of these is
mapped into one
of these



46

Designing a Microinstruction Set

Designing a multicycle processor

1) Start with list of control signals
2) Group signals together that make sense (vs. 

random): called “fields”
3) Place fields in some logical order 

(e.g., ALU operation & ALU operands first and
microinstruction sequencing last)

4) To minimize the width, encode operations that will 
never be used at the same time

5) Create a symbolic legend for the microinstruction 
format, showing name of field values and how they 
set the control signals

• Use computers to design computers



47

Multicycle datapath (with ORI but w/o Jump)

Designing a multicycle processor

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr

32

A
L

U

32
32

ALUOp

ALU
Control

32

IRWr

Instruction R
eg

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr

ALUSelA

Mux 01

RegDst

M
ux

0

1

32

PC

MemtoReg

Extend

ExtOp

M
ux

0

1
32

0

1

2
3

4

16Imm 32

<< 2

ALUSelB

M
ux

1

0

32

Equal

Zero
PCWrCond PCSrc

32

IorD

M
em

 D
ata R

eg

A
L

U
 O

ut

B

A

MemRd



48

Step 1Þ Start with List of control signals

Designing a multicycle processor

Signal name Effect when deasserted Effect when asserted
ALUSelA 1st ALU operand = PC 1st ALU operand = Reg[rs]
RegWrite None Reg. is written 
MemtoReg Reg. write data input = ALU Reg. write data input = memory 
RegDst Reg. dest. no. =  rt Reg. dest. no. =  rd
MemRead None Memory at address is read, 

MDR <= Mem[addr]
MemWrite None Memory at address is written 
IorD Memory address = PC Memory address = S
IRWrite None IR <= Memory
PCWrite None PC <= PCSource
PCWriteCond None IF ALUzero then PC <= PCSource
PCSource PCSource = ALU PCSource = ALUout
ExtOp Zero Extended Sign Extended 

Si
ng

le
 B

it 
Co

nt
ro

l

Signal name Value Effect
ALUOp 00 ALU adds 

01 ALU subtracts 
10 ALU does function code
11 ALU does logical OR 

ALUSelB 00 2nd ALU input = 4
01 2nd ALU input = Reg[rt] 
10 2nd ALU input = extended,shift left 2 
11 2nd ALU input = extended

M
ul

tip
le

 B
it 

Co
nt

ro
l



49

Step 2ÞGroup together related signals

Designing a multicycle processor

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr

32

A
L

U

32
32

ALUOp

ALU
Control

32

IRWr

Instruction R
eg

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr

ALUSelA

Mux 01

RegDst

M
ux

0

1

32

PC

MemtoReg

Extend

ExtOp

M
ux

0

1
32

0

1

2
3

4

16Imm 32

<< 2

ALUSelB

M
ux

1

0

32

Equal

Zero
PCWrCond PCSrc

32

IorD

M
em

 D
ata R

eg

A
L

U
 O

ut

B

A

MemRd

ALU

SRC1

SRC2

DestinationMemory

PCWrite



50

3&4) Microinstruction Format: unencoded vs. encoded fields

Designing a multicycle processor

Field Name Width Control Signals Set
wide narrow

ALU Control 4 2 ALUOp
SRC1 2 1 ALUSelA
SRC2 5 3 ALUSelB, ExtOp
ALU Destination 3 2 RegWrite, MemtoReg, RegDst
Memory 3 2 MemRead, MemWrite, IorD
Memory->Register 1 1 IRWrite
PCWrite Control 3 2 PCWrite, PCWriteCond, PCSource
Sequencing 3 2 AddrCtl
Total width 24 15 bits



51

Step 5ÞGroup into Fields, Order and Assign Names

Designing a multicycle processor2/25/04 ©UCB Spring 2004

Field Name Values for Field Function of Field with Specific Value
ALU Add ALU adds

Subt. ALU subtracts
Func ALU does function code
Or ALU does logical OR

SRC1 PC 1st ALU input <= PC
rs 1st ALU input <= Reg[rs]

SRC2 4 2nd ALU input <= 4
Extend 2nd ALU input <= sign ext. IR[15-0]
Extend0 2nd ALU input <= zero ext. IR[15-0] 
Extshft 2nd ALU input <= sign ex., sl IR[15-0]
rt 2nd ALU input <= Reg[rt]

Dest(ination) rd ALU Reg[rd] <= ALUout
rt ALU Reg[rt] <= ALUout
rt Mem Reg[rt] <= Mem

Mem(ory) Read PC Read memory using PC; IR <= Mem [PC]
Read ALU Read memory using ALUout for addr
Write ALU Write memory using ALUout for addr

PCwrite ALU PC <= ALU
ALUout-cond IF Zero then PC <= ALUout

Seq(uencing) Seq Go to next sequential µinstruction
Fetch Go to the first microinstruction
Dispatch 1 Dispatch using ROM1                       
Dispatch 2 Dispatch using ROM2

ALU SRC1 SRC2 Dest Mem Memreg Pcwrite Seq



52

Microinstruction Format
Field name Value Signals active Comment

Add ALUOp = 00 Cause the ALU to add.
ALU control Subt ALUOp = 01 Cause the ALU to subtract; this implements the compare for

branches.
Func code ALUOp = 10 Use the instruction's function code to determine ALU control.

SRC1 PC ALUSrcA = 0 Use the PC as the first ALU input.
A ALUSrcA = 1 Register A is the first ALU input.
B ALUSrcB = 00 Register B is the second ALU input.

SRC2 4 ALUSrcB = 01 Use 4 as the second ALU input.
Extend ALUSrcB = 10 Use output of the sign extension unit as the second ALU input.
Extshft ALUSrcB = 11 Use the output of the shift-by-two unit as the second ALU input.
Read Read two registers using the rs and rt fields of the IR as the register

numbers and putting the data into registers A and B.
Write ALU RegWrite, Write a register using the rd field of the IR as the register number and

Register RegDst = 1, the contents of the ALUOut as the data.
control MemtoReg = 0

Write MDR RegWrite, Write a register using the rt field of the IR as the register number and
RegDst = 0, the contents of the MDR as the data.
MemtoReg = 1

Read PC MemRead, Read memory using the PC as address; write result into IR (and 
lorD = 0 the MDR).

Memory Read ALU MemRead, Read memory using the ALUOut as address; write result into MDR.
lorD = 1

Write ALU MemWrite, Write memory using the ALUOut as address, contents of B as the
lorD = 1 data.

ALU PCSource = 00 Write the output of the ALU into the PC.
PCWrite

PC write control ALUOut-cond PCSource = 01, If the Zero output of the ALU is active, write the PC with the contents
PCWriteCond of the register ALUOut.

jump address PCSource = 10, Write the PC with the jump address from the instruction.
PCWrite

Seq AddrCtl = 11 Choose the next microinstruction sequentially.
Sequencing Fetch AddrCtl = 00 Go to the first microinstruction to begin a new instruction.

Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.
Dispatch 2 AddrCtl = 10 Dispatch using the ROM 2.

Designing a multicycle processor



53

n A specification methodology
n appropriate if hundreds of opcodes, modes, cycles, etc.
n signals specified symbolically using microinstructions

n Will two implementations of the same architecture have the same 
microcode?

n What would a microassembler do?

Microprogramming

Label
ALU 

control SRC1 SRC2
Register 
control Memory

PCWrite 
control Sequencing

Fetch Add PC 4 Read PC ALU Seq
Add PC Extshft Read Dispatch 1

Mem1 Add A Extend Dispatch 2
LW2 Read ALU Seq

Write MDR Fetch
SW2 Write ALU Fetch
Rformat1 Func code A B Seq

Write ALU Fetch
BEQ1 Subt A B ALUOut-cond Fetch
JUMP1 Jump address Fetch

Designing a multicycle processor



54

n No encoding:
n 1 bit for each datapath operation
n faster, requires more memory (logic)
n used for Vax 780 — an astonishing 400K of memory!

n Lots of encoding:
n send the microinstructions through logic to get control signals
n uses less memory, slower

n Historical context of CISC:
n Too much logic to put on a single chip with everything else
n Use a ROM (or even RAM) to hold the microcode
n It’s easy to add new instructions

Maximally vs. Minimally Encoded

Designing a multicycle processor



55

Microcode:  Trade-offs
n Distinction between specification and implementation is sometimes 

blurred
n Specification Advantages:

n Easy to design and write
n Design architecture and microcode in parallel

n Implementation (off-chip ROM) Advantages

n Easy to change since values are in memory

n Can emulate other architectures

n Can make use of internal registers

n Implementation Disadvantages,  SLOWER now  that:

n Control is implemented on same chip as processor

n ROM is no longer faster than RAM

n No need to go back and make changes

Designing a multicycle processor



56

Technology Influence

n When microcode appeared in 50s, different 
technologies for:
n Logic: Vacuum Tubes
n Main Memory: Magnetic cores
n Read-Only Memory: Diode matrix, punched metal 

cards, …
n Logic very expensive compared to ROM or RAM
n ROM cheaper than RAM
n ROM much faster than RAM

Designing a multicycle processor



57

Historical Perspective
n In the ‘60s and ‘70s microprogramming was very important for 

implementing machines
n This led to more sophisticated ISAs and the VAX
n In the ‘80s RISC processors based on pipelining became popular
n Pipelining the microinstructions is also possible!
n Implementations of IA-32 architecture processors since 486 use:

n “hardwired control” for simpler instructions 
(few cycles, FSM control implemented using PLA or random 

logic)
n “microcoded control” for more complex instructions

(large numbers of cycles, central control store)

n The IA-64 architecture uses a RISC-style ISA and can be 
implemented without a large central control store

Designing a multicycle processor



58

Pentium 4
n Somewhere in all that “control we must handle complex instructions

n Processor executes simple microinstructions, 70 bits wide (hardwired)
n 120 control lines for integer datapath (400 for floating point)
n If an instruction requires more than 4 microinstructions to implement, 

control from microcode ROM (8000 microinstructions)
n Its complicated! 

Control

Control

Control

Enhanced
floating point
and multimedia

Control

I/O
interface

Instruction cache

Integer
datapath

Data
cache

Secondary
cache
and
memory
interface

Advanced pipelining
hyperthreading support

Designing a multicycle processor



59

Microprogramming is far from extinct
n Played a crucial role in micros of the Eighties

n DEC uVAX, Motorola 68K series, Intel 286/386
n Plays an assisting role in most modern micros

n e.g., AMD Bulldozer, Intel Ivy Bridge, Intel Atom, 
IBM PowerPC, …

n Most instructions executed directly, i.e., with hard-
wired control

n Infrequently-used and/or complicated instructions 
invoke microcode

n Patchable microcode common for post-fabrication 
bug fixes, e.g., Intel processors load µcode patches at 
bootup

Designing a multicycle processor



60

Reconsidering Microcode Machine

n Motorola 68000 had 17-bit µcode containing either 10-bit µjump or 9-bit 
nanoinstruction pointer
n Nanoinstructions were 68 bits wide, decoded to give 196 control 

signals

µcode ROM

nanoaddress

µcode 
next-state

µaddress

�PC (state)

nanoinstruction ROM
data

Exploits recurring control 
signal patterns in µcode, 
e.g., 

ALU0 A � Reg[rs1] 
...
ALUI0 A � Reg[rs1]
...

User PC

Inst. Cache

Hardwired Decode

RISC!

Designing a multicycle processor



61

Pentium 4
n Pipelining is important (last IA-32 without it was 80386 in 1985)

n Pipelining is used for the simple instructions favored by compilers

“Simply put, a high performance implementation needs to ensure that the 
simple instructions execute quickly, and that the burden of the 
complexities of the instruction set penalize the complex, less frequently 
used, instructions”

Control

Control

Control

Enhanced
floating point
and multimedia

Control

I/O
interface

Instruction cache

Integer
datapath

Data
cache

Secondary
cache
and
memory
interface

Advanced pipelining
hyperthreading support

Designing a multicycle processor



62

Overview of Control

Designing a multicycle processor

° Control may be designed using one of several initial 
representations. The choice of sequence control, and how logic is 
represented, can then be determined independently; the control 
can then be implemented with one of several methods using a 
structured logic technique.

Initial Representation     Finite State Diagram Microprogram

Sequencing Control Explicit Next State Microprogram counter
Function + Dispatch ROMs 

Logic Representation Logic Equations Truth Tables

Implementation PLA ROM 
Technique “hardwired control” “microprogrammed control”



63

Summary
n If we understand the instructions…

We can build a simple processor!

n If instructions take different amounts of time, multi-cycle 
is better

n Datapath implemented using:

n Combinational logic for arithmetic

n State holding elements to remember bits
n Control implemented using:

n Combinational logic for single-cycle implementation
n Finite state machine for multi-cycle implementation

Designing a multicycle processor



64

Acknowledgements
n These slides contain material developed and copyright 

by:
n Morgan Kauffmann (Elsevier, Inc.) 
n Arvind (MIT)
n Krste Asanovic (MIT/UCB)
n Joel Emer (Intel/MIT)
n James Hoe (CMU)
n John Kubiatowicz (UCB)
n David Patterson (UCB)

Designing a multicycle processor


