
IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 1, JANUARY 2006 63

The Microarchitecture of the Synergistic Processor
for a Cell Processor

Brian Flachs, Shigehiro Asano, Member, IEEE, Sang H. Dhong, Fellow, IEEE, H. Peter Hofstee, Member, IEEE,
Gilles Gervais, Roy Kim, Tien Le, Peichun Liu, Jens Leenstra, John Liberty, Brad Michael, Hwa-Joon Oh,
Silvia Melitta Mueller, Osamu Takahashi, Member, IEEE, A. Hatakeyama, Yukio Watanabe, Naoka Yano,

Daniel A. Brokenshire, Mohammad Peyravian, Vandung To, and Eiji Iwata

Abstract—This paper describes an 11 FO4 streaming data
processor in the IBM 90-nm SOI-low-k process. The dual-issue,
four-way SIMD processor emphasizes achievable performance per
area and power. Software controls most aspects of data movement
and instruction flow to improve memory system performance
and core performance density. The design minimizes instruction
latency while providing for fine grain clock control to reduce
power.

Index Terms—Cell, DSP, RISC, SIMD, SPE, SPU.

I. INTRODUCTION

I NCREASING thread level parallelism, data bandwidth,
memory latency, and leakage current are important drivers

for new processor designs, such as Cell. Today’s media-rich
application software is often characterized by multiple light
weight threads and software pipelines. This trend in software
design favors processors that utilize these threads to drive
the improved data bandwidths over processors designed to
accelerate a single thread of execution by taking advantage of
instruction level parallelism. Memory latency is a key limiter to
processor performance. Modern processors can lose up to 4000
instruction slots while they wait for data from main memory.
Previous designs emphasize large caches and reorder buffers,
first to reduce the average latency and second to maintain in-
struction throughput while waiting for data from cache misses.
However, these hardware structures have difficulty scaling to
the sizes required by the large data structures utilized by media
rich software. Transistors oxides are now a few atomic levels
thick and the channels are extremely narrow. These features are
very good for improving transistor performance and increasing
transistor density, but tend to increase leakage current. As
processor performance becomes power limited, leakage current

Manuscript received April 15, 2005; revised August 31, 2005.
B. Flachs, S. H. Dhong, H. P. Hofstee, G. Gervais, R. Kim, T. Le, P. Liu,

J. Liberty, B. Michael, H.-J. Oh, O. Takahashi, D. A. Brokenshire, and V. To are
with the IBM Systems and Technology Group, Austin, TX 78758 USA (e-mail:
flachs@us.ibm.com).

S. Asano and Y. Watanabe are with Toshiba America Electronic Components,
Austin, TX 78717 USA.

N. Yano is with the Broadband System LSI Development Center, Semicon-
ductor Company, Toshiba Corporation, Kawasaki, Japan.

J. Leenstra and S. M. Mueller are with the IBM Entwicklung GmbH,
Boeblingen 71032, Germany.

A. Hatakeyama and E. Iwata are with Sony Computer Entertainment, Austin,
TX 78717 USA.

M. Peyravian is with IBM Microelectronics, Research Triangle Park, NC
27709 USA.

Digital Object Identifier 10.1109/JSSC.2005.859332

becomes an important performance issue. Since leakage is
proportional to area, processor designs need to extract more
performance per transistor.

II. ARCHITECTURE

The Cell processor is a heterogeneous shared memory mul-
tiprocessor [2]. It features a multi-threaded 64 bit POWER
processing element (PPE) and eight synergistic processing
elements (SPE). Performance per transistor is the motivation
for heterogeneity. Software can be divided into general purpose
computing threads, operating system tasks, and streaming
media threads and targeted to a processing core customized
for those tasks. For example, PPE is responsible for running
the operating system and coordinating the flow of the data
processing threads through the SPEs. This differentiation
allows the architectures and implementations of the PPE and
SPE to be optimized for their respective workloads and enables
significant improvements in performance per transistor.

The synergistic processor element (SPE) is the first imple-
mentation of a new processor architecture designed to accel-
erate media and streaming workloads. The architecture aims
to improve the effective memory bandwidth achievable by ap-
plications by improving the degree to which software can tol-
erate memory latency. SPE provides processing power needed
by streaming and media workloads through four-way SIMD op-
erations, dual issue and high frequency.

Area and power efficiency are important enablers for multi-
core designs that take advantage of parallelism in applications,
where performance is power limited. Every design choice must
trade off the performance a prospective feature would bring
versus the prospect of omitting the feature and devoting the area
and power toward higher clock frequency or more SPE cores per
Cell processor chip. Power efficiency drives a desire to replace
event and status polling performed by software during synchro-
nization with synchronization mechanisms that allow for low
power waiting.

Fig. 1 is a diagram of the SPE architecture’s major entities and
their relationships. Local store is a private memory for SPE in-
structions and data. The synergistic processing unit (SPU) core
is a processor than runs instructions from the local store and
can read or write the local store with its load and store instruc-
tions. The direct memory access (DMA) unit transfers data be-
tween local store and system memory. The DMA unit is pro-
grammable by SPU software via the channel unit. The channel
unit is a message passing interface between the SPU core and

0018-9200/$20.00 © 2006 IEEE

64 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 1, JANUARY 2006

the DMA unit and the rest of the Cell processing system. The
channel unit is accessed by the SPE software through channel
access instructions.

The SPU core is a SIMD RISC-style processor. All instruc-
tions are encoded in 32 bit fixed length instruction formats and
there are no hard to pipeline instructions. SPU features 128 gen-
eral purpose registers. These registers are used by both floating
point and integer instructions. The shared register file allows
the highest level of performance for various workloads with the
smallest number of registers. 128 registers allow for loop un-
rolling which is necessary to fill functional unit pipelines with
independent instructions. Most instructions operate on 127 bit
wide data. For example, the floating point multiply add instruc-
tion operates on vectors of four 32 bit single precision floating
point values. Some instructions, such as floating point multiply
add, consume three register operands and produce a register
result. SPE includes instructions that perform single precision
floating point, integer arithmetic, logicals, loads, stores, com-
pares and branches in addition to some instructions intended
to help media applications. The instruction set is designed to
simplify compiler register allocation and code schedulers. Most
SPE software is written in C or C++ with intrinsic functions.

The SPE’s architecture reduces area and power while facili-
tating improved performance by requiring software solve “hard”
scheduling problems such as data fetch and branch prediction.
Because SPE will not be running the operating system, SPE
concentrates on user mode execution. SPE load and store in-
structions are performed within a local address space, not in
system address space. The local address space is untranslated,
unguarded and noncoherent with respect to the system address
space and is serviced by the local store (LS). LS is a private
memory, not a cache, and does not require tag arrays or backing
store. Loads, stores and instruction fetch complete with fixed
delay and without exception, greatly simplifying the core de-
sign and providing predictable real-time behavior. This design
reduces the area and power of the core while allowing for higher
frequency operation.

Data is transferred to and from the LS in 1024 bit lines by
the SPE DMA engine. The SPE DMA engine allows SPE soft-
ware to schedule data transfers in parallel with core execution.
Fig. 2 is a time line that illustrates how software can be di-
vided into coarse grained threads to overlap data transfer and
core computation. As thread 1 finishes its computation it initi-
ates DMA fetch of its next data set and branches to thread 2.
Thread 2 begins by waiting for its previously requested data
transfers to finish and begins computation while the DMA en-
gine gets the data needed by thread 1. When thread 2 completes
the computation, it programs the DMA engine to store the re-
sults to system memory and fetch from system memory the
next data set. Thread 2 then branches back to thread 1. Tech-
niques like double buffering and course grained multithreading
allow software to overcome memory latency to achieve high
memory bandwidth and improve performance. The DMA en-
gine can process up to 16 commands simultaneously and each
command can fetch up to 16 kB of data. These transfers are
divided into 128 byte packets for the on chip interconnect. The
DMA engine can support up to 16 packets in flight at a time.
DMA commands are richer than a typical set of cache prefetch

Fig. 1. SPE architecture diagram.

Fig. 2. Example time line of concurrent computation and memory access.

instructions. These commands can perform scatter-gather op-
erations from system memory or setup a complex set of status
reporting and notification mechanisms. Not only can software
achieve much higher bandwidth through the DMA engine than
it could with a hardware prefetch engine, a much higher frac-
tion of the bandwidth is useful data than would occur with the
prefetch engine design.

The channel unit is a message passing interface between the
SPU core and the rest of the system. Each device is allocated
one or more channels through which messages can be sent to or
from the SPU core. SPU software sends and receives messages
with the write and read channel instructions. Channels have ca-
pacity which allows for multiple messages to be queued. Ca-
pacity allows the SPU to send multiple commands to a device
in pipelined fashion without incurring delay, until the channel
capacity is exhausted. When a channel is exhausted the write
or read instruction will stall the SPU in a low power wait mode
until the device becomes ready. Channel wait mode can often
substitute for polling and represents significant power savings.

The SPE has separate 8-byte-wide inbound and outbound
data busses. The DMA engine supports transfers requested lo-
cally by the SPE through the SPE request queue and requested
externally either via the external request queue or external bus
requests through a window in the system address space. The

FLACHS et al.: THE MICROARCHITECTURE OF THE SYNERGISTIC PROCESSOR FOR A CELL PROCESSOR 65

Fig. 3. SPE organization.

SPE request queue supports up to 16 outstanding transfer re-
quests. Each request can transfer up to 16 KB of data to or from
the local address space. DMA request addresses are translated
by the MMU before the request is sent to the bus. Software can
check or be notified when requests or groups of requests are
completed.

The SPE programs the DMA engine through the Channel In-
terface. The channel interface is a message passing interface in-
tended to overlap I/O with data processing and minimize power
consumed by synchronization. Channel facilities are accessed
with three instructions: read channel, write channel, and read
channel count which measures channel capacity. The SPE ar-
chitecture supports up to 128 unidirectional channels which can
be configured as blocking or nonblocking.

III. MICROARCHITECTURE

Fig. 3 shows how the SPE is organized and the key band-
widths (per cycle) between units. Instructions are fetched from
the LS in 32 4-byte groups when LS is idle. Fetch groups are
aligned to 64 byte boundaries, to improve the effective instruc-
tion fetch bandwidth. The fetched lines are sent in two cycles
to the instruction line buffer (ILB). 3.5 fetched lines are stored
in the ILB [1]. A half line holds instructions while they are se-
quenced into the issue logic while another line holds the single-
entry software-managed branch target buffer (SMBTB) and two
lines are used for inline prefetching. Instructions are sent, two
at a time, from the ILB to the issue control unit.

TABLE I
DUAL ISSUE UNIT ASSIGNMENTS

The SPE issues and completes all instructions in program
order and does not reorder or rename its instructions. Although
the SPE is not a VLIW processor, it does feature a VLIW like
dual issue feature and can issue up to two instructions per cycle
to nine execution units organized into two execution pipelines,
as shown in Table I. Instruction pairs can be issued if the first
instruction (from an even address) will be routed to an even
pipe unit and the second instruction to an odd pipe unit. Execu-
tion units are assigned to pipelines to maximize dual issue effi-
ciency for a variety of workloads. SPE software does not require

66 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 1, JANUARY 2006

TABLE II
UNIT AND INSTRUCTION LATENCY

NOP padding when dual issue is not possible. Instruction issue
and distribution require three cycles. The simple issue scheme
provides for very high performance, saves at least one pipeline
stage, simplifies resource and dependency checking and con-
tributes to the extremely low fraction of logic devoted to instruc-
tion sequencing and control.

Operands are fetched either from the register file or forward
network and sent to the execution pipelines. Each of the two
pipelines can consume three 16 byte operands and produce a 16
byte result every cycle. The register file has six read ports, two
write ports, 128 entries of 128 bits each and is accessed in two
cycles. Register file data is sent directly to the functional unit
operand latches. Results produced by functional units are held in
the forward macro until they are committed and available from
the register file. These results are read from 6 forward-macro
read-ports and distributed to the units in one cycle.

Loads and stores transfer 16 bytes of data between the register
file and the local store. The LS is a six-cycle, fully pipelined,
single-ported, 256 KB SRAM [3]. The LS is shared between
the SPE load/store unit, the SPE instruction fetch unit and the
DMA unit. Several workloads exhibit 80%–90% LS occupancy.
In order to provide good performance while keeping the pro-
cessor simple, a cycle by cycle arbitration scheme is used. DMA
requests are scheduled in advance, but are first in priority. DMA
requests access the local store 128 bytes in a single cycle, pro-
viding lots of bandwidth with relatively little interference to the
SPE loads and stores. Load and stores are second in priority
and wait in the issue stage for an available LS cycle. Instruction
fetch accesses the local store when it is otherwise idle, again
with 128 byte accesses to minimize the chances of performance
loss due to instruction run out.

Table II details the eight execution units. Simple fixed point
[4], floating point [5] and load results are bypassed directly from
the unit output to input operands to reduce result latency. Other
results are sent to the forward macro from where they are dis-
tributed a cycle later. Fig. 4 is a pipeline diagram for the SPE

Fig. 4. SPE pipeline diagram.

that shows how flush and fetch are related to other instruction
processing. Although frequency is an important element of SPE
performance, pipeline depth is similar to those found in 20 FO4
processors. Circuit design, efficient layout and logic simplifi-
cation are the keys to supporting the 11 FO4 design frequency
while constraining pipeline depth.

In order to save area and power, SPE omits hardware branch
prediction and branch history tables. However, mispredicted
branches flush the pipelines and cost 18 cycles so it is impor-
tant that software employ mispredict avoidance techniques.

FLACHS et al.: THE MICROARCHITECTURE OF THE SYNERGISTIC PROCESSOR FOR A CELL PROCESSOR 67

TABLE III
SPE APPLICATION PERFORMANCE

Whenever possible, the common case for conditional branches
should be arranged to be an entirely inline sequence of in-
structions. When the common case cannot be identified, it is
often advantageous to compute both paths and use the select
instruction to select the correct results at the end of the block.
When a commonly taken branch is necessary, especially for the
backward branch of a loop, software can utilize the SMBTB.
The SMBTB holds a single branch target, and is loaded by
software with a load branch target buffer instruction. When a
branch is identified and its target is loaded into the SMBTB,
the SPE can execute the taken branch in a single cycle.

IV. IMPLEMENTATION

Performance on several important workloads is shown in
Table III. These workloads are written in C using intrinsics for
the SIMD data types and DMA transfers. Linpack, AES and
Triangle Lighting achieve performance very close to the SPE
peak of two instructions per cycle (IPC). The Linpack data is
especially impressive in that the DMA required to move the
data into and out of the local store is entirely overlapped with
execution. The other workloads execute out of SPU local store.
Triangle Lighting is a computationally intensive application,
that has been unrolled four times and software pipelined to
schedule out most instruction dependencies. The relatively
short instruction latency is important. If the pipelines were
deeper, this algorithm would require further unrolling to hide
the extra latency. This unrolling would require more than 128
registers and thus be impractical. These benchmarks show that
SPE is a very effective streaming data processor, even when
running software written in high level languages. This is due
in part to the simplicity of the ISA, the large register file and
the relatively short execution pipelines that the compiler can
easily schedule code for the SPE. These benchmarks also show
that the DMA programming model can over come memory
latency and allows the SPU core to achieve peak performance
rather than wait for needed data. Even with a very simple
microarchitecture and very small area, SPE can compete on a
cycle-by-cycle basis with more complex cores on streaming
workloads.

Fig. 5 is a photo of the 2.54 5.81 mm SPE, in 90-nm SOI.
SPE has 21 M transistors. Roughly 14 M of these transistors are
in arrays while the remaining 7 M transistors are in logic. The

bus interface unit (BIU) is under the on chip interconnect that
runs horizontally at the bottom of the SPE. Just above the BIU is
the DMA unit and its memory management unit (MMU). SPU
core occupies the upper three quarters of the floor plan. The LS
is on the right hand side, built from four 64 KB arrays. The data
path is on the left side, starting at the bottom with the register
file. The odd pipeline permute unit is between the register file
and the forward macro. The even pipeline is at the top of the data
flow. The four way SIMD nature of the SPE is clearly visible in
the data flow. Instruction sequencing and control accounts for
less than 10% of the total area and is generally located between
the data flow and the local store. The 64 B LS read bus runs
down over the LS ending in the channel unit under the LS stack
and in the ILB directly to the left of the bottom most LS array.
Instruction processing then flows back toward the middle of the
dataflow as instructions and operand are distributed to the exe-
cution units.

Table IV is a voltage versus frequency shmoo that shows SPE
active power and die temperature while running a single pre-
cision intensive lighting and transformation workload that av-
erages 1.4 IPC. Limiting pipeline depth also helps minimize
power. The shmoo shows SPE dissipates 1 W at 2 GHz, 2 W
at 3 GHz and 4 W of active power at 4 GHz. Active power is
the amount of power consumed by switching logic and array
circuits. For reference, this SPE dissipated about 1.7 W through
leakage current and 1.3 W in its clock grid at the 1.2 V, 2 GHz
operating condition. Although the shmoo shows function up to
5.2 GHz, separate experiments show that at 1.4 V and 56 C, the
SPE can achieve up to 5.6 GHz.

The shmoo clearly shows the SPE to be a high frequency
processor. In terms of the time required for an inverter to drive
four copies of itself the SPE is an 11 FO4 design. This allows
between four and eight stages of logic per cycle. Recall that
SPE pipelines are similar in depth to those of 20 FO4 pro-
cessors. There are many ingredients required to achieve these
results. The architecture eliminates many hard instructions and
functions. The microarchitecture reduces control complexity
with reduced latency and early instruction commit. Careful
floor planning minimizes the substantial effect of wires on
cycle time. Wire lengths are shortened by high density layout.
Selected dynamic circuits are used in the instruction sequencing
logic and forward macro to maintain short instruction issue
pipelines. The SPE implementation makes use of a rich latch

68 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 1, JANUARY 2006

TABLE IV
VOLTAGE/FREQUENCY SCHMOO

Fig. 5. SPE die photo.

library that has options for low insertion delay and embedded
functions to reduce latch overhead.

Power efficiency starts in the architecture which requires
translation only for DMA commands and provides a low power
alternative to polling. Microarchitectural decisions were made
in the context of logic driven power estimation tools. Limiting
pipeline depths and the elimination of tag array access from the
execution of speculative instructions both reduce power. High
density layout reduces wire cap and the required driver sizes.
SPE features fine grain clock control and mostly static circuits in

the execution units. These design choices result in active power
for an idle SPU to be 1/5 of the active power required for a heavy
work load and allow for impressive performance per watt.

V. CONCLUSION

The SPE represents a middle ground between graphics
processors and general purpose processors. It is more flexible
and programmable than graphics processors, but has more
focus on streaming workloads than general purpose processors.
SPE competes favorably with general purpose processors on
a cycle by cycle basis with substantially less area and power.
The efficiency in area and power encourages the construction
of a system on a chip including multiple SPEs and many times
the performance of competitive general purpose processors. It
is possible to address the memory latency wall and improve
application performance through the DMA programming
model. This model provides concurrency between data access
and computation while making efficient use of the available
memory bandwidth. Full custom design techniques can address
a challenging frequency, area and power design point.

ACKNOWLEDGMENT

The authors thank S. Gupta, B. Hoang, N. Criscolo, M. Pham,
D. Terry, M. King, E. Rushing, B. Minor, L. Van Grinsven,
R. Putney, and the rest of the SPE design team.

REFERENCES

[1] O. Takahashi et al., “The circuits and physical design of the streaming
processor of a CELL processor,” presented at the Symp. VLSI Circuits,
Kyoto, Japan, 2005.

[2] D. Pham et al., “The design and implementation of a first-generation
CELL processor,” in IEEE ISSCC Dig. Tech. Papers, 2005, pp.
184–186.

[3] S. H. Dhong et al., “A fully pipelined embedded SRAM in the streaming
processing unit of a CELL processor,” in IEEE ISSCC Dig. Tech. Papers,
2005, pp. 486–488.

[4] J. Leenstra et al., “The vector fixed point unit of the streaming processor
of a CELL processor,” presented at the Symp. VLSI Circuits, Kyoto,
Japan, 2005.

FLACHS et al.: THE MICROARCHITECTURE OF THE SYNERGISTIC PROCESSOR FOR A CELL PROCESSOR 69

[5] H. Oh et al., “A fully-pipelined single-precision floating point unit in the
streaming processing unit of a CELL processor,” presented at the Symp.
VLSI Circuits, Kyoto, Japan, 2005.

Brian Flachs received the B.S.E.E. degree in 1988
from New Mexico State University, and the M.S. and
Ph.D. degrees in 1994 from Stanford University.

He served as architect, microarchitect, and unit
logic lead for the SPU Team and is interested in
low latency high frequency processors. Previously,
serving as microarchitecture for IBM Austin Re-
search Laboratories’ 1 GHz PowerPC Project. His
research interests include computer architecture,
image processing, and machine learning.

Shigehiro Asano (M’96) received the M.S. degree in information engineering
from Waseda University, Tokyo, Japan.

He is a Senior Research Scientist at Toshiba Corporation, Austin, TX. His
research interests include parallel processors, media processors, and reconfig-
urable processors. He is a member of the IEEE Computer Society and the In-
formation Processing Society of Japan (IPSJ).

Sang H. Dhong (M’76–SM’99–F’01) received the B.S.E.E. degree from Korea
University, Seoul, Korea, and the M.S. and Ph. D. degrees in electrical engi-
neering from the University of California at Berkeley, CA.

He joined IBM’s Research Division in Yorktown Heights, NY, in 1983 as
a research staff member where he was involved in the research and develop-
ment of silicon processing technology, mainly bipolar devices and reactive-ion
etching (RIE). From 1985 to 1992, he was engaged in research and develop-
ment of DRAM cell structures, architectures, and designs, spanning over five
generations of IBM DRAMs, from 1 Mb DRAMs to 256 Mb DRAMs. The
key contributions in this area are high-speed DRAMs, low-power DRAMs, and
NMOS-access transistor trench DRAM cells.

After spending three years in development of one of IBM’s PowerPC micro-
processors as a Branch/Icache circuit team leader of 15 designers, he worked
on a simple but fast processor core based on the PowerPC architecture and on
high-speed embedded DRAM (eDRAM) in the Austin Research Lab of the IBM
research division, leading, managing, and growing the high-performance VLSI
design group to a peak of 25 people from 1995 to 1999. The work resulted in
setting a major milestone for the microprocessor industry by prototyping1-GHz
PowerPC processors. Also, the work on the high-speed eDRAM provided the
justification for the logic-based eDRAM foundry/ASIC technology offering by
IBM as well as the design basis for eDRAM macros of DRAM-like density with
SRAM-like high speed.

Since becoming the chief technologist of the Austin Research Lab in 1999,
he worked on three areas: fast low-power embedded PowerPC, super-pipelined
multi-gigahertz PowerPC servers, and high-speed eDRAM. In 2000, he joined
the Sony-Toshiba-IBM (STI) design center as one of the key leaders, primarily
concentrating on a 11-FO4 coprocessor design, streaming process (SPE). As the
partition leader of SPE team, he defined, executed, and delivered the technology,
circuits and latch styles, floor plan, and basic lower-power micro-architecture
and led technically a multi-discipline team of 70 or more engineers. Currently,
he is the chief hardware engineer/SPE partition lead, being responsible for pro-
ductization of BE chip from the STI center side. In this role, his major focus
is on power-frequency yield tradeoff, interacting and directing manufacturing,
PE, and design teams in a matrix organization of more than 100 engineers.

He is an IBM Distinguished Engineer, a member of IBM Academy of
Technology, and a Fellow of IEEE. He holds more than 125 U.S. patents
as well as many technical publications and has received four Outstanding
Innovation/Technical Achievement Awards from IBM.

H. Peter Hofstee (M’96) received the "Doctorandus"
degree in theoretical physics from the University of
Groningen, The Netherlands, in 1989, and the M.S.
and Ph.D. degrees in computer science from the Cal-
ifornia Institute of Technology (Caltech), Pasadena,
in 1991 and 1995, respectively.

After being on the faculty at Caltech for two years,
he joined the IBM Austin Research Laboratory in
1996, where he worked on high-frequency proces-
sors. In 2000, he helped develop the concept for the
Cell Broadband Engine processor. He is currently the

Chief Scientist for the Cell Broadband Engine processor and Chief Architect
of the synergistic processor element in Cell. His focus is on future processor
and system architectures and the broader use of the Cell.

Gilles Gervais received the B.S. degree in electrical engineering from Drexel
University, Philadelphia, PA, in 1982.

He joined IBM Federal Systems Division in Owego, NY, in 1982 working
on test equipment. In 1984, he transfered to IBM Endicott, NY, to work on IO
subsystem design for IBM mainframes. He joined the Somerset design center
in Austin, TX, in 1994 working on the design of the 604 family of PowerPC
products. He worked as Design Lead of the Altivec engine of the Apple G5
processor in 1999 and he is currently the Manager of the SPE verification and
logic design teams on the Cell processor developed at the Sony/Toshiba/IBM
Design Center, Austin.

Roy Kim received the M.S.C.E. degree from Syracuse University, Syracuse,
NY, in 1985 and the B.S.E.E. degree from the State University of New York at
Stony Brook in 1979.

He joined IBM in 1979 at the IBM Development Laboratory in Owego, NY.
Over the years, he has worked on hardware development and project manage-
ment in chip design, card design and system design of PowerPC and S390 ar-
chitecture. Most recently, he worked on Cell processor design at the STI Design
Center, Austin, TX.

Tien Le received the B.S. degrees in electrical and electronics engineering,
mathematics, and computer science, and the M.S. degree in mathematics from
California State Polytechnic University, Pomona.

He served as the verification lead for the SMF unit. In IMB, he worked in
printer development, robotic automation of assembly line, RS System 6000 from
first generation until 2002, and artificial intelligence for microprocessor verifi-
cation. He joined the STI team in 2002 and currently is working on the follow-on
project.

Peichun Liu received the B.S.E.E. degree from National Taiwan Ocean Uni-
versity in 1979 and the M.S.E.E. degree from University of Texas at Arlington
in 1985.

He joined IBM in 1991 and has worked in the Power3, Power4, and Cell
microprocessor design projects.

Jens Leenstra received the M.S. degree from the University of Twente, The
Netherlands, in 1986 and the Ph.D. degree from the University of Eindhoven,
The Netherlands, in 1993.

He joined IBM in 1994 at the IBM Development Laboratory in Boeblingen,
Germany. He has worked in several areas of the Server Group development or-
ganization, including logic design and verification of I/O chips, multiprocessor
system verification, and several PowerPC processor designs, including the Cell
Processor. He is currently working on the next generation IBM microprocessors.
His current interests focus on computer architecture, high frequency design, low
power, and design for testability.

70 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 1, JANUARY 2006

John Liberty received the B.S. degree in electrical engineering from North Car-
olina State University, Raleigh, in 1987, and the M.S. degree in electrical engi-
neering in 1989.

In 1989, he joined IBM in the Engineering Graphics Organization. In that
organization he worked in such areas of the graphic subsystems as board design,
power supplies, EMC standards compliance and ASIC logic design. In 2000,
he joined the STI Design Center, Austin, TX, to work on the Cell Broadband
Engine processor Synergistic Processor Element as a Custom Logic Designer.

Brad Michael received the B.S degree in computer engineering from Iowa State
University, Ames, in 1989.

He joined IBM in that year, and is now involved in microprocessor logic de-
sign in the STI design center in Austin, TX.

Hwa-Joon Oh received the B.S and M.S. degrees from Yonsei University,
Seoul, Korea, in 1987 and 1989, and received the Ph. D. degree from Michigan
State University, East Lansing, in 1996.

From 1996 to 1998, he was with Hyundai Electronics America, San Jose,
CA, where he was involved in research and development of DRAM designs. In
1998, he joined IBM Austin Research Laboratory (ARL), Austin, TX, where
he worked on POWER4 microprocessor design. From 2000 to 2001, he briefly
worked on short random cycle embedded memory design for IBM microelec-
tronics. Currently, he is working at IBM System and Technology Group with
Sony-Toshiba-IBM Design Center, Austin, TX, where he is involved in archi-
tecture, logic, circuits, and physical implementations of Cell microprocessor.
He has authored or co-authored several journal papers and patents. His main re-
search areas are artificial neural network, SRAM and DRAM design, and broad-
band microprocessor design.

Silvia Melitta Mueller received the M.S. degree in mathematics and the Ph.D.
degree in computer science from the University of Saarbruecken, Germany, in
1989 and 1991, respectively, and became a Privatdozent for CS.

After eight years of research and teaching, she joined IBM in 1999 at the IBM
Development Laboratory in Boeblingen, Germany. She is a IBM Senior Tech-
nical Staff Member; she leads two logic teams developing high-performance
power-effienct FPUs for the next generation IBM processors. In this role, her
major focus is on power/performance tradeoffs, area reduction, and a more ef-
ficient way to handle the design complexity.

Osamu Takahashi (M’97) received the B.S. degree
in engineering physics and the M.S. degree in elec-
trical engineering from the University of California,
Berkeley, in 1993 and 1995, respectively, and the
Ph.D. degree in computer and mathematical sciences
from Tohoku University, Sendai, Japan, in 2001.

He is an IBM Senior Technical Staff Member and
the Manager of the circuit design team for the syner-
gistic processor element developed at the STI Design
Center, Austin, TX.

A. Hatakeyama, photograph and biography not available at the time of
publication.

Yukio Watanabe, photograph and biography not available at the time of
publication.

Naoka Yano received the Bachelor of Arts and Science degree in pure and ap-
plied sciences from the University of Tokyo, Tokyo, Japan, in 1991.

She joined the Semiconductor Device Engineering Laboratory, Toshiba Cor-
poration, Kawasaki, Japan, in 1991. She was engaged in the research and devel-
opment of high performance microprocessors, including the Emotion Engine.
In 2001, she moved to Toshiba America Electronic Components, Inc., Austin,
TX, where she was involved in the development of the Cell processor. Now she
is with the Broadband System LSI Development Center, Semiconductor Com-
pany, Toshiba Corporation, Kawasaki, Japan.

Daniel A. Brokenshire received the B.S. degree in computer science and the
B.S. and M.S. degrees in electrical engineering, all from Oregon State Univer-
sity, Corvallis.

He is a Senior Technical Staff Member with the STI Design Center, Austin,
TX. His responsibilities include the development of programming standards,
language extensions, and reusable software libraries for the Cell Broadband En-
gine.

Mohammad Peyravian received the Ph.D. degree in electrical engineering
from the Georgia Institute of Technology, Atlanta, in 1992.

He is a Network Processor Architect at IBM Microelectronics, Research Tri-
angle Park, North Carolina. His interests include networking, network proces-
sors, cryptography, and security. He has published over 40 journal and confer-
ence papers, and has over 30 patents in networking and cryptography/security.

Vandung To received the B.A degree in computer science from Rice Univer-
sity, Houston, TX, in 2001. She is currently pursuing the M.B.A. degree at the
University of Texas in Austin.

She joined IBM in 2001 and is now working on CELL software development.

Eiji Iwata received the M.E. degree in information systems engineering from
Kyushu University, Fukuoka, Japan.

He joined Sony Corporation, Tokyo, Japan, in 1991. In 1996, he was a Vis-
iting Researcher at the Hydra Project in CSL, Stanford University, Stanford, CA.
Since 1997, he developed a CMP for media applications in Sony and joined the
STI Design Center, Austin, TX, in 2001. Currently, he works on a Cell-related
project with Sony Computer Entertainment, Austin.

	toc
	The Microarchitecture of the Synergistic Processor for a Cell Pr
	Brian Flachs, Shigehiro Asano, Member, IEEE, Sang H. Dhong, Fell
	I. I NTRODUCTION
	II. A RCHITECTURE

	Fig.€1. SPE architecture diagram.
	Fig.€2. Example time line of concurrent computation and memory a
	Fig.€3. SPE organization.
	III. M ICROARCHITECTURE

	TABLE€I D UAL I SSUE U NIT A SSIGNMENTS
	TABLE€II U NIT AND I NSTRUCTION L ATENCY
	Fig.€4. SPE pipeline diagram.
	TABLE€III SPE A PPLICATION P ERFORMANCE
	IV. I MPLEMENTATION

	TABLE€IV V OLTAGE /F REQUENCY S CHMOO
	Fig.€5. SPE die photo.
	V. C ONCLUSION
	O. Takahashi et al., The circuits and physical design of the str
	D. Pham et al., The design and implementation of a first-generat
	S. H. Dhong et al., A fully pipelined embedded SRAM in the strea
	J. Leenstra et al., The vector fixed point unit of the streaming
	H. Oh et al., A fully-pipelined single-precision floating point

