
G-10 ■ Appendix G Vector Processors

Vector Execution Time

The execution time of a sequence of vector operations primarily depends on three
factors: the length of the operand vectors, structural hazards among the opera-
tions, and the data dependences. Given the vector length and the initiation rate,
which is the rate at which a vector unit consumes new operands and produces
new results, we can compute the time for a single vector instruction. All modern
supercomputers have vector functional units with multiple parallel pipelines (or
lanes) that can produce two or more results per clock cycle, but may also have
some functional units that are not fully pipelined. For simplicity, our VMIPS
implementation has one lane with an initiation rate of one element per clock
cycle for individual operations. Thus, the execution time for a single vector
instruction is approximately the vector length.

To simplify the discussion of vector execution and its timing, we will use the
notion of a convoy, which is the set of vector instructions that could potentially
begin execution together in one clock period. (Although the concept of a convoy
is used in vector compilers, no standard terminology exists. Hence, we created
the term convoy.) The instructions in a convoy must not contain any structural or
data hazards (though we will relax this later); if such hazards were present, the
instructions in the potential convoy would need to be serialized and initiated in
different convoys. Placing vector instructions into a convoy is analogous to plac-
ing scalar operations into a VLIW instruction. To keep the analysis simple, we
assume that a convoy of instructions must complete execution before any other
instructions (scalar or vector) can begin execution. We will relax this in Section
G.4 by using a less restrictive, but more complex, method for issuing instructions.

Accompanying the notion of a convoy is a timing metric, called a chime, that
can be used for estimating the performance of a vector sequence consisting of
convoys. A chime is the unit of time taken to execute one convoy. A chime is an
approximate measure of execution time for a vector sequence; a chime measure-
ment is independent of vector length. Thus, a vector sequence that consists of m
convoys executes in m chimes, and for a vector length of n, this is approximately
m × n clock cycles. A chime approximation ignores some processor-specific over-
heads, many of which are dependent on vector length. Hence, measuring time in
chimes is a better approximation for long vectors. We will use the chime mea-
surement, rather than clock cycles per result, to explicitly indicate that certain
overheads are being ignored.

If we know the number of convoys in a vector sequence, we know the execu-
tion time in chimes. One source of overhead ignored in measuring chimes is any
limitation on initiating multiple vector instructions in a clock cycle. If only one
vector instruction can be initiated in a clock cycle (the reality in most vector
processors), the chime count will underestimate the actual execution time of a
convoy. Because the vector length is typically much greater than the number of
instructions in the convoy, we will simply assume that the convoy executes in one
chime.

G.2 Basic Vector Architecture ■ G-11

Example Show how the following code sequence lays out in convoys, assuming a single
copy of each vector functional unit:

LV V1,Rx ;load vector X
MULVS.D V2,V1,F0 ;vector-scalar multiply
LV V3,Ry ;load vector Y
ADDV.D V4,V2,V3 ;add
SV Ry,V4 ;store the result

How many chimes will this vector sequence take? How many cycles per FLOP
(floating-point operation) are needed ignoring vector instruction issue overhead?

Answer The first convoy is occupied by the first LV instruction. The MULVS.D is dependent
on the first LV, so it cannot be in the same convoy. The second LV instruction can
be in the same convoy as the MULVS.D. The ADDV.D is dependent on the second
LV, so it must come in yet a third convoy, and finally the SV depends on the
ADDV.D, so it must go in a following convoy. This leads to the following layout of
vector instructions into convoys:

1. LV

2. MULVS.D LV

3. ADDV.D

4. SV

The sequence requires four convoys and hence takes four chimes. Since the
sequence takes a total of four chimes and there are two floating-point operations
per result, the number of cycles per FLOP is 2 (ignoring any vector instruction
issue overhead). Note that although we allow the MULVS.D and the LV both to exe-
cute in convoy 2, most vector machines will take 2 clock cycles to initiate the
instructions.

The chime approximation is reasonably accurate for long vectors. For exam-
ple, for 64-element vectors, the time in chimes is four, so the sequence would
take about 256 clock cycles. The overhead of issuing convoy 2 in two separate
clocks would be small.

Another source of overhead is far more significant than the issue limitation.
The most important source of overhead ignored by the chime model is vector
start-up time. The start-up time comes from the pipelining latency of the vector
operation and is principally determined by how deep the pipeline is for the func-
tional unit used. The start-up time increases the effective time to execute a con-
voy to more than one chime. Because of our assumption that convoys do not
overlap in time, the start-up time delays the execution of subsequent convoys. Of
course the instructions in successive convoys have either structural conflicts for
some functional unit or are data dependent, so the assumption of no overlap is

G-12 ■ Appendix G Vector Processors

reasonable. The actual time to complete a convoy is determined by the sum of the
vector length and the start-up time. If vector lengths were infinite, this start-up
overhead would be amortized, but finite vector lengths expose it, as the following
example shows.

Example Assume the start-up overhead for functional units is shown in Figure G.4.

Show the time that each convoy can begin and the total number of cycles needed.
How does the time compare to the chime approximation for a vector of length
64?

Answer Figure G.5 provides the answer in convoys, assuming that the vector length is n.
One tricky question is when we assume the vector sequence is done; this deter-
mines whether the start-up time of the SV is visible or not. We assume that the
instructions following cannot fit in the same convoy, and we have already
assumed that convoys do not overlap. Thus the total time is given by the time
until the last vector instruction in the last convoy completes. This is an approxi-
mation, and the start-up time of the last vector instruction may be seen in some
sequences and not in others. For simplicity, we always include it.

The time per result for a vector of length 64 is 4 + (42/64) = 4.65 clock
cycles, while the chime approximation would be 4. The execution time with start-
up overhead is 1.16 times higher.

Unit Start-up overhead (cycles)

Load and store unit 12

Multiply unit 7

Add unit 6

Figure G.4 Start-up overhead.

Convoy Starting time First-result time Last-result time

1. LV 0 12 11 + n

2. MULVS.D LV 12 + n 12 + n + 12 23 + 2n

3. ADDV.D 24 + 2n 24 + 2n + 6 29 + 3n

4. SV 30 + 3n 30 + 3n + 12 41 + 4n

Figure G.5 Starting times and first- and last-result times for convoys 1 through 4.

The vector length is n.

G.2 Basic Vector Architecture ■ G-13

For simplicity, we will use the chime approximation for running time, incor-
porating start-up time effects only when we want more detailed performance or to
illustrate the benefits of some enhancement. For long vectors, a typical situation,
the overhead effect is not that large. Later in the appendix we will explore ways
to reduce start-up overhead.

Start-up time for an instruction comes from the pipeline depth for the func-
tional unit implementing that instruction. If the initiation rate is to be kept at 1
clock cycle per result, then

For example, if an operation takes 10 clock cycles, it must be pipelined 10 deep
to achieve an initiation rate of one per clock cycle. Pipeline depth, then, is deter-
mined by the complexity of the operation and the clock cycle time of the proces-
sor. The pipeline depths of functional units vary widely—from 2 to 20 stages is
not uncommon—although the most heavily used units have pipeline depths of 4–
8 clock cycles.

For VMIPS, we will use the same pipeline depths as the Cray-1, although
latencies in more modern processors have tended to increase, especially for loads.
All functional units are fully pipelined. As shown in Figure G.6, pipeline depths
are 6 clock cycles for floating-point add and 7 clock cycles for floating-point mul-
tiply. On VMIPS, as on most vector processors, independent vector operations
using different functional units can issue in the same convoy.

Vector Load-Store Units and Vector Memory Systems

The behavior of the load-store vector unit is significantly more complicated than
that of the arithmetic functional units. The start-up time for a load is the time to
get the first word from memory into a register. If the rest of the vector can be sup-
plied without stalling, then the vector initiation rate is equal to the rate at which
new words are fetched or stored. Unlike simpler functional units, the initiation
rate may not necessarily be 1 clock cycle because memory bank stalls can reduce
effective throughput.

Operation Start-up penalty

Vector add 6

Vector multiply 7

Vector divide 20

Vector load 12

Figure G.6 Start-up penalties on VMIPS. These are the start-up penalties in clock
cycles for VMIPS vector operations.

Pipeline depth Total functional unit time
Clock cycle time

---=

