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Abstract— We present a subband source separation algorithm
for miniature microphone arrays with dimensions smaller than
the wavelength. By relating temporal and spatial gradients of
the observed microphone signals in an anechoic environment,
gradient flow converts the mixture of delayed sources to linear
instantaneous mixture of the time-differentiated source signals,
that can be then localized and separated using static linear inde-
pendent component analysis algorithms. For source separation in
multi-path environment, we propose subband decomposition of
the spatial gradients estimated over an array of 4 microphones.
The static ICA algorithms are applied in each frequency band
and the localization results obtained from the ICA applied on
the unfiltered spatial gradients resolve the scaling and permu-
tation indeterminacy. The simulations with the room acoustic
model and experimental results with conference room recordings
demonstrate over 12dB separation in moderate reverberation
environment.

I. INTRODUCTION

Smart sensing hearing aids is one of the areas where
nanoscale integration using MEMS technology promises sig-
nificant breakthrough [1], [2]. The speech intelligibility of
traditional hearing aids is limited with multiple sources and
environmental noise present in the acoustic scene. In order for
hearing aids to obtain intelligibility, smart sensing is required
to suppress the noise sources based on the spatial location or
spectral content. The human auditory system resolves time de-
lays and intensity differences between sound waves of binaural
observations, and correlates these differences across various
source components to produce incredible results in segregating
multiple sound sources, even under a very noisy environ-
ment [3]. Modern hearing aids utilize directional microphone
arrays to add some of the functionality of binaural sensing. Yet
their performance still degrades significantly when multiple
sources and noise are present [4]. To effectively solve the
signal of interest, both localization and separation of multiple
acoustic sources are required.

In a typical room environment the acoustic signals observed
by microphone array are convolutive mixtures of source sig-
nals due to multi-path wave propagation [5]. Implementation
of the time-domain blind source separation algorithms requires
resolving of a large number of unmixing filter coefficients
with high computational cost and degrading algorithm con-
vergence [6]. To alleviate these issues, frequency domain
algorithms have been introduced. However, these algorithms

suffer from the inherent ambiguity of permutation and scal-
ing of independent component analysis (ICA). To solve the
permutation and scaling indeterminacy, the source location
information obtained through adaptive beamforming has been
used in the frequency domain algorithms [7], [8], [9]. Conven-
tional knowledge dictates that sensor arrays with large inter-
sensor distance should be used for source separation and beam-
forming to warrant sufficient spatial diversity across sensors
to resolve time delays between source observations. Most of
the proposed methodologies employ microphone arrays with
at least 4 cm inter-microphone spacing. For applications like
hearing aids, a small-form factor microphone arrays, with
the spacing much lower than the wavelength are required.
Gradient flow is a signal conditioning technique that can
estimate the direction of sound propagation directly from
sensing spatial and temporal gradients of the wave signal
on a sub-wavelength scale [10]. The inspiration comes from
the parasitoid fly, which localizes its sound-emitting prey by
a beamforming acoustic sensor of dimensions a factor 100
smaller than the acoustic signal wavelength [11]. Its tympanal
beamforming organ senses acoustic pressure gradient, rather
than time delays, in the incoming wave.

Using the gradient flow representation, we propose the
subband ICA architecture to improve the separation of the
mixed signals beyond the direct path signal separation in the
moderate reverberation environment. The proposed technique
consists of static ICA separation applied on the unfiltered
spatial gradient signals and static ICA applied separately
in each frequency band. Due to the localization performed
inherently by the static ICA on the unfiltered spatial gradients,
the permutation and scaling ambiguity of the subband ICA is
resolved in the gradient flow representation and provide im-
proved separation performance under moderate reverberations.

II. SPATIAL WAVEFRONT SENSING AND LINEAR STATIC
ICA

In the case of instantaneous linear mixing of the source
signals the observations at the sensor array can be written in
a form

x = As+ n, (1)

where x is the vector of M observation signals at the sensor
array, s is the vector of the original N source signals and
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Fig. 1. Miniature microphone array used in gradient flow technique.

A is the MxN mixing matrix. n is the additive noise at the
sensor array. The problem of the blind source separation can
be formulated as the search for a linear unmixing matrix W in
order to estimate the original sources with no priori knowledge
on the source signals and the mixing medium

y = Wx (2)

In this well-defined classic blind source separation problem
ICA techniques can solve the separation problem very well
under a fair amount of additive noise. However, when the real
acoustic scenes is considered, the classic linear mixture model
will no longer be valid.

In the case of the travelling acoustic wave signals impinging
on an array of four microphones, as illustrated in Figure 1, the
signals observed at the sensor array are mixture of the delayed
source signals. Gradient flow [10] is a signal conditioning
technique for source localization and separation designed for
sensor arrays of very small aperture, of which the dimensions
are significantly smaller than the shortest wavelength in the
sources. The 3-D directional vector of the traveling wave is
uniquely defined by propagation delays τ1 and τ2 of the source
along the p and q directions in the sensor plane. In the case
of a single source, direct calculation of these small interaural
time difference (ITD) is troublesome as they require sampling
in excess of the bandwidth of the signal, increasing noise
floor and power consumption. However, indirect estimates of
the delays are obtained through least-square regression as the
first order spatial gradients along the p and q direction are
proportional to the temporal derivatives of the average signal
at the center of the array, where the linear coefficients are the
propagation delays τ1 and τ2.

In the case of multiple sources impinging the microphone
array, the first-order spatial gradients of the observed signals
ξ10 and ξ01 in p and q directions around the origin (p = q = 0)
and the spatial common mode ξ00 are:

ξ00(t) =
∑

l s
l(t)

ξ10(t) =
∑

l τ
l
1ṡ

l(t)

ξ01(t) =
∑

l τ
l
2ṡ

l(t) (3)

where τ l1 and τ l2 are the time delays of the source signal l in
p and q direction, respectively. Taking the time derivative of
ξ00 and observing the three spatial gradients, the mixture of

delayed source sources is converted into a linear instantaneous
mixture of time-differentiated source signals in the form of
classic linear static ICA (1)ξ̇00ξ10

ξ01

 =

 1 · · · 1
τ11 · · · τM1
τ12 · · · τM2


 ṡ1

...
ṡM

 . (4)

The mixing matrix A has the special form, with its coefficients
representing the time delays that uniquely determine the
directions of the source signals. Therefore, by applying the
static ICA on the three gradient signals, along the recovery of
the source signals, the location of the sources is simultaneously
obtained.

III. SUBBAND GRADIENT FLOW ICA ARCHITECTURE

In a real room environment, reverberations will introduce a
series of attenuated, time-delayed components to the original
direct-path signals observed on the microphone array leading
to convolutive mixing source separation problem. In the con-
volutive mixing model, each element of the mixing matrix A
in the model (1) is a filter instead of a scalar and the i-th
observed signal can be written as

xi(t) =

n∑
j=1

∑
k

aijksj(t− k). (5)

Frequency domain techniques are attractive for solving the
convolutive mixtures, as the convolution becomes product in
the frequency domain

Xi(ω) =

n∑
j=1

Aij(ω)Sj(ω), (6)

where Xi(ω), Sj(ω) and Aij(ω) are the Fourier transforms
of i-th observation signal xi(t), j-th source signal sj(t) and
mixing filter that describes the contribution of j-th source
to i-th observation aij(t). The convolutive mixture model is
transformed into an instantaneous linear ICA model in each
frequency bin and linear static ICA techniques to determine
coefficients Aij(ω) can be applied. However, due to the
inherent ambiguity of permutation and scaling of linear ICA
solution, putting the reconstructed signal together from the
separated signals in each frequency bin is not defined without
additional information on the source signals. The information
on the estimated location of the source signals obtained by
applying the static ICA on the spatial gradient signals can be
used as prior information and enable the reconstruction of the
estimated source signals.

We propose the following architecture for subband gradient
flow ICA shown in Figure 2. First, the temporal and spa-
tial gradients are computed as the finite differences of the
field on the sensor grid comprising four microphones in a
configuration illustrated in Figure 1. The issue of permuta-
tion ambiguity is an obstacle for application of frequency-
domain ICA techniques. We propose to solve the problem
by applying the estimated localization results from static ICA
as a preprocessing technique to assist alignment of estimated
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Fig. 2. Block diagram of the proposed subband gradient flow ICA
architecture.

results from each frequency bin. The static ICA provides a
rough estimation on the directional pattern of the incoming
sources. Here we utilize it to assist the matching of the
signal coming from the same direction. 16-channel filterbank
is used to decompose the spatial gradient signals and static
ICA algorithm is used in each frequency band to obtain the
unmixing matrix and signal estimation. The solution of the
static ICA applied to unfiltered spatial gradients is used as
a initial point for the static ICA in each frequency band.
In the moderate reverberation environment, the direct path
will be the strongest source signal path and the directional
information is pertained across the frequency bands. However,
if the directional information in specific band strongly deviates
from the direction obtained in the unfiltered static ICA, we
assume that signal is not present in that frequency band. The
unmixing coefficients in that frequency band are set to the
initial unmixing coefficients. The scaling ambiguity has to be
resolved as well because although the inconsistency of audio
intensity in different frequency bins does not affect the level of
separation, the aural perception can be significantly affected.
In the proposed subband technique, we choose the first row
of the estimated mixing matrix as the scaling factor to resolve
the scaling ambiguity. Figure 3 shows the subband ICA model
using the case of two sources and two microphones as an
example. After applying the unmixing matrix, the separated
sources are multiplied with the corresponding scalar in the
first row of the estimated mixing matrix, so the final source
estimated are actually the component of each source in the
first observation. Then the amplitude of each estimation is
uniform across multiple frequency bins. Finally, we align and
synthesize the estimated signals from each frequency bin back
into full-band estimations based on the preprocessing static
ICA directional pattern.

Gradient flow techniques lend us the opportunity to utilize
smart sensing mixed-signal circuits to achieve signal process-
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Fig. 3. Block diagram of ICA algorithm in one frequency bin.
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Fig. 4. Simulated room dimensions and location of the sensor array and
speakers.

ing efficiently. While borrowing concepts from frequency-
domain algorithms contributes to improved separation.

IV. SIMULATION RESULTS

The performance of the proposed gradient flow subband
ICA model is tested and quantified in simulated adverse
acoustic conditions. We performed simulations with artifi-
cially synthesized microphone array signals with different
reverberation times and incidence angles of the incoming
source signals. The results determine the dependence of the
separation results on reverberation in the room environment.
As a benchmark for characterization of subband gradient flow
ICA, the results obtained by the static gradient flow ICA
model are also presented. In all simulations, the implemented
static ICA algorithm implemented was the efficient FastICA
algorithm (EFICA) [12]. EFICA is asymptotically efficient
with computational complexity only slightly higher than the
standard symmetric FastICA.

The artificial microphone array signals are generated based
on the image model [13]. Simulated room dimensions corre-
spond to an ordinary office space with the room dimensions
and the relative location of the sensor array and the speech
sources shown in Figure 4. The configuration of the micro-
phone array is orthogonal, with 1 cm inter-microphone spacing
as illustrated in Figure 1. Two speech source signals from the
TIMIT database are used with the length truncated to 1.5s. The
sampling frequency is 16 kHz. The incidence angle of the two
sources are set to be 10o and 70o. A comparative simulation of



TABLE I
COMPARISON OF STATIC ICA AND FILTERBANK ICA RESULTS

RT60 = 200ms RT60 = 300ms
SIR1 SIR2 SIR1 SIR2

Static ICA 25.30dB 26.91dB 6.95dB 12.80dB
Subband ICA 24.65dB 28.99dB 10.12dB 15.75dB
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Fig. 5. Time waveforms of the presented speech sources and signals
recovered by the subband ICA algorithm.

static ICA and subband ICA algorithms is executed under var-
ious reverberant environments. Table I summarizes the signal-
to-interference ratio(SIR) for 200ms and 300ms reverberation
times. Under mild reverberation situation, the improvement is
limited because the static ICA already has a satisfying level
of separation. When reverberation increases, the performance
of the subband ICA is significantly higher than static ICA.
Under 300ms reverberation time, which corresponds to a
0.59 uniform reflection coefficient in the simulated room
environment, the SIR improvement is over 3dB.

The subband ICA is also been applied on the real-world
recordings of two speech signals in a typical conference
room. The speech signals were presented through loudspeakers
positioned at 1.5 m distance from the array and recorded using
4 hearing aid microphone array. The relative directional angles
of the speakers with respect to the center of the array were
−30o and 40o. The distance between opposing omnidirectional
miniature microphones (Knowles FG-3629) was 1 cm. The
sampling frequency was set to 16 kHz. The separated signals
along with the original source signals are shown in Figure 5
and demonstrate the separation of around 15dB.

V. CONCLUSION

The proposed gradient flow subband acoustic separation
technique is presented and evaluated under adverse reverberant
situations. The improvement over the static ICA algorithm
in the gradient flow representation in moderate reverberation
environments is demonstrated. The technique lends itself in
mixed-signal VLSI implementation amenable to low-power,
small-form-factor hearing aids and other acoustic tracking and
separation applications.

VI. ACKNOWLEDGMENT

This work was supported by NSF CAREER Award
0846265.

REFERENCES

[1] R. N. Miles, Q. Su, W. Cui, M. Shetye, F.L. Degertekin, B. Bicen,
C. Garcia, S. Jones and N. Hall, “A low-noise differential micro-
phone inspired by the ears of the parasitoid fly Ormia ochracea”,
J. Acoust. Soc. Am., vol. 125 (5), pp. 2013-2026, 2009.

[2] S. Ando, T. Kurihara, K. Watanabe, Y. Yamanishi and T. Ooasa,
“Novel theoretical design and fabrication test of biomimicry
directional microphone”, International Solid-State Sensors, Ac-
tuators and Microsystems Conference TRANSDUCERS 2009, pp.
1932-1935, 2009.

[3] A.S. Bregman, Auditory Scene Analysis, The Perceptual Organi-
zation of Sound, Cambridge MA: MIT Press, 1990.

[4] V. Hamacher, J. Chalupper, J. Eggers, E. Fisher, U. Kornagel,
H. Puder and U. Rass, “Signal Processing in High-End Hearing
Aids: State of the Art, Challenges, and Future Trends”, EURASIP
Journal on Applied Signal Processing, vol. 18, pp. 2915-2929,
2005.

[5] M.S. Pedersen, J. Larsen, U. Kjems and L.C. Para, “A Survey of
Convolutive Blind Source Separation Methods”, Springer Multi-
channel Speech Processing Handbook, pp. 1065-1084, 2007.

[6] R. Lambert and A. Bell, “Blind separation of multiple speakers
in a multipath environment,” Proc. IEEE Int. Conf. Acoustics,
Speech and Signal Processing (ICASSP’97), Münich, 1997.

[7] H. Sawada, R. Mukai, S. Araki and S. Makino, “A robust and
precise method for solving the permutation problem of frequency-
domain blind source separation”, IEEE Transactions on Speech
and Audio Processing, vol. 12 (5), pp. 530-538, 2004.

[8] H. Saruwatari, T. Kawamura, T. Nishikawa, A. Lee and
K. Shikano, “Blind Source Separation Based on a Fast-
Convergence Algorithm Combining ICA and Beamforming”,
IEEE Transactions on Audio, Speech and Language Processing,
vol. 14 (2), pp. 666-678, 2006.

[9] L. Parra and C. Alvino, “Geometric Source Separation: Merging
Convolutive Source Separation with Geometric Beamforming”,
IEEE Transactions on Speech and Audio Processing, vol. 10 (6),
pp. 352-362, 2002.

[10] G. Cauwenberghs, M. Stanacevic, and G. Zweig, “Blind Broad-
band Source Localization and Separation in Miniature Sensor Ar-
rays,” Proc. IEEE Int. Symp. Circuits and Systems (ISCAS’2001),
Sydney, Australia, May 6-9, 2001.

[11] R. N. Miles, D. Robert and R.R. Hoy, “Mechanically coupled
ears for directional hearing in the parasitoid fly Ormia ochracea,”
J. Acoust. Soc. Am., vol. 98, pp. 30593070., 1995.

[12] Z. Koldovsky, P. Tichavsky and E. Oja, “Efficient Variant of Al-
gorithm FastICA for Independent Component Analysis Attaining
the Cramer-Rao Lower Bound,” IEEE Trans. on Neural Networks,
vol. 17 (5), pp. 1265-1277, 2006.

[13] J.B. Allen and D.A. Berkley, “Image method for efficiently
simulating small-room acoustics”, J. Acoust. Soc. Amer., vol. 65,
pp. 943950, Apr. 1979.


