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Abstract—We present an architecture of a microsystem de-
signed for the task of blind source separation of acoustic sources
that impinge on the miniature microphone array. The proposed
architecture implements the source separation algorithm in a
unique framework that combines wavefront sensing, subband
signal processing and independent component analysis. The
spatial gradients of the acoustic wavefront are computed in the
continuous-time domain and decomposed in the 16 subbands. In
each band, we perform static independent component analysis.
We demonstrate that with the proposed system architecture 13 dB
separation performance is achieved in moderate reverberant
environment.

I. INTRODUCTION

With the emergence and advance of microelectromechanical
systems (MEMS) technology, the size of the acoustic sen-
sors has been reduced down to a millimeter and micrometer
range [1]. Smart sensing hearing aids is one of the areas where
microscale integration using MEMS technology promises sig-
nificant breakthrough. To comply with the requirement of
small form factor and low power operation, it is desirable that
the sensor array and the processing mixed-signal circuit are
integrated on the same substrate. It is also critical for hearing
aids and other acoustic applications to perform well in real
room environments where the echos and reflections create
multiple-path disturbances other than the direct-path signal.

There have been different architectures for the implemen-
tation of blind source separation algorithms. The implemen-
tations were constrained to the static independent component
analysis in both analog and mixed-signal VLSI [2]–[4] and in
digital domain [5], [6]. We have previously presented a system
that performs source separation and localization in an anechoic
environment, accounting only for the direct path signals. That
microsystem comprises spatial gradient computation integrated
circuit [7] and independent component analysis processor [8].
The system demonstrated 12 dB separation in mild reverberant
environment. We present a system architecture that accounts
for the reverberant environment by using subband signal pro-
cessing and extend the separation performance to intelligible
separation in the moderate reverberant environments.

II. SOURCE SEPARATION SYSTEM ARCHITECTURE

The blind source separation problem can be defined as a task
to recover unknown source signals, that propagate through the
unknown medium, from the signals observed by an array of

sensors. The source signals are estimated using the assumption
of their mutually independence. If the sources are linearly
mixed, the sensors observations x are

x = As (1)

where A denotes the mixing matrix and s are the independent
input signals. Matrix A is an M×N dimensional matrix, where
N is the number of sources and M is number of sensors. The
assumption is that M > N , since in the case of more sensors
than sources prior information about sources is necessary for
separation [9]. To recover the sources, the observed signals
are processed by a transformation matrix W

y = Wx (2)

and the coefficients of matrix Wij are updated based on the
learning rule defined from the cost function that imposes the
condition of the independence of the recovered sources.

In a reverberant environment, the multi-path wave propaga-
tion contributes delayed mixture components to the observa-
tions, leading to model

xi(t) =

M∑
j=1

hij ∗ sj(t), (3)

where hij is the channel impulse response from the source
j to the sensor i. In typical room environment, the channel
impulse response is the room impulse response, which is
dependent on reverberation and absorption characteristics of
the room. An FIR filter representing typical room impulse
response requires a large number of delay elements, typically
few thousand significant delay coefficients [10]. Convolutive
ICA techniques(e.g. [11]), that explicitly assume convolutive
or delayed mixtures (3), are usually much more involved than
static and require a large number of parameters and long
adaptation time horizons for proper convergence, with no real-
time microsystems proposed in the literature.

We propose an implementation of the microsystem for blind
source separation that interface a miniature microphone array,
where the distance between microphones is much smaller than
the wavelength, as illustrated in Figure 1. In an anechoic
environment, the microphone signals are mixtures of time
delayed sources, where the delays between observed signal
are proportional to the directional cosines of the impinging
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Fig. 1. Configuration of sensors for spatial gradient estimation..

sources [8]. This mixture of the delayed sources is transformed
to a linear instantaneous mixture of time-differentiated source
signals in the form of (1) by observing the spatial gradients

ξ̇00(t) =
∑

l ṡ
l(t)

ξ10(t) =
∑

l τ
l
1ṡ

l(t)

ξ01(t) =
∑

l τ
l
2ṡ

l(t) (4)

where ξ̇00 is the time derivative of the spatial common mode
signal, ξ10 and ξ01 are the first-order spatial gradients in p
and q directions around the origin (p = q = 0) and τ l1 and τ l2
are the time delays of the source signal l in p and q direction,
respectively. The time delays uniquely determine the directions
of the source signals. Therefore, by applying the static ICA on
the three gradient signals, the source signals can be recovered
along with the location of the sources.

In the reverberant environment, in addition to the direct
path signals, we have addition of the multi-path copies of
the source signals, modifying (4) with contribution of these
signals. There are two options for the implementation of
the convolutive ICA in this framework, in time domain and
in frequency domain. After the extraction of the direct-path
signals, in time domain the impulse response of the signals are
very similar and the unmixing filters would have significantly
reduced number of taps than in the case of the convolutive
ICA (3) with the distance between microphones comparable
to the signal wavelength. In the frequency domain, we propose
subband ICA architecture that comprises static ICA separation
applied on the unfiltered spatial gradient signals and static
ICA applied separately in each frequency band [12]. Due to
the localization performed inherently by the static ICA on
the unfiltered spatial gradients, the permutation and scaling
ambiguity of the subband ICA is resolved in the gradient flow
representation and provide improved separation performance
under moderate reverberations.

As illustrated in the block diagram, the proposed architec-
ture comprises implementation of the spatial and temporal
sensing, the subband decomposition of the spatial gradient
signals and application of static linear ICA in 16-channels
along with the synthesis of the output signals. The details of
the implementation of each of these blocks are outlined in the
following subsections.
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Fig. 2. Block diagram of the proposed subband gradient flow ICA
architecture.

A. Spatial and Temporal Sensing

The spatial gradients are approximated on an planar array
of four microphones:

ξ00 ≈ 1
4

(
x−1,0 + x1,0 + x0,−1 + x0,1

)
ξ10 ≈ 1

2

(
x1,0 − x−1,0

)
(5)

ξ01 ≈ 1
2

(
x0,1 − x0,−1

)
The required operation includes the computation of the average
of the four signals with the computation of the time-derivative.
The first-order spatial gradients include the computation of the
difference between two microphone signals. The computation
of the first-order signals is implemented using the difference
amplifier.

B. 16-channel Filter Bank

For the subband processing of the spatial gradient signals,
we have proposed a 16-channel continuous-time filter bank.
The each channel implements a first-order band-pass filter
with the factor Q being equal to 4. The center frequencies
of the band-pass filters are selected according to the mel-
scale, with the linear spacing between 150 Hz and 1 kHz and
logarithmic spacing between 1 kHz and 10 kHz. The proposed
implementation of the bandpass filter achieved an harmonic
distortion of −59.6dB and dynamic range of 59.9dB [13].

C. Independent Component Analysis Implementation

In the proposed subband implementation, the static indepen-
dent component analysis is performed in 16-channels, with
the resulting output signals in each subband combined to
recover the source signals. Based on the static ICA solutions
on the fullband spatial gradient signals, the coefficients of
the unmixing matrix in each subband are initialized. The
initialization of the weight coefficients solves the problem
of indeterminacy in the ordering of the source signals in the
unmixed signals in the frequency domain.



The independent component analysis implementation com-
prises the vector-matrix multiplication y = Wx and adapta-
tion of the unmixing matrix coefficient according to an ICA
learning rule. There is a wide variety of ICA learning rules
proposed in the literature [9]. For the efficient implementation
of the update rule, in order to avoid excessive matrix mul-
tiplications and inversions, an outer-product update rule was
proposed in [4] with fixed diagonal terms wii ≡ 1, and with
off-diagonal terms adapting according to

∆wij = −µ f(yi)g(yj), i ̸= j (6)

This update rule can be seen as the gradient of the information
maximization learning rule multiplied by WT , rather than the
natural gradient multiplication factor WTW [9]. To obtain the
full natural gradient in outer-product form, it is necessary to
include a back-propagation path in the network architecture,
and thus additional silicon resources, to implement the vector
contribution yW.

The speech signals are approximately Laplacian distributed,
leading to the optimal choice of the nonlinear scalar function
f(y) being sign(y). For efficient implementation, a linear
function g(y) ≡ y in the learning rule can be approximated
by a 3-level staircase function (−1, 0,+1). This function can
be implemented using 2-bit quantization. The quantization
of the f and g terms in the update rule (6) simplifies the
implementation of the update rule to the function that can be
implemented using a single transistor.

In the proposed implementation, the unmixing coefficients
are stored differentially as a voltages W+

ij and W−
ij on two

complementary switched current sources [14], with the update
rule (6) implemented using two transistor with the functions
f(y) and g(y) time encoded, as illustrated in Figure 3. In
subthreshold, the current during activation of the sources is
exponential in the weights, implementing a coefficient

h = h0(exp(κβw
+)− exp(κβw−)) (7)

where β = q
kT and h0 = I0 exp(−βVs). The advantage of

this nonlinear transformation is that a wide dynamic range of
coefficients is obtained over a limited linear range of voltages
W+

ij and W−
ij . The proposed implementation enables fine

updates of the unmixing coefficients with both positive and
negative increments. The 3-level staircase function g(y) is
approximated with the presence/absence of the voltage pulse
and by the relative position of the pulse. The function f(y)
is coded as a two-level signal, with the sign(y) determining
the order of the levels Vlo and Vhi. These voltage levels are
applied externally, which control the value of adaptation rate
µ. To reduce the required silicon area the Cw is implemented
as a MOS capacitance. When the update signals goes high, the
charge on the small parasitic capacitance on the drain/source
diffusion between transistors M1 and M2, denote as Cp, and
Cw is shared. The resulting change on the capacitor is given
by

W+
ij [n+ 1] = W+

ij [n] +
Cp

Cw + Cp
(V +

Aij [n]−W+
ij [n]) (8)
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Fig. 3. Adaptation cell: (a) Circuit implementation. (b) Timing diagram.
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Fig. 4. Pulse-width modulation of the input signals.

The common mode component 1
2 (W

+
ij +W−

ij ) is regulated by
the weight decay term on the right side of (8), pulling the
values towards the center of the range.

The vector-matrix multiplication y = Wx is implemented
by integrating switched currents controlled by a pulse-width
modulation of input signal and gate voltages of a pair of
CMOS current sources. The realized multiplication is four-
quadrant, with differential weights and bipolar input signal.
The source voltage of the transistor, whose gate voltage is
controlled by Wij is pulsed, where the width of the pulse
is proportional to absolute value of input signal, xj . The
pulse width-modulation of the input signal xj is illustrated
in Figure 4, with the position of the pulse with respect to
the reference time point t0 encoding the polarity of the input
signal, relative to reference voltage Vref . Active low source
voltage controls the amount of transistor current.

Current pulses are integrated on the output capacitor Cint.
Due to time encoding of the polarity of the input signal
to account for the polarity of the contributions, the voltage
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obtained by the integration before time to is subtracted twice
from the final integrated value [14]

y+i − y−i =

M∑
j=1

∫ t+

t0

Iij
Cint

dt−
M∑
j=1

∫ t0

t−

Iij
Cint

dt

=

M∑
j=1

∫ t+

t−

Iij
Cint

dt− 2

M∑
j=1

∫ t0

t−

Iij
Cint

dt (9)

The circuit for implementing this weighted subtraction is
shown in Figure 5 and is followed by a standard SC subtraction
stage.

III. SIMULATION RESULTS

The spatial gradient sensing, subband signal decomposition
and ICA processing were implemented in 0.5µm 3M2P CMOS
technology. To demonstrate the feasibility and the performance
of the proposed architecture, we have modeled the complete
system in Matlab using the simulation results of all three build-
ing blocks in Cadence Virtuso. The simulation were performed
on the artificial microphone array signals generated based on
the image model.Simulated room dimensions correspond to an
ordinary office space with the room dimensions 4m×6m and
the room height of 2.5m. Both speakers playing the speech
sources are kept 1.5m away from the center of the sensor
array. The four microphones in the array is orthogonal aligned,
with 1 cm inter-microphone spacing as illustrated in Figure 1.
Two speech source signals from the TIMIT speech corpus
are used with the length truncated to 1.5s. The sampling
frequency is 16 kHz. The incidence angle of the two sources
are set to be 10o and 70o. A comparative simulation of static
ICA and subband ICA algorithms is executed under various
reverberant environments. Table I summarizes the signal-to-
interference ratio (SIR) for room conditions with reverberation
time of 200ms and 300ms. Not much differentiation can
be observed under mild reverberation situation, because the
static ICA already produces very high level of separation.
When the condition is more reverberant, the performance
advantage of the subband ICA over static ICA starts to exhibit.
When the reverberation time is 300ms, which corresponds to
a 0.59 uniform reflection coefficient in the simulated room
environment, the SIR improvement is over 3dB.

TABLE I
COMPARISON OF STATIC ICA AND PROPOSED FILTERBANK ICA RESULTS

RT60 = 200ms RT60 = 300ms

Static ICA Subband ICA Static ICA Subband ICA

SIR1 25.30dB 25.43dB 6.95dB 10.07dB
SIR2 26.91dB 27.85dB 12.80dB 15.52dB

IV. CONCLUSION

We have presented an architecture of a microsystem for
blind source separation of source signals impinging micro-
phone array with the distance between microphones much
smaller than the wavelength. The proposed microsystem en-
ables a wide range of new applications of the miniature
microphone arrays where the power consumption and size of
the digital implementation were the limiting factors.
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[13] Y. Lin and M. Stanaćević, “A Low-Power, High-Linearity Filter Bank
for Auditory Signal Processing Microsystem,” Proc. 56th. IEEE Midwest
Symp. on Circuits and Systems (MWSCAS’2013), Columbus OH, 2013.
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