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Abstract

Many important problems in signal processing can be reduced to the adequate selection
parameters of a (possibly nonlinear) filter in order to obtain an output signal that complie
some desired properties. In this work, we analyze a novel criterion for selecting filter paramete
relies on the ability to characterize the desired filter output in terms of atarget probability density
function (pdf). This target pdf can be handled as a likelihood function to be maximized, th
refer to the new criterion as maximum target-likelihood (MTL). We present a very general s
model where the MTL criterion can be applied and derive necessary and sufficient conditio
asymptotic convergence of the method. The relationship and differences between MTL and s
maximum likelihood (ML), minimum Kullback–Leibler divergence (MKLD), and minimum entro
(ME) methods are explored. Finally, as an example, we apply the novel criterion to the prob
blind timing and phase recovery in a digital transmission system and show that the resulting alg
is competitive with existing non-data-aided ML-based algorithms.
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1. Introduction

Many important problems in signal processing can be reduced to the adequate
tion of the parameters in a filtering structure so that it accomplishes some prescribe
such as, e.g., deconvolution [1], system identification [2], or pattern recognition [3]
criteria proposed in the literature to solve such problems are diverse. One possible
fication, according to the type ofreferenceemployed to assess the quality of the filter
signal, yields three categories: temporal, spectral, and statistical reference criteri
methods in the first group select the filter coefficients to make the output signal eq
or highly correlated with, an a priori known signal. A typical example is the minim
mean square error (MMSE) criterion and its adaptive implementation via the well-k
least mean squares (LMS) algorithm [4]. Filter design and optimization to match
prescribed spectral response is a thoroughly researched topic which includes c
techniques such as the minimax method (see, e.g., [5]). Finally, criteria that rely o
statistical properties of the signals fall within the third category, which includes some
niques aimed at independent component analysis (ICA) [6], e.g., the constant m
criterion [7] or Cardoso and Laheld’s equivariant algorithm [8]. Though appealing d
their very mild requirements (only statistical independence of the signals to be recov
the lack of a more informative reference limits the practical use of these purely-stat
ICA algorithms, which usually require the availability of huge observation records an
subject to local convergence problems. For some problems, better convergence pro
can be provided by methods that also exploit the signal structure, as subspace m
do [9].

In this work, we analyze a novel criterion for parameter selection that relies o
ability to characterize the desired signal at the filter output in terms of a target proba
density function (pdf) which, in practical situations, depends on the filter parameter
the distribution of the signal of interest. The target pdf serves as a statistical refe
much more informative than statistical independence alone, and the filter paramet
be chosen to maximize the likelihood of the output signal under the target proba
model. For this reason, we refer to the proposed method as maximum target like
(MTL).

Similar techniques have been suggested in the past to deal with specific probl
digital communications, namely beamforming and channel equalization [10,11], as w
multiuser interference suppression [12,13]. These approaches, however, are concern
simple schemes consisting of Gaussian-corrupted observations which are process
a linear finite impulse response (FIR) filter. It is also worth mentioning a formally sim
technique proposed in [14]. The latter method, however, is derived within the cont
conventionalmaximum likelihood (ML) estimation by using adequate priors on nuisa
variables which are integrated out.

Except for a first attempt by these authors in [15], a general study of the MTL crit
has not been tackled yet, to the best of our knowledge. In this work, we address
general framework that comprehends dynamic systems in state-space form and a
filtering functions, both linear and nonlinear. This broad setup allows to obtain both
cient and necessary conditions for asymptotic convergence of MTL solutions. Com
to [15], we introduce stronger, and more detailed, theoretical results regarding c



J. Míguez, M.F. Bugallo / Digital Signal Processing 15 (2005) 171–190 173

blind

gh the
ion of
g. The

differ-
thod
nce
Con-
upon
the

s de-

and
enoted

df.

fy
the

sub-
y the

o

that
gence, together with a new application of the MTL methodology to the problem of
timing and phase recovery in a digital receiver.

The remaining of the paper is organized as follows. Specific notation used throu
article is introduced in Section 2. In Section 3, we present a mathematical formulat
the filtering problem that covers several applications of interest in signal processin
proposed MTL criterion is formally stated as a method formodel fittingin Section 4. In
Section 5, an asymptotic convergence result that relates the MTL solution to the
ential entropy (DE) of the filtered signal is proved. The connection of the MTL me
with standard ML, minimum entropy (ME) and minimum Kullback–Leibler diverge
(MKLD) techniques is investigated, and key differences are identified, in Section 6.
vergence in the presence of multiple target likelihood maxima is briefly commented
in Section 7. The validity of the method is illustrated, in Section 8, by applying it to
problem of blind timing and phase recovery in a digital receiver. Finally, Section 9 i
voted to the conclusions.

2. Notation and definitions

We will abide by the following notation:

(1) Vectors and matrices.Vectors and matrices are denoted by lower-case bold-face
upper-case bold-face characters, respectively. The set of complex numbers is d
asC. Hence,v ∈ CN denotes anN × 1 vector of complex elements.

(2) Probability density functions.Given random vectorsx,y ∈ CN , p(x,y) is the true joint
pdf of x andy, p(x|y) is the true conditional pdf ofx given y andp(x) is the true
marginal pdf ofx.

(3) Probability models.Probabilistic models are indices that completely identify a p
Let M be a set of models and letM1,M2 ∈ M, M1 �= M2. If a random vectorx is
distributed according to modelM1, written x ∼ p(x|M1), thenp(x|M1) = p(x). If
x ∼ p(x|M2), thenp(x|M1) �= p(x) = p(x|M2). We use the model index to identi
p(·|M), M ∈ M, as a function that can be applied to any complex vector with
same dimension asx.

(4) Differential entropy.The differential entropy (DE) [16] of a random vector,x ∈ CNx ,
x ∼ p(x) is

H(x) � −Ep(x) logp(x),

where Ep(x) denotes statistical expectation with respect to (w.r.t.) the pdf in the
script. The DE is a measure of the average information amount conveyed b
random sourcex ∼ p(x).

(5) Kullback–Leibler divergence.The Kullback–Leibler divergence (KLD) between tw
pdf’s, sayp(x|M1) andp(x|M2), is defined as [16]

KLD(M1 ‖ M2) � Ep(x|M1) log
p(x|M1)

p(x|M2)
.

The KLD measures the similarity between the two densities. It is guaranteed
KLD(M1 ‖ M2) � 0, with equality if, and only if,p(x|M1) = p(x|M2).
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3. Problem statement

Let us consider the Markovian discrete-time random process

xn ∼ p(xn|xn−1), (1)

wherexn ∈ CNx is a random signal of interest, with conditional pdfp(xn|xn−1). Notice
that this model includes discrete processes, since probability mass functions (pmf
be represented in a continuous space as sums of Dirac deltas and then handled as p
are interested in estimating the sequencex0:n = {x0, . . . ,xn}, which cannot be observe
directly. The signals we are able to collect through some type of sensor (or sensor
during thenth observation period areNz × 1 complex vectors of the form

z(t) = θc

(
xn,u(t), t

)
, tn−1 < t � tn,

if they are continuous-time signals, or

zn = θd(xn,un),

if they are discrete-time processes. Functionsθd andθc represent some unknown distortio
of xn, as well as the effect of output and/or input transducers. Random processesun,u(t) ∈
CNu are used to model noise and other unknown nuisance signals.

The goal is to process the raw observations, eitherz(t) or zn, using some convenien
filter that we formally describe by means of function

ϕ :CNz × CNw → CNx ,

which takes the observations and a vector of adjustable parameters,w ∈ W ⊆ CNw , as
arguments in order to yield an estimate ofxn. For the sake of generality, we assum
a continuous-time observation and let the sampling of the collected signal be p
the processing whenever necessary (i.e., the sampling rate can be considered a
the parameters inw). Thus, the filter output corresponding to thenth observation period
(tn−1 < t � tn) can be written as

yn = ϕn

(
z(t),w

) = ϕn

(
θc

(
xn,u(t), t

)
,w

)
. (2)

Finally, we drop the explicit reference toxn,u(t) and simply write

yn = ϕn(w).

When considered together, Eqs. (1) and (2) yield a dynamic system where the
of interest,xn, is the system state andyn is an associated measurement. The aim i
adjust the filter parameters to ensure that the sequence of measurements is clos
sequence of states in some sense, i.e., we look for a choice ofw such that the measuremen
y0:n = ϕ0:n(w) = {ϕ0(w), . . . , ϕn(w)}, can be used as estimates ofx0:n. Figure 1 illustrates
the system model.

4. Selection of filter parameters by maximization of a target likelihood

We assume that for each choice of filter parameters,w ∈ W , it is possible to define
probabilistic model identified by a real indexI (w) ∈ M̃, whereM̃ ⊆ R is the set of mode
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Fig. 1. Block diagram of the adopted system model.

indices. According to this notation, we can write

yn = ϕn(w) ⇒ yn ∼ p(yn) = p
(
yn|I (w)

)
and

I (w) �= I (w′) ⇔ p
(
yn|I (w)

) �= p
(
yn|I (w′).

In order to select the adequate value of the filter parameters, we assume there is an
known optimal probability distribution of the measurements. The optimal model is ind
asI0 (I0 /∈ M̃) and we hypothesize that if the filtered signal is distributed according to
model,

yn ∼ p(yn|I0),

then yn is a good estimate ofxn in some statistical sense. Two important remarks
necessary at this point:

Remark 1. Model indexI0 is written without reference to a specific choice of filter pa
meters in order to emphasize that this optimal model is known even if the parameter
that makes the measurements follow that distribution is not known, does not belongW
or simply does not exist.

Remark 2. It is important to realize that, for most problems of interest, even some o
simplest, it is impossible to find a tractable analytical expression forp(yn|I (w)). There-
fore, the straightforward strategy of solving equationp(yn|I (w)) = p(yn|I0) for w is not
feasible in general.

In the sequel, the optimal model,I0, is termed thetarget modeland its associated pd
p(yn|I0), thetarget pdf. Our aim is to compute a parameter vectorŵ such thatp(yn|I (ŵ))

is close top(yn|I0) in some sense.
One appealing way to tackle this optimization problem is to pose it as one of m

fitting. Let us define the complete model set asM = M̃
⋃{I0}. We propose to select th



176 J. Míguez, M.F. Bugallo / Digital Signal Processing 15 (2005) 171–190

l
ord of

sumed
ector
d the
sing the

s not
em

the
the

s

gral

any
every

sen-
good
et pdf

rived
duces
been
filter parameters so as tofit the target model, i.e., so as to makeI0 the most likely mode
in M according to the measurements. Mathematically, this means that, given a rec
n + 1 observations,̂w can be chosen as

ŵ = arg max
w̃

{∫
W

n∑
k=0

log
p(yk|I0)

p(yk|I (w))
dw

}
s.t.y0:n = ϕ0:n(w̃)

= arg max
w̃

{∫
W

n∑
k=0

log
p(ϕk(w̃)|I0)

p(yk|I (w))
dw

}
, (3)

where s.t. stands for “subject to” and log denotes the natural logarithm. We have as
that p(yn|I (w)) does not have a tractable closed form for an arbitrary parameter v
w ∈ W (see Remark 2 above). Thus, our knowledge is limited to the target pdf an
record of measurements and, as a consequence, we can do no better than increa
value of the integral in (3) up to the maximization of the target density (which doe
depend on the integration variablew). Therefore, we substitute (3) by the simpler probl

ŵ = arg max
w̃

{
n∑

k=0

logp(yk|I0)

}
s.t.y0:n = ϕ0:n(w̃)

= arg max
w

l0n(w), (4)

where

l0n(w) =
n∑

k=0

logp
(
ϕk(w)|I0)

)
(5)

is the target likelihood ofw up to timen. Hence, the parameter vector obtained as
solution of problem (4) is termed the maximum target likelihood (MTL) solution of
filter parameters, and the resulting measurements,y0:n = ϕ0:n(ŵ), are the MTL estimate
of the state sequencex0:n.

Clearly, when applying the MTL criterion in (4), we are disregarding the inte
term − ∫

W
∑n

k=0 logp(yk|I (w)) dw, which appears in (3) and depends onw̃ through
yk = ϕk(w̃). Therefore, we do not claim that the proposed criterion be optimal in
particular sense, or constitute a universal tool which can be successfully applied to
filtering problem. The relative merit of the MTL method should be found in making a
sible (yet possibly suboptimal) use of the available knowledge in order to achieve a
practical solution in those problems where a statistical reference in the form of a targ
can be easily identified.

5. Asymptotic convergence

So far, we have developed the MTL criterion within a general framework and ar
at a relatively simple expression for the selection of the filter parameters, which re
to the maximization of a known log-likelihood function. Although this approach has
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proposed in the past to solve specific problems in communications [10–12], a gene
sessment of the convergence properties of the method has not been done yet. Ind
algorithms for channel equalization [11] and multiuser interference suppression [1
supported by useful analytical results, but they are constrained to finite-alphabet u
state signals, with linear observations and linear filtering. As a consequence of this
generality, the results reported in [11,12] cannot be directly applied to the MTL sol
given by (4).

In this section, we state and prove a theorem that relates the MTL parameters, s
according to (4), to the DE of the measurements,yn. The theorem holds true asympto
cally, asn → ∞, and imposes few constraints on the observation and filtering functio

Section 5.1 is devoted to the theorem assumptions, while its statement and pro
developed in Section 5.2.

5.1. Assumptions and notation

The following assumptions are made in the remaining of this section:

(i) Stationarity.For a fixedw, the measurement process is stationary up to the equal
the marginal densities,p(yk|I (w)) = p(yl |I (w)), ∀k, l.

(ii) Ergodicity.For a fixedw, the measurement process is ergodic in the mean, i.e.,

lim
n→∞

1

n

n∑
k=0

ν(yk) = Ep(yn)ν(yn) < ∞,

with convergence in probability (i.p.), whereν is an arbitrary integrable function ofyn

and Ep(yn) denotes mathematical expectation w.r.t. the pdf in the subscript.
(iii) Existence.The following summation converges i.p.

lim
n→∞

1

n
l0n(w) = l0(w).

(iv) Gradient.The gradient of the target likelihood,∇wl0n(w), exists and it is an invertibl
function ofw for
(a) all parameter vectors belonging to the region of interest, i.e.,∀w ∈ W , and
(b) all integers greater than some threshold, i.e.,∀n > n0 (n0 < ∞).
Additionally, it is useful to introduce notation

ŵn = arg max
w

l0n(w) (6)

for the MTL parameter vector computed using the observations up to timen, and

ŵ∞ = lim
n→∞ ŵn

for the limit of (6) as the number of observations becomes arbitrarily large.

In general, we do not assume that anexact solution exists withinW such that the
target pdfp(yn|I0) can be attained. However, for notational convenience, we defin
optimal parameter vectorw0 that achievesp(yn|I (w0)) = p(yn|I0) although, possibly
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w0 ∈ CNw \W . As a consequence, it is not at all guaranteed thatp(yn|I (ŵ∞)) = p(yn|I0).
The properties of the asymptotic MTL solution are established in Section 5.2.

5.2. Asymptotic convergence and differential entropy

Let us write

H(w1) = −Ep(yn|I (w1)) logp
(
yn|I (w1)

)
,

for the DE ofyn ∼ p(yn|I (w1)), and

KLD(w1 ‖ w2) = Ep(yn|I (w1)) log
p(yn|I (w1))

p(yn|I (w2))
,

for the Kullback–Leibler divergence (KLD) betweenp(yn|I (w1)) andp(yn|I (w2)). The
feasible parameter vector that yields the closest-to-target pdf in the KLD sense p
major role in the subsequent analysis and we denote it as

w∗ = arg min
w∈W

KLD(w ‖ w0).

We have the following theorem.

Theorem 1. Let l0n(w) be a target likelihood in the region of interest,w ∈ W , which com-
plies with assumptions(i)–(iv). Necessary(a) and sufficient(b) conditions for asymptotic
convergence can be established as shown below.

(a) If ŵ∞ = w∗, thenH(w∗) � H(w) + KLD(w ‖ w0) − KLD(w∗ ‖ w0), ∀w ∈W .
(b) If H(w∗) � H(w) + KLD(w ‖ w∗), ∀w ∈ W, thenŵ∞ = w∗.

Proof (Outline). We proceed in three steps. First, we rely on assumptions (i)–(iv) to d
a convenient asymptotic version (asn → ∞) of problem (6). Next, necessary condition (
is easily derived from the definition of KLD. Finally, sufficient condition (b) is obtained
contradiction using thePythagorean theoremof the KLD [16].

Step1. Asymptotic MTL solution.We start with the definition of a modified target lik
lihood function of the form

l̃ 0
n (w) = 1

n
l0n(w), (7)

and the realization that

ŵn = arg max
w

l0n(w) = arg max
w

l̃ 0
n (w).

Substituting (5) into (7), we readily obtain an expression for the modified target likelih

l̃ 0
n (w) = 1

n

n∑
k=0

logp
(
ϕk(w)|I0

) = 1

n

n∑
k=0

logp(yk|I0), (8)

subject toyk = ϕk(w). According to the stationarity assumption (i), all densities in (8)
equal, hence we can apply the weak law of large numbers and the ergodicity assu
(ii) to arrive at

lim l̃ 0
n (w) = Ep(yk |I (w)) logp(yk|I0) (i.p.). (9)
n→∞
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To complete this first part of the proof, we recall the existence (iii) and gradient (iv
sumptions to obtain

ŵ∞ = lim
n→∞

{
arg max

w
l̃ 0
n (w)

}
= arg max

w

{
lim

n→∞ l̃ 0
n (w)

}
, (10)

which, by substitution of (9) into (10), yields

ŵ∞ = arg max
w

Ep(yk |I (w)) logp(yk|I0). (11)

Step2. Necessary condition(a). Given (11),ŵ∞ = w∗ obviously yields

−Ep∗ logp0 � −Epw logp0, ∀w ∈W,

wherep∗ andp0 are shorthand forp(yn|I (w∗)) andp(yn|I (w0)), respectively. Using the
definitions of KLD and DE, the latter inequality can be successively transformed into

KLD(w∗ ‖ w0) + H(w∗) � KLD(w ‖ w0) + H(w), ∀w ∈W,

and

H(w∗) � KLD(w ‖ w0) − KLD(w∗ ‖ w0) + H(w), ∀w ∈W,

which is the necessary condition in part (a) of the theorem.
Step3. Sufficient condition(b). We proceed by contradiction. Let us assume the foll

ing relationships hold jointly:

(i) H(w∗) � H(w) + KLD(w ‖ w∗), ∀w ∈W ,
(ii) ŵ∞ �= w∗.

From (ii) we obtain∃w′ ∈W such that

−Epw′ logp0 < −Ep∗ logp0,

wherepw′ is shorthand forp(yn|I (w′)), which can be readily written in terms of KLD an
DE as

KLD(w′ ‖ w0) + H(w′) < KLD(w∗ ‖ w0) + H(w∗). (12)

Using thePythagoreaninequality [16]

KLD(w ‖ w0) � KLD(w ‖ w∗) + KLD(w∗ ‖ w0), ∀w ∈ W,

in order to decompose KLD(w′ ‖ w0) in (12) yields

KLD(w′ ‖ w∗) + H(w′) < H(w∗)

which is in contradiction with assumption (i) above.�
Corollary 1. If w0 ∈ W thenŵ∞ = w0 if, and only if,

H(w0) � H(w) + KLD(w ‖ w0), ∀w ∈ W .

Proof. Taking into account thatw0 ∈ W ⇒ w0 = w∗ ⇒ KLD(w∗ ‖ w0) = 0, the proof
follows trivially from Theorem 1. �
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5.3. Discussion

The above theorem and corollary indicate that MTL solutions asymptotically con
to filter parameters whichmay be notthe target parameters (or the closest feasible vec
but are close to them according to the KLD and yield a pdf with a smaller DE, if su
density exists. Note that this is not necessarily a drawback, since small entropy so
are desirable in many applications, such as detection and classification.

One important case where convergence to a smaller-entropy pdf comes up is th
lem of linear equalization of a dispersive channel in Gaussian noise. In [11], it is prove
the MTL linear equalizer is the filter that yields a measurement pdf with the same m
as the target one and minimum variance. For the symmetric mixture Gaussian targe
considered in [11], the minimization of the variance is equivalent to the minimizatio
the DE and, therefore, this result is consistent with the asymptotic convergence theo
this paper.

The asymptotic convergence properties of the MTL method also provide an inter
ground for comparison with standard techniques that can be characterized in similar
namely ML, MKLD, and ME criteria. This is the aim of Section 6.

6. Connection with MKLD, ML, and ME techniques

6.1. MTL vs MKLD

There are two ways to build MKLD filter parameters,

w(1)
MKLD = arg min

w∈W
KLD(w ‖ w0) = arg min

w∈W
{Epw logpw − Epw logp0},

w(2)
MKLD = arg min

w∈W
KLD(w0 ‖ w) = arg min

w∈W
{−Ep0 logpw}.

Obviously, ifw0 ∈ W thenw(1)
MKLD = w(2)

KLD = w0 but, otherwise,w(1)
MKLD �= w(2)

KLD in gen-
eral because the KLD is not symmetric.

At any rate, Theorem 1 shows that the MTL solution may not necessarily conve
w(1)

MKLD (note thatw∗ = w(1)
MKLD ), depending on the form of the set of feasible vectors,W .

Moreover, even whenw0 ∈ W , Corollary 1 states that if∃w′ ∈ W such thatH(w′) <

H(w0) − KLD(w′ ‖ w0) then we have botĥw∞ �= w(1)
MKLD andŵ∞ �= w(2)

MKLD .

6.2. MTL vs ML

We can similarly establish the difference between MTL and ML criteria. The ML p
ciple can be used for the problem of filter parameter selection in the following way
z0:n be a setn + 1 independent observation vectors.1 The ML filter parameter selectio

1 We consider the discrete-observation case and statistical independence for simplicity, but the argum
obviously be stated in more general terms.
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constrained to the filtering functionϕ can be written as

w(n)
ML = arg max

w∈W

{
1

n

n∑
k=0

logp
(
zn|xn = ϕn(w)

)}
.

Under mild ergodicity assumptions,

wML = lim
n→∞ w(n)

ML = arg max
w∈W

{
Ep(zn) logp

(
zn|xn = ϕn(w)

)}
and simple manipulations yield

wML = arg min
w∈W

KLD
(
p(zn) ‖ p

(
zn|xn = ϕn(w)

))
,

i.e., ML estimation amounts to a search of the filter parameter vector that minimize
KLD between thetruepdf of the observations and the parameterized model pdfp(zn|xn =
ϕn(w)). If the latter model is not exact, i.e.,�w ∈ W such thatp(zn|xn = ϕn(w)) = p(zn),
then the model is said to be misspecified andwML is termed a quasi-ML (QML) estima
tor [17].

It is straightforward to notice that the QML principle requires knowledge of systeθd

in order to build the probabilistic model of the observations. This at least involves the
the noise and nuisance signals,un, and the algebraic form of functionθd . Such information
is not necessarily required for MTL selection (we have assumed an unknown distor
xn all through our derivations).

6.3. MTL vs ME

When there is no model misspecification, i.e.,∃w ∈ W such thatp(zn|xn = ϕn(w)) =
p(zn), the ML solution can be written as

wML = arg min
w∈W

{−Ep(zn) logp
(
zn|xn = ϕn(w)

)}
= arg min

w∈W
H

(
zn|xn = ϕn(w)

) = wME,

i.e., the ML principle yields a minimum entropy (ME) solution [17].
Besides the previous observation that findingwME requires knowledge of the pdf ofzn,

it must be remarked that Theorem 1 and Corollary 1 show that the MTL method conv
to small, but not minimal, DE solutions. The value ofŵ∞ is the result of a trade off tha
involves the DE and the KLD betweenp∞ andp0.

7. Multiple maxima in the target likelihood

We have obtained asymptotic results for the global solution of problem (4) in s
setW . However, the target likelihood,l0n(w), can be multimodal in many potential a
plications and computing its global maximum can become a difficult task in pra
Alternatively, the global maximum may not be unique, and the optimization algor
should also select the desired maximum in some way.
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Previous results in [13] suggest that, when possible, it is very effective to comb
limited temporal reference (i.e., a few known values within the state sequence) wi
proposed statistical criterion in order to obtain a mixed scheme where optimization
ier. Alternatively, when a temporal reference is not available at all, it may be possi
set a structural constraint on the filter in order to guarantee convergence to the d
maximum. Such is the approach in [12], where the problem of blind multiuser inte
ence suppression is investigated. Unfortunately, the latter strategy cannot be applie
contexts, since it depends on the amount of side information available.

8. Blind timing and phase recovery in a digital receiver

In this section we study the application of the MTL criterion to blind (i.e., non-d
aided) timing and phase recovery in a digital communication receiver. This is an imp
problem for which an optimal solution in closed-form cannot be derived. A comprehe
review of classical synchronization methods can be found in [18] and a more recent a
of blind algorithms in [19].

8.1. Signal model

Let us consider a digital communication system where symbols from an arbitra
phabet are transmitted over a frequency-flat channel. If data are transmitted in bursK

symbols, the baseband-equivalent received signal has the form,

r̃(t) = aej (ωt+θ)

K−1∑
k=0

skc̃(t − kTs + τ) + g̃(t),

wheret denotes continuous time,sk is thekth transmitted symbol,̃c(t) is a squared-roo
raised cosine pulse waveform,Ts is the symbol period, 0� τ < Ts is an unknown con
stant delay,ω andθ are the carrier frequency error and phase offset, respectively, andg̃(t)

is complex additive white Gaussian noise (AWGN). The receiver front-end consist
matched filter that produces the signal

r(t) = aej (ωt+θ)
K−1∑
k=0

skc(t − kTs + τ) + g(t),

where

c(t) = c̃(t) ∗ c̃∗(−t) = sin(πt/Ts)

πt/Ts

cos(παt/Ts)

1− 4α2t2/T 2
s

is a raised cosine waveform with roll-off factor 0< α � 1 and g(t) = ∫ ∞
−∞ g̃(u) ×

c̃∗(u − t) du is a Gaussian noise process with autocorrelation functionRg(t) = N0c(t).
If r(t) is sampled at the symbol rate and the raised cosine waveform,c(t), is time limited
(which is always the case in practice), the discrete-time signal

rk = r(kT ) = aej (ωkTs+θ)

L∑
sk+nc(−nTs + τ) + gk
n=1−L
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is obtained, wheregk = g(kT ) is an AWGN process andL is the inter-symbol interferenc
(ISI) span resulting from the limited time duration ofc(t). The latter equation can b
expressed in a more compact form,

rk = aej (νk+θ)c(τ )�sk + gk, (13)

by defining:

• the normalized frequency errorν = ω/Ts ,
• the 2L × 1 channel vector

c(τ ) = [
c
(
(L − 1)T + τ

)
, c

(
(L − 2)T + τ

)
, . . . , c(−LT + τ)

]�
,

• the symbol vectorsk = [sk−L+1, sk−L+2, . . . , sk+L]�.

For clarity of presentation, we focus on the estimation ofτ andθ alone, while assumin
a = 1 andν = 0, and reduce the observations to the form

rk = ejθ c(τ )�sk + gk. (14)

Notwithstanding, it is conceptually straightforward to extend the proposed MTL crite
to the general case where all parameters must be jointly estimated.

8.2. MTL blind timing and phase recovery

In order to obtain ISI free symbol estimates, the digital receiver should samp
received signalr(t) at t = kTs −τ . However,τ is a priori unknown and the receiver samp
the matched filter output att = kTs − τ̃ , where τ̃ is an estimate of the true delay. T
also unknown phase rotation,θ , is corrected using the estimateθ̃ . Hence, using the MTL
terminology developed through the paper, we have the dynamic model

sk = Ask−1 + uk, r̃k = ej (θ−θ̃ )c(τ − τ̃ )�sk + gk,

where sk is the system state,A is a 2L × 2L shifting matrix with Ai,i+1 = 1, i =
1, . . . ,2L − 1, and 0 otherwise,uk = [0, . . . ,0, sk+L]� is the 2L × 1 system noise vec
tor that contains the new symbol, andrk is the discrete-time measurement. We assu
sk+L is a discrete uniform random variable in the alphabetS , given by the modulation
format. The signal we wish to estimate is the symbol sequences0:K−1 (which is equiva-
lent to estimating the state sequences0:K−1) and thekth measurement is obtained from t
continuous-time received signalr(t) by means of the transformatioñrk = ϕ(r(t), τ̃ , θ̃ ) =
e−j θ̃ r(t = kTs − τ̃ ). Therefore, our generic filterϕ, in this case, consists of a symbol-ra
sampler, which is fully parameterized by the timing epochτ̃ , followed by a phase rotation

If τ̃ andθ̃ are perfectly chosen in order to avoid ISI and correct the phase offset,τ̃ = τ

andθ̃ = θ , the channel vector reduces toc(0) = [0, . . . , 1︸︷︷︸
L

, . . . ,0]� and the resulting pd

of the ISI-free measurements is the target pdf,

p0(r̃k) ∝
∑

exp

{
− 1

N0
|r̃k − s|2

}
,

s∈S
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wherep0(r̃k) = p(r̃k) if, and only if, r̃k = ϕ(r(t), τ, θ) = e−jθ r(t = kTs − τ). The target
likelihood at timen, therefore, is

l0n(τ̃ , θ̃ ) =
n∑

k=0

logp0
(
e−j θ̃ r(t = kTs − τ̃ )

)
and the MTL solution at timen is

(τ̂n, θ̂n) = arg max
τ̃ ,θ̃

l0n(τ̃ , θ̃ ) = arg max
τ̃ ,θ̃

{
n∑

k=0

log
∑
s∈S

e
− 1

N0
|e−j θ̃ r(t=kTs−τ̃ )−s|2

}
. (15)

8.3. Adaptive implementation using a gradient algorithm

Although other procedures can be explored (e.g., the expectation maximization
rithm as suggested in [12]), a simple way to adaptively solve (15) is by using a stoc
gradient algorithm of the form

τ̂n+1 = τ̂n + µτ

n

∂l0n(τ̃ , θ̃ )

∂τ̃

∣∣∣∣
τ̃=τ̂n, θ̃=θ̂n

, (16)

θ̂n+1 = θ̂n + µθ

n

∂l0n(τ̃ , θ̃ )

∂θ̃

∣∣∣∣
τ̃=τ̂n, θ̃=θ̂n

, (17)

whereµτ/n andµθ/n are step-size parameters and the partial derivatives of the likeli
function are approximated using only thenth measurement, i.e.,

µτ

n

∂l0n(τ̃ , θ̃ )

∂τ̃

∣∣∣∣
τ̃=τ̂n, θ̃=θ̂n

≈ µτ

∂

∂τ̃
logp0

(
e−j θ̃ r(t = nTs − τ̃ )

)∣∣
τ̃=τ̂n, θ̃=θ̂n

, (18)

µθ

n

∂l0n(τ̃ , θ̃ )

∂τ̃
|
τ̃=τ̂n, θ̃=θ̂n

≈ µθ

∂

∂θ̃
logp0

(
e−j θ̃ r(t = nTs − τ̃ )

)∣∣
τ̃=τ̂n, θ̃=θ̂n

. (19)

The right-hand sides of (18) and (19) can be easily calculated and yield

∂

∂τ̃
logp0(r̃n) = −2

∑
s∈S exp{− 1

N0
|εn|2}Re{ε∗

n}
N0

∑
s∈S exp{− 1

N0
|εn|2}

dr(t)

dτ̃

∣∣∣∣
t=nTs−τ̃

,

∂

∂θ̃
logp0(r̃n) = 2

∑
s∈S exp{− 1

N0
|εn|2}Im{e−j θ̃ r(t)s∗}

N0
∑

s∈S exp{− 1
N0

|εn|2}
∣∣∣∣
t=nTs−τ̃

,

respectively, where we recallr̃n = e−j θ̃ r(t = nTs − τ̃ ), εn = r(t = nTs − τ̃ ) − ej θ̃ s is an
error signal,Re{·} andIm{·} denote the real and imaginary parts of a complex argum
respectively, and the derivative of the measurements,dr(t = nTs − τ̃ )/dτ̃ , can be obtained
from a derivative matched filter, with impulse responsedc̃∗(−t)/dt , in a way analogous t
the approximate ML blind timing error detector (TED) in [18].
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8.4. Computer simulations

We have carried out computer simulations to illustrate the performance of the MTL
ing and phase recovery algorithm given by (16), (17), (18) and (19), and compare
the ML TED described in [18, Chapter 7] for blind timing recovery and the ML-ba
clockless phase recovery algorithm of [18, Chapter 5]. The latter is a classical meth
rived under the assumption of low signal-to-noise ratio (SNR). It has similar requirem
as (16), (18) (two filters are needed: one matched to the pulse waveform and anoth
matched to its derivative) and better performance than most practical techniques, e
well-known early-late TED [18], which is a further simplification of the ML TED. Usi
the notation in this paper, the ML TED can be written as

τ̂n+1 = τn + µRe

{
r∗(t)dr(t)

dt

}
t=nTs−τ̂n

, (20)

whereµ is a step-size parameter. The phase recovery technique is a feedforward m
based on the ML that can be written as

θ̂n = 1

|S| arg

{
n∑

k=0

r |S|(t = kTs − τ̂k)

}
, (21)

where |S| is the symbol alphabet size. The ML TED (20) is independent of the p
rotation, but accurate convergence of (21) is highly dependent on the quality of the
estimates.

For the simulations, we have considered a system with QPSK modulation (hencsk ∈
{ej2πk/4}, k = 0,1,2,3) and raised-cosine pulses with roll-off factorα = 0.7 and limited
time duration of four periods, i.e.,L = 2. Bits are transmitted in frames of sizeK + 1 =
400, the transmission rate is set toRb = 256 Kb ps and, consequently, the symbol per
is Ts � 3.9 µs. We have chosen three representative values of the low-to-medium
region, namely SNR= 2,6, and 10 dB s, and run 500 independent simulations for e
value. In each simulation, we have compared the proposed MTL algorithm given by
(17), (18) and (19), and the approximate ML TED of (20) together with the feedfor
phase estimator (21). The adaptive algorithms have been run with different choices o
size parameters, as shown in Table 1 (note the exponentially decreasing adaptatio

Table 1
Values of the step-size parameter for each algorithm and SNR value

2 dB 6 dB 10 dB

MTL (1) µτ = 10−8Ts µτ = 6× 10−9Ts µτ = 2× 10−9Ts

µθ = 0.990n × 10−1 µθ = 0.985n × 3× 10−2 µθ = 0.985n × 3× 10−2

MTL (2) µτ = 4× 10−8Ts µτ = 2.5× 10−8Ts µτ = 7× 10−9Ts

µθ = 0.990n × 10−1 µθ = 0.985n × 3× 10−2 µθ = 0.980n × 3× 10−2

ML (1) µ = 8× 10−3Ts µ = 10−2Ts µ = 10−2Ts

ML (2) µ = 3× 10−2Ts µ = 5× 10−2Ts µ = 5× 10−2Ts
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Fig. 2. Normalized MSE vs discrete time for timing recovery algorithms, SNR= 2 dB.

Fig. 3. Corrected MSE vs discrete time for phase recovery algorithms, SNR= 2 dB.

for phase estimation). As figures of merit, we have selected the normalized mean
error (MSE) with respect toτ , i.e.,

MSEn(τ ) = 1

500

500∑
i=1

|τ − τ̂n|2
Ts

,

and the corrected MSE

MSEn(θ) = min
α∈{0,π/2,π,3π/2}

{|θ − θ̂n − α|2}
with respect toθ , that accounts for the inherent ambiguity in blind phase recovery
Chapter 5].

Figure 2 shows the evolution of the normalized error, MSEn(τ ), for the different timing
recovery methods when the SNR is set to 2 dB. We observe that the MTL algorithm
form sensibly better, in the sense that they attain a lower MSE with the same conve
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Fig. 4. Normalized MSE vs discrete time for timing recovery algorithms, SNR= 6 dB.

Fig. 5. Corrected MSE vs discrete time for phase recovery algorithms, SNR= 6 dB.

speed. This is true both for the ‘slow’ TEDs (labeled MTL (1) and ML (1)), which us
small step-size parameter, and the ‘fast’ TEDs (labeled MTL (2) and ML (2)) with la
adaptation steps.

The corrected phase error, MSEn(θ), for SNR= 2 dB is shown in Fig. 3. Although
both MTL and ML-based techniques achieve similar results, it is the latter that atta
slightly lower MSE for this experiment. Remarkably, the best performance in term
phase recovery is attained by the ‘fast’ algorithms, labeled MTL (2) and ML (2).2 This
means that phase offsets are better compensated for when timing is quickly adjuste
if the steady value of MSEn(τ ) is far from the lowest possible one.

2 The ML phase estimator is the same for ML (1) and ML (2), but its performance depends on the conve
of the coupled ML TED.
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Fig. 6. Normalized MSE vs discrete time for timing recovery algorithms, SNR= 10 dB.

Fig. 7. Corrected MSE vs discrete time for phase recovery algorithms, SNR= 10 dB.

The performance of the MTL and ML synchronization algorithms becomes close
higher SNR values. Figure 4 shows the normalized MSE attained by the TEDs
SNR= 6 dB. It is seen that both types of TEDs achieve a very similar performance,
for slow (ML (1) and MTL (1)) and fast (ML (2) and MTL (2)) adaptation. Although t
steady state error of the MTL algorithms is slightly smaller than their ML counterpart
difference is hardly significant.

Phase correction performance for SNR= 6 dB is illustrated in Fig. 5. Best phase reco
ery is attained by the fast-adaptation MTL algorithm, although the advantage with re
to the ML-based feedforward estimators is very small.

Finally, Figs. 6 and 7 plot the normalized delay MSE, MSEn(τ ), and corrected phas
MSE, MSEn(θ), respectively, for SNR= 10 dB. We observe that, as the SNR becom
higher, the performance of the algorithms becomes nearly equivalent, both in ter
timing recovery and phase correction.
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8.5. Remarks

The adaptive algorithm for blind timing and phase recovery resulting from the M
criterion turns out to be competitive with well-known ML techniques described in [
In particular, we have found that, compared to the conventional ML TED, the MT
gorithm has a superior convergence speed in the low SNR region, while both appr
become approximately equivalent (in terms of their normalized MSE curves) for h
SNR values. We have observed that phase recovery is highly dependent on the conv
properties of the timing estimation part of the algorithms. This is true both for the
techniques, whereτ andθ are jointly estimated, and the ML-based approach, where
TED is phase-insensitive but phase recovery is very dependent on fast timing corr
In any case, phase correction attained by MTL and ML algorithms is equally satisfac

9. Conclusions

We have addressed the analysis of a novel criterion for the selection of filtering
meters that relies on the ability to characterize the filter output in terms of atarget pdf.
The latter density is then used as a likelihood function of the parameters, which can
lected as in a maximum likelihood problem. For this reason, the criterion has been t
maximum target likelihood (MTL).

The method has been described within a very general framework and an asym
convergence theorem that characterizes MTL solutions under few constraints ha
stated and proved. Using this convergence result, the relationship and differences b
the proposed approach and standard statistical (ML) and information theoretic (min
KLD, minimum entropy) methodologies have also been explored. Finally, as an exa
we have applied the MTL criterion to the problem of blind adaptive timing and phas
covery. The resulting algorithm has been shown to be competitive with existing max
likelihood based algorithms, and we expect to successfully extend it in the future to
the generalized synchronization problem (joint timing, phase and frequency recove
more complex scenarios (e.g., multiple-input multiple-output channels).
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