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Abstract

Many important problems in signal processing can be reduced to the adequate selection of the
parameters of a (possibly nonlinear) filter in order to obtain an output signal that complies with
some desired properties. In this work, we analyze a novel criterion for selecting filter parameters that
relies on the ability to characterize the desired filter output in termstafget probability density
function (pdf). This target pdf can be handled as a likelihood function to be maximized, thus we
refer to the new criterion as maximum target-likelihood (MTL). We present a very general signal
model where the MTL criterion can be applied and derive necessary and sufficient conditions for
asymptotic convergence of the method. The relationship and differences between MTL and standard
maximum likelihood (ML), minimum Kullback-Leibler divergence (MKLD), and minimum entropy
(ME) methods are explored. Finally, as an example, we apply the novel criterion to the problem of
blind timing and phase recovery in a digital transmission system and show that the resulting algorithm
is competitive with existing non-data-aided ML-based algorithms.
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1. Introduction

Many important problems in signal processing can be reduced to the adequate selec-
tion of the parameters in a filtering structure so that it accomplishes some prescribed task,
such as, e.g., deconvolution [1], system identification [2], or pattern recognition [3]. The
criteria proposed in the literature to solve such problems are diverse. One possible classi-
fication, according to the type oéferenceemployed to assess the quality of the filtered
signal, yields three categories: temporal, spectral, and statistical reference criteria. The
methods in the first group select the filter coefficients to make the output signal equal to,
or highly correlated with, an a priori known signal. A typical example is the minimum
mean square error (MMSE) criterion and its adaptive implementation via the well-known
least mean squares (LMS) algorithm [4]. Filter design and optimization to match some
prescribed spectral response is a thoroughly researched topic which includes classical
techniques such as the minimax method (see, e.g., [5]). Finally, criteria that rely on the
statistical properties of the signals fall within the third category, which includes some tech-
niques aimed at independent component analysis (ICA) [6], e.g., the constant modulus
criterion [7] or Cardoso and Laheld’s equivariant algorithm [8]. Though appealing due to
their very mild requirements (only statistical independence of the signals to be recovered),
the lack of a more informative reference limits the practical use of these purely-statistical
ICA algorithms, which usually require the availability of huge observation records and are
subject to local convergence problems. For some problems, better convergence properties
can be provided by methods that also exploit the signal structure, as subspace methods
do [9].

In this work, we analyze a novel criterion for parameter selection that relies on the
ability to characterize the desired signal at the filter output in terms of a target probability
density function (pdf) which, in practical situations, depends on the filter parameters and
the distribution of the signal of interest. The target pdf serves as a statistical reference,
much more informative than statistical independence alone, and the filter parameters can
be chosen to maximize the likelihood of the output signal under the target probability
model. For this reason, we refer to the proposed method as maximum target likelihood
(MTL).

Similar techniques have been suggested in the past to deal with specific problems in
digital communications, namely beamforming and channel equalization [10,11], as well as
multiuser interference suppression [12,13]. These approaches, however, are concerned with
simple schemes consisting of Gaussian-corrupted observations which are processed with
a linear finite impulse response (FIR) filter. It is also worth mentioning a formally similar
technique proposed in [14]. The latter method, however, is derived within the context of
conventionamaximum likelihood (ML) estimation by using adequate priors on nuisance
variables which are integrated out.

Except for a first attempt by these authors in [15], a general study of the MTL criterion
has not been tackled yet, to the best of our knowledge. In this work, we address a very
general framework that comprehends dynamic systems in state-space form and arbitrary
filtering functions, both linear and nonlinear. This broad setup allows to obtain both suffi-
cient and necessary conditions for asymptotic convergence of MTL solutions. Compared
to [15], we introduce stronger, and more detailed, theoretical results regarding conver-
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gence, together with a new application of the MTL methodology to the problem of blind
timing and phase recovery in a digital receiver.

The remaining of the paper is organized as follows. Specific notation used through the
article is introduced in Section 2. In Section 3, we present a mathematical formulation of
the filtering problem that covers several applications of interest in signal processing. The
proposed MTL criterion is formally stated as a methodrurdel fittingin Section 4. In
Section 5, an asymptotic convergence result that relates the MTL solution to the differ-
ential entropy (DE) of the filtered signal is proved. The connection of the MTL method
with standard ML, minimum entropy (ME) and minimum Kullback—-Leibler divergence
(MKLD) techniques is investigated, and key differences are identified, in Section 6. Con-
vergence in the presence of multiple target likelihood maxima is briefly commented upon
in Section 7. The validity of the method is illustrated, in Section 8, by applying it to the
problem of blind timing and phase recovery in a digital receiver. Finally, Section 9 is de-
voted to the conclusions.

2. Notation and definitions
We will abide by the following notation:

(1) Vectors and matrices/ectors and matrices are denoted by lower-case bold-face and
upper-case bold-face characters, respectively. The set of complex numbers is denoted
asC. Hencey e CV denotes amV x 1 vector of complex elements.

(2) Probability density functionsGiven random vectors, y € CV, p(x, y) is the true joint
pdf of x andy, p(x|y) is the true conditional pdf ok giveny and p(x) is the true
marginal pdf ofx.

(3) Probability modelsProbabilistic models are indices that completely identify a pdf.
Let M be a set of models and |11, M2 € M, My # M>. If a random vectox is
distributed according to modelf1, written X ~ p(x|M1), then p(x|M1) = p(X). If
X ~ p(X|M>2), then p(X|M1) # p(X) = p(X|M2). We use the model index to identify
p(-IM), M € M, as a function that can be applied to any complex vector with the
same dimension as

(4) Differential entropy.The differential entropy (DE) [16] of a random vectare CMx,

X~ p(X)is

H(X) = —Ep(x l0g p(x),
where E,x) denotes statistical expectation with respect to (w.r.t.) the pdf in the sub-
script. The DE is a measure of the average information amount conveyed by the
random sourc& ~ p(X).

(5) Kullback—Leibler divergencelhe Kullback-Leibler divergence (KLD) between two
pdf’s, sayp(x|M1) and p(X|M>), is defined as [16]

p(X|M1)

p(X|M2)’

The KLD measures the similarity between the two densities. It is guaranteed that

KLD (M1 || M2) > 0, with equality if, and only if p(X|M1) = p(X|M>).

KLD (M1 || M2) £ Epxuy) l0g
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3. Problem statement

Let us consider the Markovian discrete-time random process

Xp ~ p(Xp[Xp—1), (1)

wherex, € CMx is a random signal of interest, with conditional paix, |x,_1). Notice

that this model includes discrete processes, since probability mass functions (pmf’s) can
be represented in a continuous space as sums of Dirac deltas and then handled as pdf’s. We
are interested in estimating the sequergg = {Xo, ..., X, }, which cannot be observed
directly. The signals we are able to collect through some type of sensor (or sensor array)
during thenth observation period ar¥, x 1 complex vectors of the form

2(1) = 0c (X, U(D), 1), tg1 <1t <y,
if they are continuous-time signals, or
Z, = ed(xna un)v

if they are discrete-time processes. Functignandd, represent some unknown distortion
of x,,, as well as the effect of output and/or input transducers. Random procgssés <
CN« are used to model noise and other unknown nuisance signals.

The goal is to process the raw observations, eifier or z,, using some convenient
filter that we formally describe by means of function

(p:(CNZ x CNv — N,

which takes the observations and a vector of adjustable parametery) < CV», as
arguments in order to yield an estimategf For the sake of generality, we assume

a continuous-time observation and let the sampling of the collected signal be part of
the processing whenever necessary (i.e., the sampling rate can be considered as one of
the parameters iw). Thus, the filter output corresponding to thih observation period

(th—1 <t <t,) can be written as

Yn = @n (2(1), W) = 0, (0c (X, U(1), 1), W). )
Finally, we drop the explicit reference ¥, u(z) and simply write
Y = @u(W).

When considered together, Egs. (1) and (2) yield a dynamic system where the signal
of interest,x,, is the system state ang is an associated measurement. The aim is to
adjust the filter parameters to ensure that the sequence of measurements is close to the
sequence of states in some sense, i.e., we look for a choicewth that the measurements,

Yo = ©0:n (W) = {@o(W), ..., ¢, (W)}, can be used as estimatesxgf,. Figure 1 illustrates
the system model.

4. Selection of filter parameters by maximization of a target likelihood

We assume that for each choice of filter parameters,)V, it is possible to define a
probabilistic model identified by a real indéxw) € M, whereM C R is the set of model
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Signal of interest
(system state)

Xn

\ Filtered signal
t
UNKNOWN Observations FILTER (measurement)
PARAMETERS—  ¥» = ¢a(w)
SYSTEM Be(n, u(t), £)
w

|

u(f)
Noise & nuisance signals

Fig. 1. Block diagram of the adopted system model.

indices. According to this notation, we can write

Yo = @n(W) = Yy, ~ p(Yn) = p(Ynll (W))
and

L(W) # LW < p(Yall (W) # p(YalI(W).

In order to select the adequate value of the filter parameters, we assume there is an a priori
known optimal probability distribution of the measurements. The optimal model is indexed
aslp (Ip ¢ M) and we hypothesize that if the filtered signal is distributed according to this
model,

Yn ~ p(Ynllo),

theny, is a good estimate af, in some statistical sense. Two important remarks are
necessary at this point:

Remark 1. Model index/y is written without reference to a specific choice of filter para-
meters in order to emphasize that this optimal model is known even if the parameter vector
that makes the measurements follow that distribution is not known, does not belgvig to

or simply does not exist.

Remark 2. It is important to realize that, for most problems of interest, even some of the
simplest, it is impossible to find a tractable analytical expressiom{gy|I (w)). There-
fore, the straightforward strategy of solving equatjety, |/ (W)) = p(y.|lp) for w is not
feasible in general.

In the sequel, the optimal modeb, is termed thearget modelnd its associated pdf,
p(yn11o), thetarget pdf Our aim is to compute a parameter veatosuch thatp (y, | I (W))
is close top(y,|1p) in some sense.

One appealing way to tackle this optimization problem is to pose it as one of model
fitting. Let us define the complete model set/ets= M | J{Io}. We propose to select the
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filter parameters so as fit the target model, i.e., so as to makgethe most likely model
in M according to the measurements. Mathematically, this means that, given a record of
n + 1 observationsiy can be chosen as

p(Ykl1o) B ~
W = arg max{/z gp(ykll(W)) W} S.t.Yo:n = ¢0:n (W)

_arg ma>{ / Z P(px(W)| o) dw}’ 3)
p(ykll (W)
where s.t. stands for “subject to” and log denotes the natural logarithm. We have assumed
that p(y,|I (w)) does not have a tractable closed form for an arbitrary parameter vector
w e W (see Remark 2 above). Thus, our knowledge is limited to the target pdf and the
record of measurements and, as a consequence, we can do no better than increasing the

value of the integral in (3) up to the maximization of the target density (which does not
depend on the integration variahig. Therefore, we substitute (3) by the simpler problem

W= arg ma){ Z IOg P(Yk |IO) } s.t. Yo:n = @0 (W)

k=0
=arg rT\1Na>d,? W), (4)
where
12w) =" log p(pc(w)| o)) 5)
k=0

is the target likelihood ofv up to timen. Hence, the parameter vector obtained as the
solution of problem (4) is termed the maximum target likelihood (MTL) solution of the
filter parameters, and the resulting measuremegis= ¢o., (W), are the MTL estimates
of the state sequencg,,.

Clearly, when applying the MTL criterion in (4), we are disregarding the integral
term — [}, > i _ol0g p(yx|I (W)) dw, which appears in (3) and depends @nthrough
Yr = @r(W). Therefore, we do not claim that the proposed criterion be optimal in any
particular sense, or constitute a universal tool which can be successfully applied to every
filtering problem. The relative merit of the MTL method should be found in making a sen-
sible (yet possibly suboptimal) use of the available knowledge in order to achieve a good
practical solution in those problems where a statistical reference in the form of a target pdf
can be easily identified.

5. Asymptotic convergence
So far, we have developed the MTL criterion within a general framework and arrived

at a relatively simple expression for the selection of the filter parameters, which reduces
to the maximization of a known log-likelihood function. Although this approach has been
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proposed in the past to solve specific problems in communications [10-12], a general as-
sessment of the convergence properties of the method has not been done yet. Indeed, the
algorithms for channel equalization [11] and multiuser interference suppression [12] are
supported by useful analytical results, but they are constrained to finite-alphabet uniform
state signals, with linear observations and linear filtering. As a consequence of this lack of
generality, the results reported in [11,12] cannot be directly applied to the MTL solution
given by (4).

In this section, we state and prove a theorem that relates the MTL parameters, selected
according to (4), to the DE of the measuremepts, The theorem holds true asymptoti-
cally, asn — oo, and imposes few constraints on the observation and filtering functions

Section 5.1 is devoted to the theorem assumptions, while its statement and proof are
developed in Section 5.2.

5.1. Assumptions and notation
The following assumptions are made in the remaining of this section:

(i) Stationarity.For a fixedw, the measurement process is stationary up to the equality of
the marginal densitieg(yr |1 (W)) = p(y;|I (W)), Vk, [.
(i) Ergodicity.For a fixedw, the measurement process is ergodic in the mean, i.e.,

1l
nILmoo - Z v(Yi) = Epqy,)v(Yn) < 00,
k=0
with convergence in probability (i.p.), whevds an arbitrary integrable function gf,
and E,(y,) denotes mathematical expectation w.r.t. the pdf in the subscript.
(i) ExistenceThe following summation converges i.p.

1
lim =1%w) =Ow).
n—oon

(iv) Gradient.The gradient of the target IikeIihooWng(w), exists and it is an invertible
function ofw for
(a) all parameter vectors belonging to the region of interestvves VW, and
(b) all integers greater than some threshold, ¥e.> ng (ng < o).
Additionally, it is useful to introduce notation

W, = argmax,(w) (6)
for the MTL parameter vector computed using the observations up todjzued
Woo = lim W,
n—o0

for the limit of (6) as the number of observations becomes arbitrarily large.

In general, we do not assume that exactsolution exists within/V such that the
target pdfp(y,|Ip) can be attained. However, for notational convenience, we define the
optimal parameter vectarg that achievesp (y,|I (Wp)) = p(y,|lo) although, possibly,
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wp € CVv \ W. As a consequence, it is not at all guaranteed pigt |/ (Woo ) = p(Yn|lo).
The properties of the asymptotic MTL solution are established in Section 5.2.

5.2. Asymptotic convergence and differential entropy

Let us write

H(W1) = —Ep(y, 1w 109 p(Yal I (WD),
for the DE ofy,, ~ p(y,|I (w1)), and
P(Ynll(W1))
PYnll (W2))’
for the Kullback—Leibler divergence (KLD) betweerty, |1 (w1)) and p(y,|I (W2)). The

feasible parameter vector that yields the closest-to-target pdf in the KLD sense plays a
major role in the subsequent analysis and we denote it as

KLD (w1 || W2) = Epy,|1wy)) 109

w, =arg minKLD (w || wp).
weW
We have the following theorem.

Theorem 1. Let/%w) be a target likelihood in the region of interest,e ¥V, which com-
plies with assumption§)—(iv). Necessarya) and sufficien{b) conditions for asymptotic
convergence can be established as shown below.

(@) If Woo =Wy, thenH (w,,) < H (W) + KLD (w || wg) — KLD (w, || wg), YW € W.
(b) If H(w,) < HW) + KLD (w || wy), YW € W, thenWy, = W,

Proof (Outline). We proceed in three steps. First, we rely on assumptions (i)—(iv) to derive
a convenient asymptotic version (@s> oo) of problem (6). Next, necessary condition (a)
is easily derived from the definition of KLD. Finally, sufficient condition (b) is obtained by
contradiction using th@ythagorean theorerf the KLD [16].

Stepl. Asymptotic MTL solutioniVe start with the definition of a modified target like-
lihood function of the form

- 1

1%w) = Zl’?(w)’ (7)
and the realization that

W, = arg rr\)vaﬂ,?(w) =arg rr\)vaino(w).

Substituting (5) into (7), we readily obtain an expression for the modified target likelihood,
2w) = Z log p (¢ (W) Io) = Z log p(y«| o). ®)

subject toyr = ¢x (w). According to the statlonarlty assumption (i), all densities in (8) are
equal, hence we can apply the weak law of large numbers and the ergodicity assumption
(i) to arrive at

lim 12w) = Epy, 1) 109 p(yello) - (ip.). 9)
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To complete this first part of the proof, we recall the existence (iii) and gradient (iv) as-
sumptions to obtain

oo = lim {argmad?w)} =argma{ lim i°w)], (10)
which, by substitution of (9) into (10), yields
Woo = arg MaxE (y|1 w)) 109 p (yx| o). (11)
Step2. Necessary conditiofa). Given (11)Ws, = w, obviously yields

—Ep,. logpo < —E,, logpo, YweW,

wherep, and pg are shorthand fop(y,|I (w,)) and p(y,|I (Wo)), respectively. Using the
definitions of KLD and DE, the latter inequality can be successively transformed into

KLD (wy || wWo) + H (W) < KLD (W || wp) + H(W), YweW,
and
H(w,) < KLD (W || wp) — KLD (wy || wo) + H(W), YweW,

which is the necessary condition in part (a) of the theorem.
Step3. Sufficient conditiorib). We proceed by contradiction. Let us assume the follow-
ing relationships hold jointly:

(i) Hwy) < HW) +KLD (W || wy), Ywe W,
(i) Woo 7 W
From (ii) we obtairaw’ € W such that

—Ep,, 109 po < —E,, log po,

wherep,, is shorthand fop(y,, |1 (W')), which can be readily written in terms of KLD and
DE as

KLD (W || Wo) + H (W) < KLD (W, || Wo) + H (Ws). (12)
Using thePythagorearinequality [16]

KLD (w || wg) = KLD (w || wy) 4+ KLD (w, || Wwg), YweW,
in order to decompose KL@V || wp) in (12) yields

KLD (W' | Wy) + H(W') < H (W)

which is in contradiction with assumption (i) abovex

Corallary 1. If wg € W thenWw,, = wy if, and only if,
H(Wo) < Hw) + KLD (w || wpg), YweW.

Proof. Taking into account thatvg € W = wp = w, = KLD (w, || wp) = 0, the proof
follows trivially from Theorem 1. O
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5.3. Discussion

The above theorem and corollary indicate that MTL solutions asymptotically converge
to filter parameters whicimay be nothe target parameters (or the closest feasible vector),
but are close to them according to the KLD and yield a pdf with a smaller DE, if such a
density exists. Note that this is not necessarily a drawback, since small entropy solutions
are desirable in many applications, such as detection and classification.

One important case where convergence to a smaller-entropy pdf comes up is the prob-
lem of linear equalization of a dispersive channel in Gaussian noise. In [11], it is proved that
the MTL linear equalizer is the filter that yields a measurement pdf with the same modes
as the target one and minimum variance. For the symmetric mixture Gaussian target pdf's
considered in [11], the minimization of the variance is equivalent to the minimization of
the DE and, therefore, this result is consistent with the asymptotic convergence theorem in
this paper.

The asymptotic convergence properties of the MTL method also provide an interesting
ground for comparison with standard techniques that can be characterized in similar terms,
namely ML, MKLD, and ME criteria. This is the aim of Section 6.

6. Connection with MKLD, ML, and ME techniques
6.1. MTL vs MKLD
There are two ways to build MKLD filter parameters,

(l) . .
W = arg minKLD (w || wg) = arg min{E,,, lo —E,, lo ,
MKLD gweW (W || wo) gWeW{ pw 109 pw pw 100 PO}

(2) . .
W =arg minKLD (wg || w) = arg min{—E,, lo .
MKLD gweW (wo || w) gWeW{ o 109 pw}

Obviously, ifwg e W thenwfvllfQD = wffBD =W but, othervvisew,(\,'lf(LD # wffED in gen-

eral because the KLD is not symmetric.

At any rate, Theorem 1 shows that the MTL solution may not necessarily converge to
WmLD (note thatw, = wﬁ\,llf(LD ), depending on the form of the set of feasible vectbys,
Moreover, even whemvg € W, Corollary 1 states that iiw’ € W such thatH (w') <

H (wg) — KLD (W || wp) then we have botti,, £ Wl(vl|?<|_o andwy, # wﬁ,zlfq_D.
6.2. MTL vs ML

We can similarly establish the difference between MTL and ML criteria. The ML prin-
ciple can be used for the problem of filter parameter selection in the following way. Let
Zo., be a setr + 1 independent observation vectdr¥he ML filter parameter selection

1 We consider the discrete-observation case and statistical independence for simplicity, but the argument can
obviously be stated in more general terms.
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constrained to the filtering functign can be written as

n
() 1
w:armax—EIo Zu|Xn = @, (W) §.
ML gWeW n i gp( n|Xn = @n ( ))

Under mild ergodicity assumptions,

T (n) _ _
WML = nILmoo Wae = argwrg)?-vx{ Ep) |ng(zn [Xn = @n (W))}

and simple manipulations yield
wpL = arg minKLD (p(z, Zn 1% = 0, (W))),
mL =arg MInKLD (p(2a) Il p(zalXn = ¢a(W)))

i.e., ML estimation amounts to a search of the filter parameter vector that minimizes the
KLD between therue pdf of the observations and the parameterized modepgf|x,, =
@, (W)). If the latter model is not exact, i.elw e W such thatp(z, |X, = ¢,(W)) = p(z,),
then the model is said to be misspecified angl is termed a quasi-ML (QML) estima-
tor [17].

It is straightforward to notice that the QML principle requires knowledge of system
in order to build the probabilistic model of the observations. This at least involves the pdf of
the noise and nuisance signalg, and the algebraic form of functiagty. Such information
is not necessarily required for MTL selection (we have assumed an unknown distortion of
X, all through our derivations).

6.3. MTL vs ME

When there is no model misspecification, i®y € W such thatp(z,|x, = ¢,(W)) =
p(z,), the ML solution can be written as

WaL = argwgw{—Ep(zn> log p(z41Xx = @a(W)) }
=arg min H (zn1%n = @0 (W)) = Wi,

i.e., the ML principle yields a minimum entropy (ME) solution [17].

Besides the previous observation that findinge requires knowledge of the pdf af,
it must be remarked that Theorem 1 and Corollary 1 show that the MTL method converges
to small but not minimal, DE solutions. The value %f,, is the result of a trade off that
involves the DE and the KLD betweegn,, and po.

7. Multiple maxima in thetarget likelihood

We have obtained asymptotic results for the global solution of problem (4) in some
setW. However, the target IikeIihoodf,’(w), can be multimodal in many potential ap-
plications and computing its global maximum can become a difficult task in practice.
Alternatively, the global maximum may not be unique, and the optimization algorithm
should also select the desired maximum in some way.
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Previous results in [13] suggest that, when possible, it is very effective to combine a
limited temporal reference (i.e., a few known values within the state sequence) with the
proposed statistical criterion in order to obtain a mixed scheme where optimization is eas-
ier. Alternatively, when a temporal reference is not available at all, it may be possible to
set a structural constraint on the filter in order to guarantee convergence to the desired
maximum. Such is the approach in [12], where the problem of blind multiuser interfer-
ence suppression is investigated. Unfortunately, the latter strategy cannot be applied in all
contexts, since it depends on the amount of side information available.

8. Blind timing and phase recovery in a digital receiver

In this section we study the application of the MTL criterion to blind (i.e., non-data
aided) timing and phase recovery in a digital communication receiver. This is an important
problem for which an optimal solution in closed-form cannot be derived. A comprehensive
review of classical synchronization methods can be found in [18] and a more recent account
of blind algorithms in [19].

8.1. Signal model

Let us consider a digital communication system where symbols from an arbitrary al-
phabet are transmitted over a frequency-flat channel. If data are transmitted in bufsts of
symbols, the baseband-equivalent received signal has the form,

K-1
F(t) =ael @ N sé(t — kT +1) + (1),
k=0
wherer denotes continuous timey is thekth transmitted symbok(z) is a squared-root
raised cosine pulse waveforifi is the symbol period, & t < T; is an unknown con-
stant delayw and@ are the carrier frequency error and phase offset, respectivelyg@nd
is complex additive white Gaussian noise (AWGN). The receiver front-end consists of a
matched filter that produces the signal
K-1
r(t) = ael @+ Z ske(t —kTy + 1)+ g(1),
k=0
where
(1) = E(t) % E (1) = sin(rt/Ts) coSmat/Ty)
/Ty 1—4a2t2)T?

is a raised cosine waveform with roll-off factor O« < 1 and g(¢) = ff‘;og(u) X
¢*(u — t)du is a Gaussian noise process with autocorrelation fundiipft) = Noc(z).
If »(z) is sampled at the symbol rate and the raised cosine wavefgrmjs time limited
(which is always the case in practice), the discrete-time signal
L
re=r(kT)=ae! T+ N " g e(=nTs + 1) + g
n=1-L
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is obtained, wherg, = g(kT) is an AWGN process and is the inter-symbol interference
(ISI) span resulting from the limited time duration oft). The latter equation can be
expressed in a more compact form,

ri = ael V¢(r) T + gy, (13)
by defining:

o the normalized frequency error= w/Ty,
e the 2L x 1 channel vector

c®) =[c(L =T +71),¢((L=2)T +7),...,c(-LT +1)]",

o the symbol vectos, = [sy_741, Sk—142, -+ Skl

For clarity of presentation, we focus on the estimation @ndé alone, while assuming
a =1 andv =0, and reduce the observations to the form

re=ec(t) s + g (14)

Notwithstanding, it is conceptually straightforward to extend the proposed MTL criterion
to the general case where all parameters must be jointly estimated.

8.2. MTL blind timing and phase recovery

In order to obtain ISI free symbol estimates, the digital receiver should sample the
received signal(r) att = kT; — . However is a priori unknown and the receiver samples
the matched filter output at= k7; — 7, where7 is an estimate of the true delay. The
also unknown phase rotatiof, is corrected using the estimateHence, using the MTL
terminology developed through the paper, we have the dynamic model

S=As i+, A=elOOcr — )5 + g,

where s, is the system stated is a 2L x 2L shifting matrix with A; ;41 =1, i =
1,...,2L — 1, and 0 otherwisey; = [0,...,0,s¢,+2]" is the 2L x 1 system noise vec-
tor that contains the new symbol, andis the discrete-time measurement. We assume
sk+L 1S a discrete uniform random variable in the alphaBegiven by the modulation
format. The signal we wish to estimate is the symbol sequegige (which is equiva-
lent to estimating the state sequesgg —1) and thekth measurement is obtained from the
continuous-time received signalr) by means of the transformatidln = ¢(r(¢), 7,6) =
e 1r(t = kT, — 7). Therefore, our generic filtes, in this case, consists of a symbol-rate
sampler, which is fully parameterized by the timing epécfollowed by a phase rotation.
If # andé are perfectly chosen in order to avoid I1SI and correct the phase difset,
andé = 0, the channel vector reducesa®) = [0, ..., \%_/ ...,0]T and the resulting pdf

of the ISI-free measurements is the target pdf,

1
po(Fy) o ;eXp{_mwk —SIZ},
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where po(7) = p(7r) if, and only if, 7 = ¢(r (1), 7,0) = e 7?r(t = kT, — 7). The target
likelihood at timen, therefore, is

10z,6) =" log po(e /r(t = kT — 7))
k=0

and the MTL solution at time is

_ Lyt _
(%, 6, )_argmaﬂo(r 0)_argm ZIOQZ olera=kTs =D~ | (15)
k=0 seS

8.3. Adaptive implementation using a gradient algorithm

Although other procedures can be explored (e.g., the expectation maximization algo-
rithm as suggested in [12]), a simple way to adaptively solve (15) is by using a stochastic
gradient algorithm of the form

019z, 6
tyr= by 4 GO (16)
0T F=2,, 6=0,
A ~ g 3193, 6)
9n+1 =0y +— —— - ’ (17)
n a0 i=1,, 6=0,

whereu . /n andug /n are step-size parameters and the partial derivatives of the likelihood
function are approximated using only thth measurement, i.e.,

e AI2(%,6) 9 s )
— = ~ pur— 1o r(t =nT, — 18
n 9T T=1,, é:én - a7 ng(e r( i T)) |T=Tn, 0="06, ( )
o A%, 0) 9

7 naf—|1~,:fn ~:” ~ e ——= Y |ng0(e fer(t _l’lT — T))|_[ =, é:én. (19)

The right-hand sides of (18) and (19) can be easily calculated and yield
23 s OXPl— 7 len 2} Relel} dr (1)
NoY,es@Xpl—gslenl?)  dT
2 e exp{—Nio|en|2}3m{e—f§r(t)s*}
NOZ_;QS exp{ |6n 2}

9
t=nTs—T

el -
97 lonO(rn) =—-
T

s

t=nTs—T

ad
—lo ) =
PY: g po(ry)

respectively, where we recall = e /r(t =nTy — 7), €, =r(t =nT; — T) — /s is an
error signalRe{-} andJm{-} denote the real and imaginary parts of a complex argument,
respectively, and the derivative of the measuremeints,= nT, — 7)/d7, can be obtained
from a derivative matched filter, with impulse respodgé(—t)/dt, in a way analogous to
the approximate ML blind timing error detector (TED) in [18].
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8.4. Computer simulations

We have carried out computer simulations to illustrate the performance of the MTL tim-
ing and phase recovery algorithm given by (16), (17), (18) and (19), and compare it with
the ML TED described in [18, Chapter 7] for blind timing recovery and the ML-based
clockless phase recovery algorithm of [18, Chapter 5]. The latter is a classical method de-
rived under the assumption of low signal-to-noise ratio (SNR). It has similar requirements
as (16), (18) (two filters are needed: one matched to the pulse waveform and another one
matched to its derivative) and better performance than most practical techniques, e.g., the
well-known early-late TED [18], which is a further simplification of the ML TED. Using
the notation in this paper, the ML TED can be written as

dr(t
fort = T +u9%{r*(t) r( )} , (20)
d t=nTs—71,

wherepu is a step-size parameter. The phase recovery technique is a feedforward method
based on the ML that can be written as

n

A 1
O = E arg{ZHSI(I =kT; — fk)}’ (21)
k=0

where|S| is the symbol alphabet size. The ML TED (20) is independent of the phase
rotation, but accurate convergence of (21) is highly dependent on the quality of the delay
estimates.

For the simulations, we have considered a system with QPSK modulation (Yeace
{e/%Tk/%) k=0, 1, 2, 3) and raised-cosine pulses with roll-off factoe= 0.7 and limited
time duration of four periods, i.el, = 2. Bits are transmitted in frames of siZe+ 1 =
400, the transmission rate is setRp = 256 Kb ps and, consequently, the symbol period
is T, >~ 3.9 us. We have chosen three representative values of the low-to-medium SNR
region, namely SNR= 2,6, and 10 dB s, and run 500 independent simulations for each
value. In each simulation, we have compared the proposed MTL algorithm given by (16),
(17), (18) and (19), and the approximate ML TED of (20) together with the feedforward
phase estimator (21). The adaptive algorithms have been run with different choices of step-
size parameters, as shown in Table 1 (note the exponentially decreasing adaptation steps

Table 1
Values of the step-size parameter for each algorithm and SNR value

2dB 6dB 10dB
MTL (1) e =10787; pr =6x 10797 pr =2 x 10797

g =0.990" x 101 g =0.988" x 3 x 1072 wg =0.988" x 3 x 1072
MTL (2) ur =4 x 10787 wr =2.5x 10787 ur =7 x 10797

g =0.990" x 1071 g =0.988" x 3 x 1072 o =0.980" x 3 x 1072
ML (1) w=28x 10737, w=10"2T w=10"2T;

ML (2) w=3x 10727, w="5x 10727 w="5x 1027
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Fig. 2. Normalized MSE vs discrete time for timing recovery algorithms, SNRdB.
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Fig. 3. Corrected MSE vs discrete time for phase recovery algorithms,-SRIBB.

for phase estimation). As figures of merit, we have selected the normalized mean square
error (MSE) with respectto, i.e.,

1 Qe —%,2
MS - = . mt
Ea(7) 500; T

and the corrected MSE
M = i —6, —af?
SE(©) ae{O,nr/gl,g,Sn/Z}{le b — o)
with respect to9, that accounts for the inherent ambiguity in blind phase recovery [18,
Chapter 5].
Figure 2 shows the evolution of the normalized error, MIGE, for the different timing
recovery methods when the SNR is set to 2 dB. We observe that the MTL algorithms per-
form sensibly better, in the sense that they attain a lower MSE with the same convergence



J. Miguez, M.F. Bugallo / Digital Signal Processing 15 (2005) 171-190 187

1 E T T T T T T
0.1

001 F

normalized MSE (delay)

0.001

O-Oml 1 L 1 1 1 1 1
0 50 100 150 200 250 300 350 400

k

Fig. 4. Normalized MSE vs discrete time for timing recovery algorithms, SNRdB.
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Fig. 5. Corrected MSE vs discrete time for phase recovery algorithms,-SBIRB.

speed. This is true both for the ‘slow’ TEDs (labeled MTL (1) and ML (1)), which use a
small step-size parameter, and the ‘fast’ TEDs (labeled MTL (2) and ML (2)) with larger
adaptation steps.

The corrected phase error, MSB), for SNR= 2 dB is shown in Fig. 3. Although
both MTL and ML-based techniques achieve similar results, it is the latter that attains a
slightly lower MSE for this experiment. Remarkably, the best performance in terms of
phase recovery is attained by the ‘fast’ algorithms, labeled MTL (2) and ME @is
means that phase offsets are better compensated for when timing is quickly adjusted, even
if the steady value of MSKE<) is far from the lowest possible one.

2 The ML phase estimator is the same for ML (1) and ML (2), but its performance depends on the convergence
of the coupled ML TED.
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Fig. 6. Normalized MSE vs discrete time for timing recovery algorithms, SNR dB.
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Fig. 7. Corrected MSE vs discrete time for phase recovery algorithms,-SINIRdB.

The performance of the MTL and ML synchronization algorithms becomes closer for
higher SNR values. Figure 4 shows the normalized MSE attained by the TEDs when
SNR=6 dB. It is seen that both types of TEDs achieve a very similar performance, both
for slow (ML (1) and MTL (1)) and fast (ML (2) and MTL (2)) adaptation. Although the
steady state error of the MTL algorithms is slightly smaller than their ML counterparts, the
difference is hardly significant.

Phase correction performance for SNFS dB is illustrated in Fig. 5. Best phase recov-
ery is attained by the fast-adaptation MTL algorithm, although the advantage with respect
to the ML-based feedforward estimators is very small.

Finally, Figs. 6 and 7 plot the normalized delay MSE, M&8, and corrected phase
MSE, MSE, (6), respectively, for SNR= 10 dB. We observe that, as the SNR becomes
higher, the performance of the algorithms becomes nearly equivalent, both in terms of
timing recovery and phase correction.
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8.5. Remarks

The adaptive algorithm for blind timing and phase recovery resulting from the MTL
criterion turns out to be competitive with well-known ML techniques described in [18].
In particular, we have found that, compared to the conventional ML TED, the MTL al-
gorithm has a superior convergence speed in the low SNR region, while both approaches
become approximately equivalent (in terms of their normalized MSE curves) for higher
SNR values. We have observed that phase recovery is highly dependent on the convergence
properties of the timing estimation part of the algorithms. This is true both for the MTL
techniques, where andé are jointly estimated, and the ML-based approach, where the
TED is phase-insensitive but phase recovery is very dependent on fast timing correction.
In any case, phase correction attained by MTL and ML algorithms is equally satisfactory.

9. Conclusions

We have addressed the analysis of a novel criterion for the selection of filtering para-
meters that relies on the ability to characterize the filter output in termstarigat pdf.

The latter density is then used as a likelihood function of the parameters, which can be se-
lected as in a maximum likelihood problem. For this reason, the criterion has been termed
maximum target likelihood (MTL).

The method has been described within a very general framework and an asymptotic
convergence theorem that characterizes MTL solutions under few constraints has been
stated and proved. Using this convergence result, the relationship and differences between
the proposed approach and standard statistical (ML) and information theoretic (minimum
KLD, minimum entropy) methodologies have also been explored. Finally, as an example,
we have applied the MTL criterion to the problem of blind adaptive timing and phase re-
covery. The resulting algorithm has been shown to be competitive with existing maximum
likelihood based algorithms, and we expect to successfully extend it in the future to tackle
the generalized synchronization problem (joint timing, phase and frequency recovery) in
more complex scenarios (e.g., multiple-input multiple-output channels).
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