Stage with *Common Emitter*

- High Voltage gain A_V
- High Current gain A_I
- Inverting: $\Delta \phi = 180^\circ$
- Low $R_{\text{in}} \approx r_\pi$
- High $R_{\text{out}} \approx (r_o \parallel R_C)$
Stage with *Common Collector*

- Suitable as a *current buffer*

\[V_{in} = V_{BE} + V_E = i_B r_\pi + (i_B + i_C) R_E = i_B [r_\pi + (1+\beta)R_E] \approx i_B \beta R_E \]

- High input resistance \(R_{in} = V_{in}/i_B \approx \beta R_E \)

- Low output resistance \(R_{out} \)

- No Voltage gain \(A_V \approx 1 \)
Stage with *Common Base*

- **High bandwidth** of voltage gain
- Low input resistance $R_{in} \approx r_\pi$
- High output resistance $R_{out} \approx (r_o \parallel R_C)$
- Inverting: $\Delta \varphi = 180^\circ$
- No Current Gain: $\alpha = \Delta i_C / \Delta i_E \leq 1$

\[
\alpha = \frac{\beta}{\beta + 1} \approx 1
\]
Load line and Q-point of the gain stage

\[V_{CE} = V_{CC} - i_C R_C \]

- The load line can be determined using two points:
 1) \(V_{CE} = V_{CC} \) at \(i_C = 0 \)
 2) \(i_C = V_{CC}/R_C \) at \(V_{CE} = 0 \)

- Quiescent (or Q) point is the intersection of the load line with the corresponding output characteristic
- The slope of the load line equals \(1/R_C \)
- Setting the Q-point in the middle of the load line allows to obtain the maximum swing of output signal
The load line defines the relationship between the variation of i_B and the variation of V_{BE}.

- i_C (mA)
- V_{CE} (V)
- Δi_B
- ΔV_{CE}

- $30 \mu A$
- $20 \mu A$
- $10 \mu A$
Optimization of the Q-point

- The maximum undistorted swing of the output voltage depends on the position of Q-point

1) Optimum Q

2) Q_1 or Q_2
The desirable operating point is $V_{CE} \approx V_{CC}/2$
Load line and Q-point for AC signal

- If capacitor C_E is in parallel to R_E, the AC load line is

$$V_{CE} = V^* - i_C R_C$$

- Q-point is the same for DC and AC load lines

- $V^* = V_{CC} - i_{CQ} R_E$, i_{CQ} - the current corresponding to Q-point
Properties of BJT at High Frequencies

- At high frequencies the gain is mainly limited by the diffusion time τ_D of minor carriers through the base.

\[f_T \approx \frac{1}{2\pi\tau_D} \]

- Cut-off frequency f_T corresponds to unity gain $\beta = 1$.

- Gain-bandwidth product $\beta \cdot \Delta f = f_T$ allows to estimate the number of stages to obtain the required gain in the specified bandwidth.