NETLIST STRUCTURE

TITLE

DESCRIPTION

 OF SOURCESDESCRIPTION OF ELEMENTS

SOLUTION CONTROL

OUTPUT CONTROL

END STATEMENT

CIRCUIT DESCRIPTION

- The first letter identifies the element type followed by a name limited to 7 characters

Rxx	Resistor
Cxx	Capacitor
Lxx	Inductor
Vxx	Voltage source
Ixx	Current source
Dxx	Diode
Qxx	BJT
Mxx	MOSFET

Node numbering

- All nodes numbered with nonnegative integers between 0 and 9999
- Ground node must be labeled 0
- SPICE allows to assign several numbers for the same node

PASSIVE ELEMENT STATEMENT

$X<$ name $>N+N$ - value $\langle I C=x x\rangle$
X is the reserved letter R, L, or C <name> is number or string
$N+$ and N - denote polarity of voltage across the element or current direction
$N+$ corresponds to more positive potential
value is specified in Ohms [Ω], Henries [H] or Farads $[F]$ correspondingly
$\langle I C(V C$ or $I L)=x x>$ is the initial condition: capacitive voltage or inductive current at the time $t=0$

PASSIVE ELEMENTS

$$
\begin{aligned}
& \text { Resistor } \\
& \qquad V_{R}=R \cdot I_{R}, \quad R[\Omega]
\end{aligned}
$$

Capacitor

$\frac{1}{\square} V_{C}=\frac{1}{C} \int_{0}^{t_{1}} I_{C} \cdot d t \rightarrow V_{C}=\frac{1}{j \omega C} \cdot I_{C}$

$$
\begin{equation*}
X_{C}=\frac{1}{j \omega C} \tag{F}
\end{equation*}
$$

$$
\begin{aligned}
& \text { Inductor } \\
& V_{L}=L \frac{d}{d t} I_{L} \rightarrow V_{L}=j \omega L \cdot I_{L} \\
& X_{L}=j \omega L, \quad L[H]
\end{aligned}
$$

POWER-OF-TEN NUMERICAL SUFFIXES IN PSPICE

Suffix	Factor
T	10^{12}
G	10^{9}
MEG	10^{6}
K	10^{3}
M	10^{-3}
U	10^{-6}
N	10^{-9}
P	10^{-12}
F	10^{-15}

SOURCE STATEMENT

PARAMETERS OF VOLTAGE AND CURRENT SOURCES

DC sources

```
V <name> N+ N- DC <value>
I <name> \(N+N-\mathrm{DC}\) <value>
```


Voltage Source
 Current Source

Time

III. AC sources

For analysis in time domain
V <name> $N+N-\mathrm{SIN}($ Voff Vamp <freq> <TD> <damp>)
For analysis in frequency domain

```
V<name> N+N- AC <Vamp>
```


SOLUTION CONTROL

Operating Point Analysis

Determination of the Quiescent point (Q-point)
.OP
DC analysis

Circuit performance with DC sweeping
.DC snm1 str1 stp1 inc1 <snm2 str2 stp2 inc2>
snm specify Voltage or Current source name
str, stp and inc: Start, End and Increment values in Volts or Amps

AC analysis

Circuit performance in frequency domain

.AC sweep num freq1 freq2

sweep: LINE (linear), DEC (decade) or OCT (octave)
num: number of points per decade, octave or total freq1, freq2: Start and End frequencies in Hertz

Examples: .DC V1 0100.1 I1 10u 100u 10u
.AC DEC 20 10K 100MEG

SOLUTION CONTROL

Transient analysis

Circuit performance in time domain

.TRAN Tinc Tstop

Tinc: Time increment in seconds
Tstop: Final time analyzed

Example: .TRAN 10n 2u

.PROBE

Store results of simulation in an output file for the future graphical representation

.END

Ends the SPICE input file. Can be placed in any part of file for debugging.

OUTPUT CONTROL

- The list of voltages and currents between nodes can be plotted using PROBE tool.
- The following suffix may be appended to variable names to extract specific parameters

Suffix	Meaning	Example
DB	Magnitude in $d B$	V1DB(1,0)
M	Magnitude V_{m}	$\mathrm{IM}(\mathrm{V} 1)$
P	Phase φ	$\mathrm{V} 1 \mathrm{P}(1,0)$
R	Real part V_{Re}	$\mathrm{V} 1 \mathrm{R}(1,0)$
I	Imaginary part V_{Im}	$\mathrm{V} 1 \mathrm{I}(1,0)$

Decibell: $\mathrm{V}_{\mathrm{m}}[\mathrm{dB}]=20 \lg \mathrm{~V}_{\mathrm{m}}$ [Volts]

Phasor: $\mathrm{V}=\mathrm{V}_{\mathrm{m}}$ [Volts] $\mathrm{e}^{\mathrm{j} \varphi[\text { Degrees] }}=\mathrm{V}_{\mathrm{Re}}+\mathrm{j} \mathrm{V}_{\mathrm{Im}}$

EXAMPLE

Write down a PSPICE netlist to perform the operating point analysis for the circuit in Figure below:

The Input File (Netlist):
Voltage divider
V1 10 DC 12
R1 12 1K
R2 20 2K
.OP
.END

Kirchhoff Voltage Law

$$
V_{1}+V_{2}+V_{3}=0
$$

The algebraic sum of the voltage drops around closed path is zero

$$
\sum_{i} v_{i}=0
$$

- The polarity of voltage across every element may be assigned arbitrary
- KVL is satisfied for $A C$ signals

Kirchhoff Current Law

$$
I_{1}+I_{2}+I_{3}=0
$$

The algebraic sum of currents entering any node is zero

- Direction of current through every element can be chosen arbitrarily
- KCL is satisfied for AC signals

Analog Multimeter

Voltage Measurements

Current Measurements

- Floating nodes: we can ignore the common mode voltage
- Low accuracy:

Low input resistance for voltage measurements
Low input conductance for current measurements

- Needs to be calibrated for resistance measurements for every scale

Digital Multimeter

Voltage Measurements

Current Measurements

ADC

- Virtually grounded: the common mode voltage should be minimized!
- High accuracy:

High input resistance for voltage measurements High input conductance for current measurements

Voltage and Current Measurements

Voltage Measurements

- Voltmeter V is connected in parallel to the element of the circuit

Current Measurements

- The power must be switched off and the circuit must be open first
- Ammeter is always connected in series to the element of the circuit
- Then the power is switched on

Taking Measurements with DMM Fluke 45

- Dual display of Digital Multi Meter (DMM) Fluke 45 allows one to take two simultaneous measurements which is very useful

Dual Display Applications

Primary Display	Secondary Display	Applications
Volts DC	Current DC	- Measurements of I-V characteristics - Check power supply load regulation
Volts AC	Current AC	- Power Line -Load test - Transformer (magnetic circuit) saturation test
Volts DC	Volts AC	- Monitor DC level and ripple of power supply
Volts AC	Current DC	- Check AC/DC or DC/AC converters
Volts AC	Frequency	- Frequency response
Volts dB	Frequency	- Quick Bode plots
Relative	Actual value	- Show actual measurements and the difference between this value and the relative base - Select and sort resistors
HOLD	Actual value	- Show actual value while holding a previous measurement

Oscilloscope

Voltage Measurements

- Only voltage measurements can be taken
- One node is always grounded: the common mode voltage must be zero!

In order to measure the voltage across the element with both terminals hot: two terminals must be measured separately with respect to the ground and the results are subtracted

- Good accuracy: high input resistance

AC (periodical) signals

Determination of the Phase Shift

- Period is the shortest distance in time between two points with the same phase. It is convenient to measure the period between maxima or minima.
- Frequency is a value reciprocal to period: $f[\mathrm{~Hz}]=1 / T$
- Angular frequency shows the number of radians per sec: $\omega\left[\mathrm{s}^{-1}\right]=2 \pi f$
- Phase shift is determined in the following way:

$$
\Delta \Phi=\Phi_{2}-\Phi_{1}=\frac{t}{T} \cdot 2 \pi[\mathrm{rad}]=\frac{t}{T} \cdot 360[\operatorname{deg} \mathrm{rees}]
$$

- Phase shift is determined with 2π accuracy
- Note the sign of the phase shift: in example above V_{2} is leading V_{1}

Phasor Diagram

Exponential form of periodical in time signal:

$$
V(t)=\operatorname{Re}\left\{V_{m} \cdot e^{j(\omega t+\varphi)}\right\}=\operatorname{Re}\left\{\bar{V} \cdot e^{j \omega t}\right\}
$$

$$
\bar{V}=V_{m} \cdot e^{j \varphi}
$$

Phasor is a complex number
expressing the amplitude and the phase of a signal

- Phasor is a time-independent part of a signal
- The amplitude of sinusoid is the magnitude of its phasor
- The phase angle of the sinusoid is the angle of its phasor
- Phasor simplifies circuit analysis using complex number algebra

Properties of Complex Numbers

- A complex number has a geometrical meaning and can be uniquely represented as a point on a complex plane

$$
\mathrm{X}=\mathrm{A}+\mathrm{jB}=\mathrm{M} \mathrm{e}^{\mathrm{j} \varphi}
$$

- Eiler equation: $e^{j \phi}=\cos \phi+j \sin \phi$

$$
\begin{gathered}
\mathrm{M}=\left(\mathrm{A}^{2}+\mathrm{B}^{2}\right)^{1 / 2}, \quad \varphi=\arctan (\mathrm{B} / \mathrm{A}) \\
\mathrm{j}^{2}=-1, \quad \mathrm{j}=\mathrm{e}^{\mathrm{j} \pi / 2}
\end{gathered}
$$

Operation with Complex Numbers

$$
\begin{aligned}
& X_{l}=A_{l}+j B_{l}=M_{1} e^{j \varphi l} \\
& X_{2}=A_{2}+j B_{2}=M_{2} e^{j \varphi 2}
\end{aligned}
$$

1) Sum of Complex Numbers:

$$
X_{1}+X_{2}=\left(A_{1}+A_{2}\right)+j\left(B_{1}+B_{2}\right)
$$

2) Product of Complex Numbers:
$X_{1} X_{2}=M_{1} M_{2} e^{j(\varphi 1+\varphi 2)}$
$X_{1} X_{2}=\left(A_{1} A_{2}-B_{1} B_{2}\right)+j\left(A_{1} B_{2}+B_{1} A_{2}\right)$
3)Ratio of Complex Numbers:

$$
\begin{gathered}
X_{1} / X_{2}=\left\{\left(A_{1} A_{2}+B_{l} B_{2}\right)+j\left(A_{2} B_{1}-A_{1} B_{2}\right)\right\} /\left(A_{2}{ }^{2}+B_{2}{ }^{2}\right) \\
X_{1} X_{2}=\left(M_{1} / M_{2}\right) e^{j(\varphi l-\varphi 2)}
\end{gathered}
$$

Voltage and Current Shift in Passive Elements

Resistor $\quad V_{R}=R \cdot I$,

AC signals

Mean value

$$
\langle V\rangle_{T}=\frac{1}{T} \int_{0}^{T} V(t) d t
$$

Root Mean Square (RMS)

$$
V_{R M S}=\sqrt{\left\langle V^{2}(t)\right\rangle}
$$

Example: $\quad V=V_{m} \sin (\omega t)$

$$
\begin{gathered}
\langle | V\left\rangle=2 V_{m} / \pi=0.637 V_{m}\right. \\
V_{R M S}=V_{m} / \sqrt{(2)}=0.707 V_{m}
\end{gathered}
$$

Time

