END STATEMENT

OUTPUT CONTROL

SOLUTION CONTROL

DESCRIPTION OF ELEMENTS

DESCRIPTION OF SOURCES

TITLE

NETLIST STRUCTURE

CIRCUIT DESCRIPTION

• The first letter identifies the element type followed by a name limited to 7 characters

Rxx	Resistor	
Cxx	Capacitor	
Lxx	Inductor	
Vxx	Voltage source	
Ixx	Current source	
Dxx	Diode	
Qxx	BJT	
Mxx	MOSFET	

Node numbering

- All nodes numbered with nonnegative integers between 0 and 9999
- Ground node must be labeled 0
- SPICE allows to assign several numbers for the same node

PASSIVE ELEMENT STATEMENT

X<name> N+ N- value <IC=xx>

X is the reserved letter *R*, *L*, or *C* <*name*> is number or string

N+ and N- denote polarity of voltage acrossthe element or current directionN+ corresponds to more positive potential

value is specified in Ohms [Ω], Henries [H] or Farads [F] correspondingly

<IC (VC or IL) = xx > is the initial condition: capacitive voltage or inductive current at the time t=0

PASSIVE ELEMENTS

POWER-OF-TEN NUMERICAL SUFFIXES IN PSPICE

Suffix	Factor
Т	10^{12}
G	10 ⁹
MEG	10 ⁶
K	10^{3}
М	10-3
U	10-6
N	10 ⁻⁹
Р	10 ⁻¹²
F	10-15

PARAMETERS OF VOLTAGE AND CURRENT SOURCES

DC sources

V <name> N+ N- DC <value> I <name> N+ N- DC <value>

III. AC sources

For analysis in *time* domain

V<name> N+ N- SIN(Voff Vamp <freq> <TD> <damp>)

For analysis in *frequency* domain

V<*name*> *N*+ *N*- AC <*Vamp*>

SOLUTION CONTROL

Operating Point Analysis Determination of the Quiescent point (Q-point)

.OP

DC analysis

Circuit performance with DC sweeping

.DC snm1 str1 stp1 inc1 < snm2 str2 stp2 inc2>

snm specify Voltage or Current source name

str, stp and inc: Start, End and Increment values in Volts or Amps

AC analysis

Circuit performance in frequency domain

.AC sweep num freq1 freq2

sweep: LINE (linear), DEC (decade) or OCT (octave) *num:* number of points per decade, octave or total

freq1, freq2: Start and End frequencies in Hertz

Examples: .DC V1 0 10 0.1 I1 10u 100u 10u .AC DEC 20 10K 100MEG

SOLUTION CONTROL

Transient analysis Circuit performance in *time* domain

.TRAN Tinc Tstop

Tinc: Time increment in seconds *Tstop*: Final time analyzed

Example: .TRAN 10n 2u

.PROBE

Store results of simulation in an *output file* for the future graphical representation

.END

Ends the SPICE *input file*. Can be placed in any part of file for debugging.

OUTPUT CONTROL

- The list of voltages and currents between nodes can be plotted using PROBE tool.
- The following suffix may be appended to variable names to extract specific parameters

Suffix	Meaning	Example
DB	Magnitude in <i>dB</i>	V1DB(1,0)
М	Magnitude V _m	IM(V1)
Р	Phase ϕ	V1P(1,0)
R	Real part V _{Re}	V1R(1,0)
Ι	Imaginary part V _{Im}	V1I(1,0)

Decibell: $V_m [dB] = 20 lg V_m [Volts]$

Phasor: $V = V_m$ [Volts] $e^{j\phi [Degrees]} = V_{Re} + jV_{Im}$

EXAMPLE

Write down a PSPICE netlist to perform the operating point analysis for the circuit in Figure below:

The Input File (Netlist):

Voltage divider V1 1 0 DC 12 R1 1 2 1K R2 2 0 2K .OP .END

 $V_1 + V_2 + V_3 = 0$

The algebraic sum of the voltage drops around closed path is zero

$$\sum_{i} V_{i} = 0$$

- The polarity of voltage across every element may be assigned *arbitrary*
- KVL is satisfied for *AC* signals

Kirchhoff Current Law

 $I_1 + I_2 + I_3 = 0$

The algebraic sum of currents entering any node is zero

$$\sum_{i} I_{i} = 0$$

- Direction of current through every element can be chosen arbitrarily
- KCL is satisfied for AC signals

Analog Multimeter

Voltage Measurements

Current Measurements

- *Floating* nodes: we can ignore the common mode voltage
- Low accuracy:

Low input resistance for voltage measurements

Low input conductance for current measurements

• *Needs to be calibrated* for resistance measurements *for every scale*

- *Virtually grounded*: the common mode voltage should be minimized!
- *High accuracy:*

High input resistance for voltage measurements

High input conductance for current measurements

Voltage and Current Measurements

Voltage Measurements

• Voltmeter V is connected *in parallel* to the element of the circuit

- The power must be *switched off* and the circuit must be *open* first
- Ammeter is *always* connected *in series* to the element of the circuit
- Then the power is switched on

Taking Measurements with DMM Fluke 45

• *Dual* display of Digital Multi Meter (DMM) *Fluke 45* allows one to take *two simultaneous* measurements which is very useful

Primary	Secondary	
Display	Display	Applications
Volts DC	Current DC	• Measurements of I-V characteristics
		• Check power supply load regulation
Volts AC	Current AC	Power Line –Load test
		• Transformer (magnetic circuit) saturation
		test
Volts DC	Volts AC	• Monitor DC level and ripple of power
		supply
Volts AC	Current DC	• Check AC/DC or DC/AC converters
Volts AC	Frequency	Frequency response
Volts dB	Frequency	Quick Bode plots
		
Relative	Actual value	• Show actual measurements and the
		difference between this value and the
		relative base
		Select and sort resistors
HOLD	Actual value	• Show actual value while holding a
		previous measurement

Dual Display Applications

Oscilloscope

Voltage Measurements

- Only *voltage measurements* can be taken
- One node is *always grounded*: the common mode voltage *must be zero*!

In order to measure the voltage across the element with both terminals hot: two terminals must be measured separately with respect to the ground and the results are subtracted

• Good accuracy: high input resistance

AC (periodical) signals

Determination of the Phase Shift

- *Period* is the shortest distance in time between two points with the same phase. It is convenient to measure the period between maxima or minima.
- *Frequency* is a value reciprocal to period: f [Hz]= 1/T
- Angular frequency shows the number of radians per sec: $\omega [s^{-1}] = 2\pi f$
- *Phase shift* is determined in the following way:

$$\Delta \Phi = \Phi_2 - \Phi_1 = \frac{t}{T} \cdot 2\pi [rad] = \frac{t}{T} \cdot 360 [deg \, rees]$$

- *Phase shift* is determined with 2π accuracy
- Note the *sign* of the phase shift: in example above V_2 is leading V_1

Phasor Diagram

Exponential form of periodical in time signal:

$$V(t) = \operatorname{Re}\{V_m \cdot e^{j(\omega t + \varphi)}\} = \operatorname{Re}\{\overline{V} \cdot e^{j\omega t}\}\$$

$$\overline{V} = V_m \cdot e^{j\varphi}$$

Phasor is a complex number

expressing the amplitude and the phase of a signal

- *Phasor* is a time-independent part of a signal
- The *amplitude* of sinusoid is the *magnitude* of its phasor
- The *phase angle* of the sinusoid is the *angle* of its phasor
- Phasor simplifies circuit analysis using *complex number* algebra

Properties of Complex Numbers

• A complex number has a geometrical meaning and can be *uniquely* represented as a point on a *complex plane*

Operation with Complex Numbers

$$X_1 = A_1 + jB_1 = M_1 e^{j\varphi 1}$$

 $X_2 = A_2 + jB_2 = M_2 e^{j\varphi 2}$

- 1) Sum of Complex Numbers: $X_1 + X_2 = (A_1 + A_2) + j (B_1 + B_2)$
- 2) Product of Complex Numbers: $X_1 X_2 = M_1 M_2 e^{j (\phi I + \phi 2)}$ $X_1 X_2 = (A_1 A_2 - B_1 B_2) + j(A_1 B_2 + B_1 A_2)$

3)Ratio of Complex Numbers:

 $X_{1}/X_{2} = \{(A_{1}A_{2} + B_{1}B_{2}) + j(A_{2}B_{1} - A_{1}B_{2})\}/(A_{2}^{2} + B_{2}^{2})$ $X_{1}X_{2} = (M_{1}/M_{2}) e^{j(\varphi^{1}-\varphi^{2})}$

Voltage and Current Shift in Passive Elements

AC signals

Mean value

$$\langle V \rangle_T = \frac{1}{T} \int_0^T V(t) dt$$

Root Mean Square (RMS)

$$V_{RMS} = \sqrt{\left\langle V^2(t) \right\rangle}$$

Example: $V=V_m sin(\omega t)$ $\langle V \rangle = 2V_m / \pi = 0.637 V_m$

$$V_{RMS} = V_m / \sqrt{2} = 0.707 V_m$$

Time