ESE 372 / Spring 2011 / Lecture 19

Common Base Biased by current source

Start with bias DC analysis – make sure BJT is in FA, then calculate small signal parameters for AC analysis.

*ignore r_o for simplicity, then:

The circuit is current buffer: delivers current from source to load

* when BJT output impedance r_0 can not be neglected – the circuit is said to perform an impedance transformation.

 $\mathcal{R}_{in} \approx (\mathcal{P} + 1) \cdot \mathcal{R}_{L}$, for $\mathcal{R}_{L} < \mathcal{V}_{o}$ Impedance transformation

Common Collector (Emitter follower) Biased by current source

Short circuit current gain is almost the same as in case of CE amp, namely β +1.

Start with bias DC analysis – make sure BJT is in FA, then calculate small signal parameters for AC analysis.

$$G_{v} = \frac{V_{out}}{V_{\varsigma}} = \frac{R_{B}}{R_{\varsigma} + R_{B}} \cdot \frac{(J+1)(R_{L} | V_{o})}{\left[(R_{\varsigma} | | R_{B}) + V_{\pi}\right] + (J+1)(R_{L} + V_{o})} < 1$$

Often
$$R_B >> R_S$$
 and $r_O >> R_L$, then
 $G_V \approx \frac{(J_{S+1}) \cdot R_L}{(R_S + V_{\overline{H}}) + R_L (J_{S+1})} \approx 1$

$$R_{in} = \frac{V_{in}}{\tilde{z}_{in}} = \left[R_{\mathcal{B}} \| (v_{\overline{u}} + (\beta + 1)(R_{L}||v_{o}) \right] \approx (\beta + 1) \cdot R_{L}$$

$$\approx \sqrt{\kappa_{i} \mathcal{C}} \sim \kappa_{i} \mathcal{C} \sim \kappa_{i} \mathcal{C} \sim \kappa_{i} \mathcal{C} \sim \kappa_{i} \mathcal{C} \qquad \text{Impedances} \\ \text{transformed} \\ R_{out} = \frac{V_{out}}{\tilde{z}_{out}} \left| v_{\overline{s}=0} = v_{o} \right| \left| \frac{V_{\overline{u}} + (R_{s}||R_{\beta})}{\beta + 1} \approx \frac{R_{s}}{\beta + 1} \right]$$

The circuit is voltage buffer: delivers voltage from source to load

Frequency response of Common Emitter amplifier Low frequencies, i.e. BJT itself is fast enough

1. Assume C_1 is finite while C_2 and C_E are still infinite.

Frequency response of Common Emitter amplifier Role of the output coupling cap C₂

2. Assume C_2 is finite while C_1 and C_E are still infinite.

Frequency response of Common Emitter amplifier Role of the bypass cap C_E

3. Assume C_E is finite while C_1 and C_2 are still infinite.

Frequency response of Common Emitter amplifier Bandwidth

Amplifier bandwidth is determined by BJT high frequency capabilities – determined by internal parasitic capacitances C_{π} and C_{μ} .

Frequency response of Common Emitter amplifier Short circuit current gain at high frequencies

Frequency response of Common Emitter amplifier Frequency dependence of common base current gain

$$\alpha(f) = \frac{\mathcal{N}(f)}{\mathcal{N}(f) + 1}$$

$$\alpha(f) = \frac{\beta \circ}{1 + \beta \circ + j f/f_{B}} = \frac{\alpha \circ}{1 + j f/(f_{B}(1 + \beta \circ))} \simeq \frac{\alpha \circ}{1 + j f/f_{T}}$$

3dB frequency for α is equal to f_{T} .

 $E B C C = \frac{C_{BC0}}{(1 + V_{CB}/V_{bi})^{\frac{1}{2}}}$ $BC-junction \ depletion \ region \ capacitance$

$$C_{BE}(V_{BE}) = \frac{C_{BE0}}{(1 - V_{BE}/V_{bi})^{1/2}}$$

EB-junction depletion region capacitance

Base transport time – time of flight of electrons from emitter to collector.

Hence at f_{T} electrons from emitter can not reach collector.

> *There are also several parasitic caps associated with technology limitations

Frequency response of Common Emitter amplifier Base transport time and associated diffusion capacitance

time of flight of electrons from emitter to collector.

$$\mathcal{T}_{\mathsf{TF}} = \frac{\mathsf{WB}}{\mathsf{Var}} \simeq \frac{\mathsf{WB}^2}{2\mathsf{D}_{\mathsf{N}}}$$

*Need thin base for high speed operation Frequency response of Common Emitter amplifier Base transport time and associated diffusion capacitance

time of flight of electrons from emitter to collector.

$$\mathcal{T}_{\mathsf{TF}} = \frac{\mathsf{WB}}{\mathsf{Vaill}} \simeq \frac{\mathsf{WB}^2}{2\mathsf{D}_{\mathsf{N}}}$$

*Need thin base for high speed operation

Electron charge stored in base when current IC is flowing

$$Q_{TF} = I_{c} \cdot T_{TF} \approx q \frac{\Delta N}{2} \cdot W_{B}$$

$$C_{TF} = \frac{d Q_{TF}}{d V_{BE}} \Big|_{I_{c}^{Q}} = T_{TF} \cdot \frac{d I_{c}}{d V_{BE}} \Big|_{I_{c}^{Q}} = T_{TF} \cdot g_{m}$$

$$C_{TF} = C_{TF} + C_{BE}; ; C_{\mu} = C_{CB};$$

Charge storage capacitance

Pn-junction depletion region capacitances and other parasitic caps

Frequency response of Common Emitter amplifier Unity gain bandwidth

$$C_{\pi} = C_{TF} + C_{BEj} \& C_{\mu} = C_{CBj}$$
$$= C_{TF} \cdot Q_{M}$$

$$T_T = T_F^+ \frac{C_{BEj} + C_{CBj}}{g_m} \& g_m \sim I_c^2$$

Minimum possible time delay

Ultimate limit for BJT speed