Common Base

Biased by current source

Start with bias DC analysis – make sure BJT is in FA, then calculate small signal parameters for AC analysis.

*ignore \(r_O \) for simplicity, then:

\[A_V = \left. \frac{V_{out}}{V_{in}} \right|_{V_{in} \to 0} = g_m (R_L || R_C) \]

noninverting

\[A_{V_{o}} = \left. A_V \right|_{R_L = \infty} = g_m R_L \]

\[R_{in} = \left. \frac{V_{in}}{i_{in}} \right|_{V_{in} \to 0} = \frac{R_C}{s+1} \]

Small!

\[R_{out} = \left. \frac{V_{out}}{i_{out}} \right|_{v_{S} \to 0} = R_C \]

\[G_v = \frac{V_{out}}{V_{S}} = \frac{R_{in}}{R_{in}+R_S} \cdot A_V \approx \frac{R_L || R_C}{R_S} \]

The circuit is current buffer: delivers current from source to load

* when BJT output impedance \(r_O \) can not be neglected – the circuit is said to perform an impedance transformation.
Common Collector amplifier

Again.
No need for C_E!

Bias current I_E will determine g_m, r_n, and r_o

Also
R_B and C_{C1} can be eliminated

Redraw equivalent circuit in more convenient form

Therefor
$\eta_{eq} = \frac{R_{eq}}{R_{eq} + R_S}$

$R_{eq} = \frac{R_B}{1 + \frac{R_B}{R_S}}$
Common Collector amplifier

\[V_{eq} = \frac{V_S}{R_S + R_S} = \beta b (V_T + R_{eq}) + V_{out} \]

\[V_{out} = (\beta b + q_m V_{BE}) \cdot (R_L || V_0) = \beta b \left(1 + \beta \right) \left(R_L || V_0 \right) \]

\[G_V = \frac{V_{out}}{V_{eq}} = \frac{V_{out}}{V_{eq}} \cdot \frac{T_{eq}}{V_S} = \frac{R_B}{R_S + R_B} \cdot \frac{(\beta + 1) (R_L || V_0)}{(R_T + R_B || R_S) + (\beta + 1) (R_L || V_0)} \leq 1 \]

When

\[R_B \gg R_S \]
\[R_0 \gg R_L \]

\[G_V = \frac{(\beta + 1) R_L}{[R_S + R_T] + R_L \left(\frac{\beta + 1}{R_T} \right)} \leq 1 \]

\[\beta \approx 1 \]

\[i.e. \ no\ voltage\ gain! \]
Common Collector amplifier

Input impedance

\[R_{i_{in}} = \frac{\overline{V}_{i_{in}}}{\overline{i}_{i_{in}}} \]

\[\overline{V}_{i_{in}} = \overline{i}_{b} \cdot r_{a} + (\beta + 1)(R_{L} \ || V_{o}) \cdot \overline{i}_{b} \]

\[\overline{i}_{i_{in}} = \frac{\overline{V}_{i_{in}}}{R_{b}} + 2 \overline{i}_{b} = \overline{i}_{b} \left(\frac{V_{T}}{R_{b}} + 1 + \frac{\beta + 1}{R_{b}} \right) \]

\[R_{i_{in}} = \frac{\left(V_{T} + (\beta + 1)(R_{L} \ || V_{o}) \right) \cdot R_{b}}{R_{b} + \left(V_{T} + (\beta + 1)(R_{L} \ || V_{o}) \right)} = R_{b} \ || \left(\frac{V_{T} + (\beta + 1)(R_{L} \ || V_{o})}{\sum R_{b}} \right) \]

\[R_{i_{in}} \approx (\beta + 1) \cdot R_{L} \quad \text{for} \ R_{L} \ll V_{o} \]

Impedance transformation
Common Collector amplifier

Output impedance

\[V_S = 0 \]

\[i_b \quad V_{BE} \quad i_{out} \]

\[V_{out} = -i_b (R_s || R_B) - \eta V_{BE} = -i_b (R_s || R_B + V_o) \]

\[i_{out} = \frac{V_{out}}{V_o} - i_b - \eta V_{BE} = \]

\[= -i_b \frac{R_s || R_B + V_o}{V_o} - i_b - \frac{V_o}{V_o} \]

\[R_{out} = \frac{V_{out} + R_s || R_B}{(j\omega + 1) + \frac{V_{out} + R_s || R_B}{V_o}} = \left(\frac{R_o || \frac{V_{out} + (R_s || R_B)}{j\omega + 1}} \right) \]

\[R_B \gg R_s \quad R_v \gg \eta \quad \text{then} \quad R_{out} \approx \frac{R_s}{V_o + 1} \]
Common Collector (Emitter follower)
Biased by current source

Start with bias DC analysis – make sure BJT is in FA, then calculate small signal parameters for AC analysis.

\[
\frac{V_{out}}{V_{in}} = \frac{R_S}{R_S + R_B} \frac{(\beta + 1)(R_L || R_o)}{[(R_S || R_B) + R_o] + (\beta + 1)(R_L + V_o)} < 1
\]

Often \(R_B \gg R_S \) and \(r_o \gg R_L \), then

\[
\frac{V_{out}}{V_{in}} \approx \frac{(\beta + 1) \cdot R_L}{(R_S + R_o) + R_L (\beta + 1)} \approx 1
\]

\[
R_{in} = \frac{V_{in}}{I_{in}} = \frac{R_L}{(R_S || R_B) + R_o} \approx (\beta + 1) \cdot R_L
\]

\[
R_{out} = \frac{V_{out}}{I_{out}} |_{V_o = 0} = \frac{R_L}{(R_S || R_B) + R_o} \approx \frac{R_S}{\beta + 1}
\]

The circuit is voltage buffer: delivers voltage from source to load.
Frequency response of Common Emitter amplifier

Low frequencies, i.e. BJT itself is fast enough

1. DC bias – make sure BJT is in FA - AC analysis.

 Before – assumed coupling caps are big enough to act as a short circuit for any frequency of AC signal.

 Now – assume they have finite values.

1. Assume C_1 is finite while C_2 and C_E are still infinite.

 $G_V(t) = \frac{V_{out}(t)}{V_s(t)} = \frac{V_{out}(t)}{\sin(t)} \cdot \frac{\sin(t)}{R_L} = \frac{V_{out}(t)}{V_s(t)}$

 Depends on frequency.

 Frequency independent.
Frequency response of Common Emitter amplifier

Role of the input coupling cap \(C_1 \)

\[
G_V(f) = \frac{V_{out}(f)}{V_S(f)} = \frac{V_{out}(f)}{V_{in}(f)} \cdot \frac{T_{in}(f)}{T_S(f)}
\]

- Depends on frequency.
- Voltage gain found before

\[
G_{V0} \quad \text{net voltage gain found before for infinite caps.}
\]

\[
T_{in} = \frac{R_{in}}{R_C + R_{in} + \frac{1}{j \omega C_{1}}} = \frac{R_{in}}{R_C + R_{in}} \cdot \frac{j \omega C_{1}}{1 + j \omega C_{1}}
\]

- Input voltage divider found before.
- High Pass Filter

\[
T_0 = -3 \text{dB} \quad \frac{f_0}{f_{l1}} \quad 20 \text{dB/dec}
\]
Frequency response of Common Emitter amplifier

Role of the output coupling cap C_2

2. Assume C_2 is finite while C_1 and C_E are still infinite.

$G_V(f) = \frac{\hat{V}_{out}(f)}{\hat{V}_s(f)} = \frac{\hat{V}_{out}(f)}{\hat{V}_s(f)} \cdot \frac{\hat{V}_{out}(f)}{\hat{V}_{out}(f)}$

$G_V(f) = \frac{R_L}{R_L + \frac{1}{j\omega C_2}} \cdot A_{v0} \cdot \frac{R_L}{R_L + \frac{1}{j\omega C_2}}$

$G_{V0} = \text{net voltage gain found before for infinite caps.}$

Again High Pass Filter but with 3dB frequency defined by C_2
Frequency response of Common Emitter amplifier

Role of the bypass cap C_E

3. Assume C_E is finite while C_1 and C_2 are still infinite.
We have identified three HPF.

\[T_i(f) = \frac{j \cdot f / f_{Li}}{1 + j \cdot f / f_{Li}} \]

\[f_{L1} = \frac{1}{2 \pi \cdot C_1 \cdot (R_{in} + R_S)} \]

\[f_{L2} = \frac{1}{2 \pi \cdot C_2 \cdot (R_{out} + R_L)} \]

\[f_{L3} = \frac{1}{2 \pi \cdot \frac{C_E}{\beta+1} \cdot (r_\pi + R_S \parallel R_B)} \]

\[C_1 = C_2 = C_E = 1 \mu \]

\[R_{in} + R_S \sim k\text{Ohm} \rightarrow f_{L1} < 200\text{Hz} \]

\[R_{out} + R_L \sim 10k\text{Ohm} \rightarrow f_{L2} < 20\text{Hz} \]

\[r_\pi + R_S \parallel R_B \sim k\text{Ohm} \rightarrow f_{L3} > kHz \]

Low frequency cutoff is determined by \(C_E \)
Frequency response of Common Emitter amplifier

Bandwidth

High frequency 3dB determines amplifier bandwidth.

Amplifier bandwidth is determined by BJT high frequency capabilities – determined by internal parasitic capacitances C_{π} and C_{μ}.
Frequency response of Common Emitter amplifier

Short circuit current gain at high frequencies

1. $C_u - C_M = 0 \quad (\frac{\tilde{I}_{out}}{\tilde{I}_{in}}) = \frac{g_{m} V_{BE}}{\tilde{V}_{b}} = g_{m} \cdot R_o = \beta_0$

2. $C_u \neq 0$

\[
\tilde{I}_{out} = g_{m} V_{BE} \quad \tilde{I}_{in} = g_{m} V_{BE} - \frac{V_{BE}}{j \omega C_M} = (g_{m} - j \omega C_M) V_{BE}
\]

\[
\tilde{I}_{in} = \frac{V_{BE}}{R_o} + \frac{V_{BE}}{\frac{1}{j \omega C_u}} + \frac{V_{BE}}{\frac{1}{j \omega C_M}}
\]

\[
\frac{\tilde{I}_{out} (\omega)}{\tilde{I}_{in} (\omega)} = \frac{g_{m} - j \omega C_M}{\frac{1}{R_o} + j \omega (C_u + C_M)} = \frac{\beta_0 - j \frac{\omega}{Q} (2\pi R_o \cdot C_M)}{1 + j \frac{Q}{\beta_0}}
\]

Negligible since $\ll \beta_0$ for not extreme frequencies.

Common emitter current gain defined earlier.

$C_u \sim 1 \text{pF}$

$C_M \sim 0.1 \text{pF}$

$R_o \sim 10 \text{M} \Omega$
Frequency response of Common Emitter amplifier

Short circuit current gain at high frequencies

\[
\beta(t) \approx \frac{\beta_0}{1 + j \frac{f}{f_T}}
\]

\[
\beta = \frac{1}{2 \pi \nu_m (\epsilon_a + \epsilon_p)}
\]

Unity gain bandwidth \(f_T\):

\[
\beta(f_T) = 1 = \left| \frac{\beta_0}{1 + j \frac{f_T}{f_A}} \right| \approx \frac{\beta_0}{f_T}
\]

\[
f_T = \beta_0 \cdot \frac{1}{\nu_m} \cdot \frac{1}{2 \pi \nu_m (\epsilon_a + \epsilon_p)} = \frac{g_m \frac{V_1}{I}}{2 \pi (\epsilon_a + \epsilon_p)}
\]

Looks like it is supposed to improve with bias current because

\[
g_m = \frac{J}{V}
\]

However it does not. Why?
Frequency response of Common Emitter amplifier

Frequency dependence of common base current gain

\[\alpha(f) = \frac{\beta(f)}{\beta(f) + 1} \]

\[\alpha'(f) = \frac{\beta_0}{1 + \frac{j}{\beta_0} \cdot \frac{f}{f_{3dB}}} = \frac{\alpha_0}{1 + \frac{j}{f_{3dB}(1 + \alpha_0)}} \approx \frac{\alpha_0}{1 + j \cdot f / f_T} \]

3dB frequency for \(\alpha \) is equal to \(f_T \).

There are also several parasitic caps associated with technology limitations.

Hence at \(f_T \) electrons from emitter can not reach collector.
Frequency response of Common Emitter amplifier

Base transport time and associated diffusion capacitance

\[
\tau_T = \frac{W_B}{v_{diff}} \approx \frac{W_B^2}{2D_n}
\]

*Need thin base for high speed operation

Effective velocity of diffusion electrons

Time of flight of electrons from emitter to collector.
Frequency response of Common Emitter amplifier

Base transport time and associated diffusion capacitance

\[\tau_{TF} = \frac{W_B}{V_{diff}} \approx \frac{W_B^2}{2 \cdot D_n} \]

Need thin base for high speed operation

Electron charge stored in base when current IC is flowing

\[Q_{TF} = I_c \cdot \tau_{TF} \approx q \cdot \frac{\Delta n}{\pi} \cdot W_B \]

\[C_{TF} = \frac{dQ_{TF}}{dV_{BE}} \bigg|_{I_c} = \tau_{TF} \cdot \frac{dI_c}{dV_{BE}} \bigg|_{I_c} - \tau_{TF} \cdot \varnothing \cdot m \]

\[C_n = C_{TF} + C_{BEB} \quad ; \quad C_{\mu} = C_{CBE} \]

Charge storage capacitance

Pn-junction depletion region capacitances and other parasitic caps
Frequency response of Common Emitter amplifier

Unity gain bandwidth

\[
\begin{align*}
C_W &= C_{TF} + C_{BE} \quad \text{and} \quad C_U = C_{CB}
\end{align*}
\]

\[
L_W = C_{TF} \cdot q_m
\]

\[
\tau_T = \frac{q_m}{2 \pi \left(C_{BE} + C_{CB} \right) + 2 \pi \cdot q_m \cdot \tau_{TF}} = \frac{1}{2 \pi \tau_{TF}}
\]

Total time delay

\[
\tau_T = \tau_{TF} + \frac{C_{BE} + C_{CB}}{q_m} \quad \text{and} \quad q_m \sim I_C
\]

Minimum possible time delay

\[
\text{log } \tau
\]

Ultimate limit for BJT speed