Last time: BJT CE low frequency response

Need FA

\[V_{BE} \approx 0.7V \]

\[V_{CE} > 0.3V \]

Equivalent circuit for low frequency small signal analysis

Coupling and bypass capacitors result into high pass filters (as could be expected).

\[
T_i(f) = \frac{j \cdot f / f_{Li}}{1 + j \cdot f / f_{Li}}
\]

\[
f_{L1} = \frac{1}{2 \cdot \pi \cdot C_1 \cdot (R_{in} + R_s)}
\]

\[
f_{L2} = \frac{1}{2 \cdot \pi \cdot C_2 \cdot (R_{out} + R_L)}
\]

\[
f_{L3} = \frac{1}{2 \cdot \pi \cdot \frac{C_E}{\beta + 1} \cdot (r_x + R_s \parallel R_B)}
\]
Role of the bypass cap C_E

3. Assume C_E is finite while C_1 and C_2 are still infinite.
Bandwidth of Common Emitter amplifier

High frequency 3dB determines amplifier bandwidth.

Amplifier bandwidth is determined by BJT high frequency capabilities – determined by internal parasitic capacitances C_{π} and C_{μ}.
Frequency dependence of short circuit current gain

1. \(C_u - C_M = 0 \) \(\frac{\tilde{I}_{out}}{\tilde{I}_{in}} = \frac{q_{in} V_{BE}}{I} = g_{m0} V_{CE} = \beta_0 \)

2. \(C_u \) & \(C_M \neq 0 \)

\(\tilde{I}_{out} = q_{in} V_{BE} - \tilde{I}_M = q_{in} V_{BE} - \frac{V_{BE}}{jwC_u} = (q_{in} - jwC_M) V_{BE} \)

\(\tilde{I}_{in} = \frac{V_{BE}}{R_A} + \frac{V_{BE}}{jwC_u} + \frac{V_{BE}}{jwC_M} \)

\(\frac{\tilde{I}_{out}(\omega)}{\tilde{I}_{in}(\omega)} = \frac{q_{in} - jwC_M}{\frac{1}{R_A} + jw(C_u + C_M)} = \frac{\beta_0 - j\frac{f}{D_{\beta}}}{1 + j\frac{f}{D_{\beta}}} \)

Common emitter current gain defined earlier.

Negligible since \(\ll \beta_0 \) for not extreme frequencies.

- \(C_u \sim 1 \text{pF} \)
- \(C_M \sim 0.1 \text{pF} \)
- \(f_{\beta} \sim 10 \text{MHz} \)

\(\delta_{\beta} = \frac{1}{2\pi R_A (C_u + C_M)} \)
Frequency dependence of short circuit current gain

Unity gain bandwidth \(f_T \):

\[
J_B (f_T) = 1 = \left| \frac{\beta_0}{1 + j \frac{f}{f_T}} \right| \approx \frac{\beta_0}{f_T}
\]

\[
f_T = \beta_0 \cdot \frac{1}{g_m} = \frac{\beta_0}{V_A} \cdot \frac{1}{2 \pi \left(\frac{C_b}{C_b+g_m} \right)} = \frac{g_m}{2 \pi \left(\frac{C_b}{C_b+g_m} \right)}
\]

Looks like it is supposed to improve with bias current because
Frequency dependence of short circuit current gain

Unity gain bandwidth f_T:

$$f_b = \frac{\beta_0}{2\pi v_i (e_i + e_p)}$$

$$f_T = \beta_0 \cdot f_b = \frac{\beta_0}{v_i} \cdot \frac{1}{2\pi (e_i + e_p)} = \frac{g_m}{\pi (e_i + e_p)}$$

Looks like it is supposed to improve with bias current because

However it does not. Why?
Frequency dependence of common base current gain

\[\alpha(f) = \frac{\beta(f)}{\beta(f) + 1} \]

\[\alpha'(f) = \frac{\beta_0}{1 + j\frac{f}{f_T}/\beta_0} = \frac{\alpha_0}{1 + j\frac{f}{f_T}/(f_\beta(1+\beta_0))} \approx \frac{\alpha_0}{1 + j\frac{f}{f_T}} \]

3dB frequency for \(\alpha \) is equal to \(f_T \).

Hence at \(f_T \) electrons from emitter can not reach collector.
Frequency dependence of common base current gain

\[\alpha(f) = \frac{\beta(f)}{\alpha(f) + 1} \]

\[\alpha'(f) = \frac{\beta_0}{1 + \frac{j f}{\beta_0}} = \frac{\alpha_0}{1 + j \frac{f}{f_T}} \]

3dB frequency for \(\alpha \) is equal to \(f_T \).

Hence at \(f_T \) electrons from emitter can not reach collector.

There are also several parasitic caps associated with technology limitations
Base transport time and diffusion capacitance

time of flight of electrons from emitter to collector.

\[
\tau_{TF} = \frac{w_B}{v_{diff}} \approx \frac{w_B^2}{2D_n}
\]

Need thin base for high speed operation

Effective velocity of diffusion electrons
Base transport time and diffusion capacitance

Time of flight of electrons from emitter to collector.

\[
\tau_{TF} = \frac{W_B}{V_{diff}} \approx \frac{W_B^2}{2 \Delta n}
\]

Need thin base for high speed operation

Electron charge stored in base when current IC is flowing

\[
Q_{TF} = I_c \cdot \tau_{TF} \approx q_v \frac{\Delta n}{2} \cdot W_B
\]

\[
C_{TF} = \frac{dQ_{TF}}{dV_{BE}} \bigg|_{I_c} = \tau_{TF} \cdot \frac{dI_c}{dV_{BE}} \bigg|_{I_c} - \tau_{TF} \cdot \frac{q}{\mu}
\]

\[
C_{TF} = C_{TF} + C_{BEj} \quad ; \quad C_{\mu} = C_{CBj}
\]

Charge storage capacitance
Pn-junction depletion region capacitances and other parasitic caps
Unity gain bandwidth

\[C_W = CT_F + C_{BEj} \quad \& \quad C_u = C_{CBj} \]

\[\tau_T = \frac{C_u}{2 \mu \left(C_{BEj} + C_{CBj} \right) + 2 \mu \cdot g_m \cdot \tau_T} = \frac{1}{2 \mu \tau_T} \]

Total time delay

Minimum possible time delay

Ultimate limit for BJT speed
Bandwidth of Common Emitter amplifier

Amplifier bandwidth \(f_H \) is determined by BJT internal parasitic capacitances \(C_\pi \) and \(C_\mu \).

- **Charge storage capacitance**
- **Pn-junction depletion region capacitances and other parasitic caps**
Unity gain bandwidth

Unity gain bandwidth f_T.

\[f_T = \frac{g_m}{2\pi (c_u + c_m)} \]

\[f_T = \frac{f_0}{1 + j \frac{f}{f_B}} \]

\[f_T = \beta_0 \cdot f_B \]

\[\beta_0 = \frac{1}{2\pi \cdot r_n \cdot (c_u + c_m)} \]
Net voltage gain bandwidth of CE BJT amplifier

We are interested in high frequency cutoff, i.e. coupling and bypass capacitors can be replaced by short circuit for frequencies $>> f_L$.

We have got capacitive coupling between input and output.

$\text{Theorem: } \frac{v_{eq}}{v_s} = \frac{v_{eq}}{v_s} \frac{R_{eq}}{R_{eq} + \frac{1}{C_H}}$
Observe increase of i_μ with transconductance g_m.

$$V_L = \hat{R}_L \left(i_\mu - g_m \hat{V}_{BE} \right) - \hat{V}_{BE} = \frac{\hat{z}_\mu}{jw C_\mu}, \text{ hence}$$

$$\hat{z}_\mu = \hat{V}_{BE} \frac{1 + g_m \hat{R}_L}{\hat{R}_L + \frac{1}{jw C_\mu}} = \hat{V}_{BE} \frac{(1 + g_m \hat{R}_L) \cdot jw C_\mu}{1 + jw C_\mu \cdot \hat{R}_L}$$
Net voltage gain bandwidth of CE BJT amplifier

\[V_L = V_{BE} - \hat{I}_M \frac{1}{j \omega C_{BE}} = V_{BE} \left(\frac{j \omega C_{BE} \hat{R}_L - q_m \hat{R}_L}{1 + j \omega C_{BE} \hat{R}_L} \right) \]

\[V_{ef} = V_{BE} + R_{ef} (\hat{I}_M + j \omega C_{BE} \hat{V}_{BE}) \]

\[\frac{V_L}{V_{ef}} = \frac{j \omega C_{BE} \hat{R}_L - q_m \hat{R}_L}{(1 + j \omega C_{BE} R_{ef})(1 + j \omega C_{BE} \hat{R}_L) + (1 + q_m \hat{R}_L) j \omega C_{BE} \hat{R}_L} \]
Net voltage gain bandwidth of CE BJT amplifier

\[
\frac{\overline{V_L}}{\overline{V_{eq}}} = \frac{\frac{1}{\mu R_C} - \frac{1}{\mu R_L}}{(1 + jw C_{eq} R_C)(1 + jw C_{eq} R_L) + (1 + \frac{1}{\mu R_L}) jw C_{eq} R_C R_L}
\]
Net voltage gain bandwidth of CE BJT amplifier

\[
\frac{V_L}{V_{eq}} = \frac{j\omega C_\mu \hat{R}_L - j\mu \hat{R}_L}{(1 + j\omega C_{\mu \hat{R}_L})(1 + j\omega C_\mu \hat{R}_L) + (1 + j\mu \hat{R}_L)j\omega C_\mu \hat{R}_L}
\]

nominator

\[f_T \approx \frac{1}{2 \cdot \pi \cdot \tau_{TF}} \approx 1 \text{GHz}, \; C_\mu \approx 0.1 \text{pF}
\]

\[\omega \cdot C_\mu \leq 0.001 \Omega^{-1}
\]

\[g_m \approx 0.04
\]
Net voltage gain bandwidth of CE BJT amplifier

\[\frac{V_L}{V_{eq}} = \frac{j\omega \mu R_C - \mu_m \hat{R}_L}{(1 + j\omega C_{\mu} R_{eq})(1 + j\omega C_{\mu} \hat{R}_L) + (1 + \mu_m \hat{R}_L) j\omega C_{\mu} R_{eq}} \]

nominator

\[f_T \approx \frac{1}{2 \cdot \pi \cdot \tau_{TF}} \approx 1 \text{GHz}, \quad C_\mu \approx 0.1 \text{pF} \]

\[\omega \cdot C_\mu \leq 0.001 \Omega^{-1} \]

\[g_m \approx 0.04 \]
Net voltage gain bandwidth of CE BJT amplifier

\[
\frac{V_L}{V_{eq}} = \frac{jwC_\mu R_L - jwR_L}{(1+jwC_\mu R_L)(1+jwC_\mu \hat{R}_L) + (1+jw\hat{R}_L)jwC_\mu R_L}
\]

nominator

\[
f_T \approx \frac{1}{2 \cdot \pi \cdot \tau_{TF}} \approx 1 \text{GHz}, \quad C_\mu \approx 0.1 \text{pF}
\]

\[
\omega \cdot C_\mu << 0.001 \Omega^{-1}
\]

\[
g_m \approx 0.04 \Omega^{-1}
\]

denominator

for

\[
C_\mu \approx C_\pi / 10
\]

and \(f << f_T \)

\[
\omega \cdot C_\mu \cdot \hat{R}_L << 1
\]
Net voltage gain bandwidth of CE BJT amplifier

\[\frac{V_L}{V_{eq}} = \frac{j\omega C_{\mu} R_L - g_m V_L}{(1 + j\omega C_{eq} R_L)(1 + j\omega C_{\mu} R_L) + (1 + g_m R_L) j\omega C_{\mu} R_L} \]

\(\text{nominator} \)

\[f_T \approx \frac{1}{2 \cdot \pi \cdot \tau_{TF}} \approx 1 \text{GHz}, \quad C_{\mu} \approx 0.1 \text{pF} \]

\[\omega \cdot C_{\mu} \ll 0.001 \Omega^{-1} \]

\[g_m \approx 0.04 \Omega^{-1} \]

\(\text{denominator} \)

\[\text{for} \]

\[C_{\mu} \approx C_\pi /10 \]

\[\text{and} \quad f \ll f_T \]

\[\omega \cdot C_{\mu} \cdot \hat{R}_L \ll 1 \]
Net voltage gain bandwidth of CE BJT amplifier

\[\frac{v_L}{v_{eq}} \approx \frac{-g_{m} \hat{R}_L}{1 + j\omega R_{eq} (C_A + (1 + g_{m} \hat{R}_L) \cdot C_M)} \]

\[\frac{(\tilde{V}_L(f))}{(\tilde{V}_S(f))} = G_V(f) \propto \frac{-g_{m} \left(\hat{R}_L \parallel \hat{R}_c \parallel \hat{R}_o \right)}{1 + \frac{f}{f_M}} \]

\[f_M = \frac{1}{2\pi R_{eq} (C_A + (1 + g_{m} \hat{R}_L) \cdot C_M)} \]

Resistor in series with input cap
equivalent input cap
Net voltage gain bandwidth of CE BJT amplifier

\[G_{v0} = \frac{R_L}{R_{\text{in}} + R_S} \cdot A_{v0} \cdot \frac{R_L}{2 \pi f_{3dB}} \]

\[A_{v0} = -g_{\mu m} (R_e \| R_L) \]

\[f_M = \frac{1}{2 \pi R_{eq} (C_{\pi} + C_{\mu} (1 + g_{\mu m} (R_L \| R_e \| R_0)))} \]

\[C_{\mu} (1 + A_{v0}) = C_{\mu} \]

“Miller” capacitor
Example

\[V_{cc} = V_{ee} = 10 \, V \]
\[I_E = 1 \, mA \]
\[R_B = 100 \, k\Omega \]
\[\beta_n = 100 \]
\[V_A = 100 \, V \]
\[C_C = 1 \, pF \]
\[f_T = 800 \, MHz \]
\[R_S = R_L = 5 \, k\Omega \]

* confirm FA regime first ...

\[1. \quad q_m = \frac{I_E}{2q E_V} = 140 \, \mu A \quad \frac{V}{mA} \]

\[R_T = \frac{100}{q_m} = 2.5 \, k\Omega \]

\[R_o = \frac{100 \, V}{1 \, mA} = 100 \, k\Omega \]

\[2. \quad C_T + C_C = \frac{q_m}{\omega T} = \frac{4.0 \times 10^{-3}}{2\pi \times 800 \times 10^6} = 8 \, pF \]

\[C_C = 1 \, pF \quad \text{hence} \quad C_T = 7 \, pF \]

\[3. \quad G_V = -\frac{R_{o} || R_{T} || V_{T}}{R_{o} || R_{T} + R_S} \times (-q_m (R_{o} || R_{T} || R_{o})) = -\frac{4.0 \times 10^{-3} \times 3 \times 10^3}{(100 \times 12.5 \Omega) + 5 \Omega} \times (100 \times 12.5 \Omega) \]

\[G_V \approx -121 \frac{V}{V} \cdot \frac{1}{3} = -40 \frac{V}{V} \]

\[q_m \cdot R_L = 121 \frac{V}{V} \]
Example – cont.

\[V_{cc} = V_{EE} = 10 \, V \quad I_e = 1 \, mA \quad R_B = 100 \, \mu \Omega \]
\[I_e = 100 \, \mu A \quad R_C = 8 \, \Omega \]
\[V_A = 100 \, V \quad C_m = 1 \, pF \quad f_T = 800 \, MHz \quad R_S = R_L = 5 \, \Omega \]

\[G_V \approx -121 \frac{V}{V} \cdot \frac{1}{2} \approx -40 \frac{V}{V} \]

\[R_{eq} = (R_m \parallel R_S) \parallel R_S = 1 \, \Omega \]

\[C_m \, \mu F = 7 \, pF + 121 \cdot 1 \, pF = 128 \, pF \gg C_m \]

\[f_H = \frac{1}{2 \pi \cdot C_m \cdot R_s} = 750 \, \mu Hz \ll f_T \]

Even << \(f_B = 8 \, MHz \)

Reduced gain – improved BW

\[R_L = 2 \, \Omega \quad \gamma_m \, R_L \approx 64 \frac{V}{V} \]

\[f_H \approx 1.4 \, MHz \]
Miller Effect

\[\tilde{V}_{\text{Z}} = \tilde{V}_{\text{in}} - \tilde{A}_V \cdot \tilde{I}_{\text{in}} = \tilde{V}_{\text{in}} (1 - \tilde{A}_V) \]

\[\tilde{I}_{\text{Z}} = \frac{\tilde{V}_{\text{Z}}}{Z} = \frac{\tilde{V}_{\text{in}} (1 - \tilde{A}_V)}{Z} = \frac{\tilde{V}_{\text{in}}}{(1 - \tilde{A}_V)} \]

Miller transformation

\[Z_{\text{in}} = \frac{Z}{1 - \tilde{A}_V} \]

\[Z_{\text{out}} = \frac{Z - \tilde{A}_V}{\tilde{A}_V - 1} \]
If i_μ is not very high (small C_μ), then

\[\begin{align*}
Z_{in} &= \frac{1}{j\omega C_\mu (1 - A_v)} \\
Z_{out} &= \frac{1}{j\omega C_\mu A_v - 1}
\end{align*} \]

Low pass filter

Negligible, hence open circuit

Total equivalent input cap

\[
V_{out} = \left(-g_{m} R_L \right) \cdot V_{BE}
\]

\[
C_{in} = C_\mu \left(1 + g_{m} R_L \right)
\]

\[
C_{out} = C_\mu
\]
CB amplifier does not suffer from Miller effect

Neglect r_o and build equivalent circuit

Observe no capacitor coupling output and input – No Miller effect.

\[V_L = \left(-\frac{q_m V_{BE}}{R_c \parallel R_L \parallel C_{\mu}}\right) \]

\[V_{BE} = V_S + R_S \left(\frac{q_m V_{BE} + \frac{V_{BE}}{R_e \parallel C_P}}{V_c \parallel \frac{1}{j \omega C_P}} \right) \]

\[\frac{V_L}{V_S} = \frac{q_m (R_c \parallel R_L \parallel C_{\mu})}{1 + R_S \left(\frac{q_m + \frac{V_c + \frac{1}{j \omega C_P}}{V_c - \frac{1}{j \omega C_P}}}{V_c \parallel \frac{1}{j \omega C_P}} \right)} \]
CB amplifier does not suffer from Miller effect

Neglect r_o and build equivalent circuit

Observe no capacitor coupling output and input – No Miller effect.

\[
\frac{\mathcal{V}_L(f)}{\mathcal{V}_S(f)} = \frac{g_m (V_C || V_L)}{1 + 2 \mu (g_m + \frac{1}{r_o})} \left(\frac{1}{1 + j \omega (R_e || R_L) C_m} \right) \left(\frac{1}{1 + j \omega \frac{V_S}{1 + 2 \mu (g_m + \frac{1}{r_o})}} \right)
\]

\[
f_1 = \frac{1}{2 \pi (V_C || V_L) C_m} = \frac{1}{6.28 \cdot 3 \cdot 10^3 \cdot 10^{-12}} = 52 \text{ MHz}
\]

\[
f_2 = \frac{1}{2 \pi C_R (R_S || V_m || \frac{1}{g_m})} \approx \frac{g_m}{2 \pi C_m} = \frac{4 \cdot 10^{-3}}{6.28 \cdot 10^{-12}} \approx 910 \text{ MHz}
\]