
Magic Tutorial #4: Cell Hierarchies

John Ousterhout

Computer Science Division

Electrical Engineering and Computer Sciences

University of California

Berkeley, CA 94720

(Updated by others, too.)

This tutorial corresponds to Magic version 7.

Tutorials to read first:

Magic Tutorial #1: Getting Started

Magic Tutorial #2: Basic Painting and Selection

Commands introduced in this tutorial:

:array, :edit, :expand, :flush, :getcell, :identify, :load, :path, :see, :unexpand

Macros introduced in this tutorial:

x, X, ˆX

1 Introduction

In Magic, a layout is a hierarchical collection of cells. Each cell contains three things: paint, labels,

and subcells. Tutorial #2 showed you how to create and edit paint and labels. This tutorial describes

Magic’s facilities for building up cell hierarchies. Strictly speaking, hierarchical structure isn’t

necessary: any design that can be represented hierarchically can also be represented “flat” (with

all the paint and labels in a single cell). However, many things are greatly improved if you use a

hierarchical structure, including the efficiency of the design tools, the speed with which you can

enter the design, and the ease with which you can modify it later.

–1–



September 26, 2001 Magic Tutorial #4: Cell Hierarchies

2 Selecting and Viewing Hierarchical Designs

“Hierarchical structure” means that each cell can contain other cells as components. To look at an

example of a hierarchical layout, enter Magic with the shell command magic tut4a. The cell tut4a

contains four subcells plus some blue paint. Two of the subcells are instances of cell tut4x and

two are instances of tut4y. Initially, each subcell is displayed in unexpanded form. This means

that no details of the subcell are displayed; all you see is the cell’s bounding box, plus two names

inside the bounding box. The top name is the name of the subcell (the name you would type when

invoking Magic to edit the cell). The cell’s contents are stored in a file with this name plus a .mag

extension. The bottom name inside each bounding box is called an instance identifier, and is used

to distinguish different instances of the same subcell. Instance id’s are used for routing and circuit

extraction, and are discussed in Section 6.

Subcells can be manipulated using the same selection mechanism that you learned in Tutorial

#2. To select a subcell, place the cursor over the subcell and type f (“find cell”), which is a macro

for :select cell. You can also select a cell by typing s when the cursor is over a location where

there’s no paint; f is probably more convenient, particularly for cells that are completely covered

with paint. When you select a cell the box will be set to the cell’s bounding box, the cell’s name

will be highlighted, and a message will be printed on the text display. All the selection operations

(:move, :copy, :delete, etc.) apply to subcells. Try selecting and moving the top subcell in tut4a.

You can also select subcells using area selection (the a and A macros): any unexpanded subcells

that intersect the area of the box will be selected.

To see what’s inside a cell instance, you must expand it. Select one of the instances of tut4y,

then type the command

:expand toggle

or invoke the macro ˆX which is equivalent. This causes the internals of that instance of tut4y

to be displayed. If you type ˆX again, the instance is unexpanded so you only see a bounding box

again. The :expand toggle command expands all of the selected cells that are unexpanded, and

unexpands all those that are expanded. Type ˆX a third time so that tut4y is expanded.

As you can see now, tut4y contains an array of tut4x cells plus some additional paint. In

Magic, an array is a special kind of instance containing multiple copies of the same subcell spaced

at fixed intervals. Arrays can be one-dimensional or two-dimensional. The whole array is always

treated as a single instance: any command that operates on one element of the array also operates

on all the other elements simultaneously. The instance identifiers for the elements of the array are

the same except for an index. Now select one of the elements of the array and expand it. Notice

that the entire array is expanded at the same time.

When you have expanded the array, you’ll see that the paint in the top-level cell tut4a is

displayed more brightly than the paint in the tut4x instances. Tut4a is called the edit cell, because

its contents are currently editable. The paint in the edit cell is normally displayed more brightly

than other paint to make it clear that you can change it. As long as tut4a is the edit cell, you cannot

modify the paint in tut4x. Try erasing paint from the area of one of the tut4x instances: nothing

will be changed. Section 4 tells how to switch the edit cell.

Place the cursor over one of the tut4x array elements again. At this point, the cursor is actually

over three different cells: tut4x (an element of an array instance within tut4y), tut4y (an instance

–2–



Magic Tutorial #4: Cell Hierarchies September 26, 2001

within tut4a), and tut4. Even the topmost cell in the hierarchy is treated as an instance by Magic.

When you press the s key to select a cell, Magic initially chooses the smallest instance visible

underneath the cursor, tut4x in this case. However, if you invoke the s macro again (or type

:select) without moving the cursor, Magic will step through all of the instances under the cursor in

order. Try this out. The same is true of the f macro and :select cell.

When there are many different expanded cells on the screen, you can use the selection com-

mands to select paint from any of them. You can select anything that’s visible, regardless of which

cell it’s in. However, as mentioned above, you can only modify paint in the edit cell. If you

use :move or :upsidedown or similar commands when you’ve selected information outside the

edit cell, the information outside the edit cell is removed from the selection before performing the

operation.

There are two additional commands you can use for expanding and unexpanding cells:

:expand

:unexpand

Both of these commands operate on the area underneath the box. The :expand command

will recursively expand every cell that intersects the box until there are no unexpanded cells left

under the box. The :unexpand command will unexpand every cell whose area intersects the box

but doesn’t completely contain it. The macro x is equivalent to :expand, and X is equivalent to

:unexpand. Try out the various expansion and unexpansion facilities on tut4a.

3 Manipulating Subcells

There are a few other commands, in addition to the selection commands already described, that

you’ll need in order to manipulate subcells. The command

:getcell name

will find the file name.mag on disk, read the cell it contains, and create an instance of that cell

with its lower-left corner aligned with the lower-left corner of the box. Use the getcell command

to get an instance of the cell tut4z. After the getcell command, the new instance is selected so

you can move it or copy it or delete it. The getcell command recognizes additional arguments

that permit the cell to be positioned using labels and/or explicit coordinates. See the man page for

details.

To turn a normal instance into an array, select the instance and then invoke the :array com-

mand. It has two forms:

:array xsize ysize

:array xlo xhi ylo yhi

In the first form, xsize indicates how many elements the array should have in the x-direction,

and ysize indicates how many elements it should have in the y-direction. The spacing between

elements is controlled by the box’s width (for the x-direction) and height (for the y-direction). By

changing the box size, you can space elements so that they overlap, abut, or have gaps between

–3–



September 26, 2001 Magic Tutorial #4: Cell Hierarchies

them. The elements are given indices from 0 to xsize-1 in the x-direction and from 0 to ysize-1 in

the y-direction. The second form of the command is identical to the first except that the elements

are given indices from xlo to xhi in the x-direction and from ylo to yhi in the y-direction. Try

making a 4x4 array out of the tut4z cell with gaps between the cells.

You can also invoke the :array command on an existing array to change the number of elements

or spacing. Use a size of 1 for xsize or ysize in order to get a one-dimensional array. If there are

several cells selected, the :array command will make each of them into an array of the same size

and spacing. It also works on paint and labels: if paint and labels are selected when you invoke

:array, they will be copied many times over to create the array. Try using the array command to

replicate a small strip of paint.

4 Switching the Edit Cell

At any given time, you are editing the definition of a single cell. This definition is called the edit

cell. You can modify paint and labels in the edit cell, and you can re-arrange its subcells. You may

not re-arrange or delete the subcells of any cells other than the edit cell, nor may you modify the

paint or labels of any cells except the edit cell. You may, however, copy information from other

cells into the edit cell, using the selection commands. To help clarify what is and isn’t modifiable,

Magic displays the paint of the edit cell in brighter colors than other paint.

When you rearrange subcells of the edit cell, you aren’t changing the subcells themselves. All

you can do is change the way they are used in the edit cell (location, orientation, etc.). When you

delete a subcell, nothing happens to the file containing the subcell; the command merely deletes

the instance from the edit cell.

Besides the edit cell, there is one other special cell in Magic. It’s called the root cell and is

the topmost cell in the hierarchy, the one you named when you ran Magic (tut4a in this case). As

you will see in Tutorial #5, there can actually be several root cells at any given time, one in each

window. For now, there is only a single window on the screen, and thus only a single root cell.

The window caption at the top of the color display contains the name of the window’s root cell and

also the name of the edit cell.

Up until now, the root cell and the edit cell have been the same. However, this need not always

be the case. You can switch the edit cell to any cell in the hierarchy by selecting an instance of the

definition you’d like to edit, and then typing the command

:edit

Use this command to switch the edit cell to one of the tut4x instances in tut4a. Its paint

brightens, while the paint in tut4a becomes dim. If you want to edit an element of an array, select

the array, place the cursor over the element you’d like to edit, then type :edit. The particular

element underneath the cursor becomes the edit cell.

When you edit a cell, you are editing the master definition of that cell. This means that if the

cell is used in several places in your design, the edits will be reflected in all those places. Try

painting and erasing in the tut4x cell that you just made the edit cell: the modifications will appear

in all of its instances.

There is a second way to change the edit cell. This is the command

–4–



Magic Tutorial #4: Cell Hierarchies September 26, 2001

:load name

The :load command loads a new hierarchy into the window underneath the cursor. Name is the

name of the root cell in the hierarchy. If no name is given, a new unnamed cell is loaded and you

start editing from scratch. The :load command only changes the edit cell if there is not already an

edit cell in another window.

5 Subcell Usage Conventions

Overlaps between cells are occasionally useful to share busses and control lines running along the

edges. However, overlaps cause the analysis tools to work much harder than they would if there

were no overlaps: wherever cells overlap, the tools have to combine the information from the two

separate cells. Thus, you shouldn’t use overlaps any more than absolutely necessary. For example,

suppose you want to create a one-dimensional array of cells that alternates between two cell types,

A and B: “ABABABABABAB”. One way to do this is first to make an array of A instances with

large gaps between them (“A A A A A A”), then make an array of B instances with large gaps

between them (“B B B B B B”), and finally place one array on top of the other so that the B’s

nestle in between the A’s. The problem with this approach is that the two arrays overlap almost

completely, so Magic will have to go to a lot of extra work to handle the overlaps (in this case,

there isn’t much overlap of actual paint, but Magic won’t know this and will spend a lot of time

worrying about it). A better solution is to create a new cell that contains one instance of A and one

instance of B, side by side. Then make an array of the new cell. This approach makes it clear to

Magic that there isn’t any real overlap between the A’s and B’s.

If you do create overlaps, you should use the overlaps only to connect the two cells together,

and not to change their structure. This means that the overlap should not cause transistors to

appear, disappear, or change size. The result of overlapping the two subcells should be the same

electrically as if you placed the two cells apart and then ran wires to hook parts of one cell to parts

of the other. The convention is necessary in order to be able to do hierarchical circuit extraction

easily (it makes it possible for each subcell to be circuit-extracted independently).

Three kinds of overlaps are flagged as errors by the design-rule checker. First, you may not

overlap polysilicon in one subcell with diffusion in another cell in order to create transistors. Sec-

ond, you may not overlap transistors or contacts in one cell with different kinds of transistors or

contacts in another cell (there are a few exceptions to this rule in some technologies). Third, if

contacts from different cells overlap, they must be the same type of contact and must coincide

exactly: you may not have partial overlaps. This rule is necessary in order to guarantee that Magic

can generate CIF for fabrication.

You will make life a lot easier on yourself (and on Magic) if you spend a bit of time to choose

a clean hierarchical structure. In general, the less cell overlap the better. If you use extensive

overlaps you’ll find that the tools run very slowly and that it’s hard to make modifications to the

circuit.

–5–



September 26, 2001 Magic Tutorial #4: Cell Hierarchies

6 Instance Identifiers

Instance identifiers are used to distinguish the different subcells within a single parent. The cell

definition names cannot be used for this purpose because there could be many instances of a single

definition. Magic will create default instance id’s for you when you create new instances with the

:get or :copy commands. The default id for an instance will be the name of the definition with a

unique integer added on. You can change an id by selecting an instance (which must be a child of

the edit cell) and invoking the command

:identify newid

where newid is the identifier you would like the instance to have. Newid must not already be

used as an instance identifier of any subcell within the edit cell.

Any node or instance can be described uniquely by listing a path of instance identifiers, starting

from the root cell. The standard form of such names is similar to Unix file names. For example,

if id1 is the name of an instance within the root cell, id2 is an instance within id1, and node is a

node name within id2, then id1/id2/node can be used unambiguously to refer to the node. When

you select a cell, Magic prints out the complete path name of the instance.

Arrays are treated specially. When you use :identify to give an array an instance identifier,

each element of the array is given the instance identifier you specified, followed by one or two

array subscripts enclosed in square brackets, e.g, id3[2] or id4[3][7]. When the array is one-

dimensional, there is a single subscript; when it is two-dimensional, the first subscript is for the

y-dimension and the second for the x-dimension.

7 Writing and Flushing Cells

When you make changes to your circuit in Magic, there is no immediate effect on the disk files that

hold the cells. You must explicitly save each cell that has changed, using either the :save command

or the :writeall command. Magic keeps track of the cells that have changed since the last time they

were saved on disk. If you try to leave Magic without saving all the cells that have changed, the

system will warn you and give you a chance to return to Magic to save them. Magic never flushes

cells behind your back, and never throws away definitions that it has read in. Thus, if you edit

a cell and then use :load to edit another cell, the first cell is still saved in Magic even though it

doesn’t appear anywhere on the screen. If you then invoke :load a second time to go back to the

first cell, you’ll get the edited copy.

If you decide that you’d really like to discard the edits you’ve made to a cell and recover the

old version, there are two ways you can do it. The first way is using the flush option in :writeall.

The second way is to use the command

:flush [cellname]

If no cellname is given, then the edit cell is flushed. Otherwise, the cell named cellname is

flushed. The :flush command will expunge Magic’s internal copy of the cell and replace it with

the disk copy.

–6–



Magic Tutorial #4: Cell Hierarchies September 26, 2001

When you are editing large chips, Magic may claim that cells have changed even though you

haven’t modified them. Whenever you modify a cell, Magic makes changes in the parents of the

cell, and their parents, and so on up to the root of the hierarchy. These changes record new design-

rule violations, as well as timestamp and bounding box information used by Magic to keep track of

design changes and enable fast cell read-in. Thus, whenever you change one cell you’ll generally

need to write out new copies of its parents and grandparents. If you don’t write out the parents, or

if you edit a child “out of context” (by itself, without the parents loaded), then you’ll incur extra

overhead the next time you try to edit the parents. “Timestamp mismatch” warnings are printed

when you’ve edited cells out of context and then later go back and read in the cell as part of its

parent. These aren’t serious problems; they just mean that Magic is doing extra work to update

information in the parent to reflect the child’s new state.

8 Search Paths

When many people are working on a large design, the design will probably be more manageable

if different pieces of it can be located in different directories of the file system. Magic provides

a simple mechanism for managing designs spread over several directories. The system maintains

a search path that tells which directories to search when trying to read in cells. By default, the

search path is “.”, which means that Magic looks only in the working directory. You can change

the path using the command

:path [searchpath]

where searchpath is the new path that Magic should use. Searchpath consists of a list of

directories separated by colons. For example, the path “.:˜ouster/x:a/b” means that if Magic is

trying to read in a cell named “foo”, it will first look for a file named “foo.mag” in the current

directory. If it doesn’t find the file there, it will look for a file named “˜ouster/x/foo.mag”, and

if that doesn’t exist, then it will try “a/b/foo.mag” last. To find out what the current path is, type

:path with no arguments. In addition to your path, this command will print out the system cell

library path (where Magic looks for cells if it can’t find them anywhere in your path), and the

system search path (where Magic looks for files like colormaps and technology files if it can’t find

them in your current directory).

If you’re working on a large design, you should use the search path mechanism to spread your

layout over several directories. A typical large chip will contain a few hundred cells; if you try to

place all of them in the same directory there will just be too many things to manage. For example,

place the datapath in one directory, the control unit in another, the instruction buffer in a third, and

so on. Try to keep the size of each directory down to a few dozen files. You can place the :path

command in a .magic file in your home directory or the directory you normally run Magic from;

this will save you from having to retype it each time you start up (see the Magic man page to find

out about .magic files). If all you want to do is add another directory onto the end of the search

path, you can use the :addpath [directory] command.

Because there is only a single search path that is used everywhere in Magic, you must be careful

not to re-use the same cell name in different portions of the chip. A common problem with large

designs is that different designers use the same name for different cells. This works fine as long as

the designers are working separately, but when the two pieces of the design are put together using

–7–



September 26, 2001 Magic Tutorial #4: Cell Hierarchies

a search path, a single copy of the cell (the one that is found first in the search path) gets used

everywhere.

There’s another caveat in the use of search paths. Magic looks for system files in ˜cad, but

sometimes it is helpful to put Magic’s system files elsewhere. If the CAD HOME shell environ-

ment variable is set, then Magic uses that as the location of ˜cad instead of the location in the

password file. This overrides all uses of ˜cad within magic, including the ˜cad seen in the search

paths printed out by :path.

9 Additional Commands

This section describes a few additional cell-related commands that you may find useful. One of

them is the command

:select save file

This command takes the selection and writes it to disk as a new Magic cell in the file file.mag.

You can use this command to break up a big file into smaller ones, or to extract pieces from an

existing cell.

The command

:dump cellName [labelName]

does the opposite of select save: it copies the contents of cell cellName into the edit cell, such

that the lower-left corner of label labelName is at the lower-left corner of the box. The new material

will also be selected. This command is similar in form to the getcell command except that it copies

the contents of the cell instead of using the cell as a subcell. There are several forms of dump; see

the man page for details.

The main purpose of dump is to allow you to create a library of cells representing commonly-

used structures such as standard transistor shapes or special contact arrangements. You can then de-

fine macros that invoke the dump command to place the cells. The result is that a single keystroke

is all you need to copy one of them into the edit cell.

As mentioned earlier, Magic normally displays the edit cell in brighter colors than non-edit

cells. This helps to distinguish what is editable from what is not, but may make it hard for you to

view non-edit paint since it appears paler. If you type the command

:see allSame

you’ll turn off this feature: all paint everywhere will be displayed in the bright colors. The word

allSame must be typed just that way, with one capital letter. If you’d like to restore the different

display styles, type the command

:see no allSame

You can also use the :see command to selectively disable display of various mask layers in

order to make the other ones easier to see. For details, read about :see in the Magic man page.

–8–


