
Magic Tutorial #6: Design-Rule Checking

John Ousterhout

Computer Science Division

Electrical Engineering and Computer Sciences

University of California

Berkeley, CA 94720

(Updated by others, too.)

This tutorial corresponds to Magic version 7.

Tutorials to read first:

Magic Tutorial #1: Getting Started

Magic Tutorial #2: Basic Painting and Selection

Magic Tutorial #4: Cell Hierarchies

Commands introduced in this tutorial:

:drc

Macros introduced in this tutorial:

y

1 Continuous Design-Rule Checking

When you are editing a layout with Magic, the system automatically checks design rules on your

behalf. Every time you paint or erase, and every time you move a cell or change an array structure,

Magic rechecks the area you changed to be sure you haven’t violated any of the layout rules. If you

do violate rules, Magic will display little white dots in the vicinity of the violation. This error paint

will stay around until you fix the problem; when the violation is corrected, the error paint will go

away automatically. Error paint is written to disk with your cells and will re-appear the next time

the cell is read in. There is no way to get rid of it except to fix the violation.

–1–



September 26, 2001 Magic Tutorial #6: Design-Rule Checking

Continuous design-rule checking means that you always have an up-to-date picture of design-

rule errors in your layout. There is never any need to run a massive check over the whole design

unless you change your design rules. When you make small changes to an existing layout, you will

find out immediately if you’ve introduced errors, without having to completely recheck the entire

layout.

To see how the checker works, run Magic on the cell tut6a. This cell contains several areas of

metal (blue), some of which are too close to each other or too narrow. Try painting and erasing

metal to make the error paint go away and re-appear again.

2 Getting Information about Errors

In many cases, the reason for a design-rule violation will be obvious to you as soon as you see

the error paint. However, Magic provides several commands for you to use to find violations and

figure what’s wrong in case it isn’t obvious. All of the design-rule checking commands have the

form

:drc option

where option selects one of several commands understood by the design-rule checker. If you’re

not sure why error paint has suddenly appeared, place the box around the error paint and invoke

the command

:drc why

This command will recheck the area underneath the box, and print out the reasons for any

violations that were found. You can also use the macro y to do the same thing. Try this on some of

the errors in tut6a. It’s a good idea to place the box right around the area of the error paint: :drc

why rechecks the entire area under the box, so it may take a long time if the box is very large.

If you’re working in a large cell, it may be hard to see the error paint. To help locate the errors,

select a cell and then use the command

:drc find [nth]

If you don’t provide the nth argument, the command will place the box around one of the

errors in the selected cell, and print out the reason for the error, just as if you had typed :drc why.

If you invoke the command repeatedly, it will step through all of the errors in the selected cell.

(remember, the “.” macro can be used to repeat the last long command; this will save you from

having to retype :drc find over and over again). Try this out on the errors in tut6a. If you type a

number for nth, the command will go to the nth error in the selected cell, instead of the next one.

If you invoke this command with no cell selected, it searches the edit cell.

A third drc command is provided to give you summary information about errors in hierarchical

designs. The command is

:drc count

This command will search every cell (visible or not) that lies underneath the box to see if any

have errors in them. For each cell with errors, :drc count will print out a count of the number of

error areas.

–2–



Magic Tutorial #6: Design-Rule Checking September 26, 2001

3 Errors in Hierarchical Layouts

The design-rule checker works on hierarchical layouts as well as single cells. There are three

overall rules that describe the way that Magic checks hierarchical designs:

1. The paint in each cell must obey all the design rules by itself, without considering the paint

in any other cells, including its children.

2. The combined paint of each cell and all of its descendants (subcells, sub-subcells, etc.) must

be consistent. If a subcell interacts with paint or with other subcells in a way that introduces

a design-rule violation, an error will appear in the parent. In designs with many levels of

hierarchy, this rule is applied separately to each cell and its descendants.

3. Each array must be consistent by itself, without considering any other subcells or paint in its

parent. If the neighboring elements of an array interact to produce a design-rule violation,

the violation will appear in the parent.

To see some examples of interaction errors, edit the cell tut6b. This cell doesn’t make sense

electrically, but illustrates the features of the hierarchical checker. On the left are two subcells

that are too close together. In addition, the subcells are too close to the red paint in the top-level

cell. Move the subcells and/or modify the paint to make the errors go away and reappear. On the

right side of tut6b is an array whose elements interact to produce a design-rule violation. Edit

an element of the array to make the violation go away. When there are interaction errors between

the elements of an array, the errors always appear near one of the four corner elements of the

array (since the array spacing is uniform, Magic only checks interactions near the corners; if these

elements are correct, all the ones in the middle must be correct too).

It’s important to remember that each of the three overall rules must be satisfied independently.

This may sometimes result in errors where it doesn’t seem like there should be any. Edit the cell

tut6c for some examples of this. On the left side of the cell there is a sliver of paint in the parent

that extends paint in a subcell. Although the overall design is correct, the sliver of paint in the

parent is not correct by itself, as required by the first overall rule above. On the right side of

tut6c is an array with spacing violations between the array elements. Even though the paint in

the parent masks some of the problems, the array is not consistent by itself so errors are flagged.

The three overall rules are more conservative than strictly necessary, but they reduce the amount

of rechecking Magic must do. For example, the array rule allows Magic to deduce the correctness

of an array by looking only at the corner elements; if paint from the parent had to be considered in

checking arrays, it would be necessary to check the entire array since there might be parent paint

masking some errors but not all (as, for example, in tut6c).

Error paint appears in different cells in the hierarchy, depending on what kind of error was

found. Errors resulting from paint in a single cell cause error paint to appear in that cell. Errors

resulting from interactions and arrays appear in the parent of the interacting cells or array. Because

of the way Magic makes interaction checks, errors can sometimes “bubble up” through the hier-

archy and appear in multiple cells. When two cells overlap, Magic checks this area by copying

all the paint in that area from both cells (and their descendants) into a buffer and then checking

the buffer. Magic is unable to tell the difference between an error from one of the subcells and an

error that comes about because the two subcells overlap incorrectly. This means that errors in an

–3–



September 26, 2001 Magic Tutorial #6: Design-Rule Checking

interaction area of a cell may also appear in the cell’s parent. Fixing the error in the subcell will

cause the error in the parent to go away also.

4 Turning the Checker Off

We hope that in most cases the checker will run so quickly and quietly that you hardly know it’s

there. However, there will probably be some situations where the checker is irksome. This section

describes several ways to keep the checker out of your hair.

If you’re working on a cell with lots of design-rule violations the constant redisplay caused by

design-rule checking may get in your way more than it helps. This is particularly true if you’re in

the middle of a large series of changes and don’t care about design-rule violations until the changes

are finished. You can stop the redisplay using the command

:see no errors

After this command is typed, design-rule errors will no longer be displayed on the screen. The

design-rule checker will continue to run and will store error information internally, but it won’t

bother you by displaying it on the screen. When you’re ready to see errors again, type

:see errors

There can also be times when it’s not the redisplay that’s bothersome, but the amount of CPU

time the checker takes to recheck what you’ve changed. For example, if a large subcell is moved to

overlap another large subcell, the entire overlap area will have to be rechecked, and this could take

several minutes. If the prompt on the text screen is a “]” character, it means that the command has

completed but the checker hasn’t caught up yet. You can invoke new commands while the checker

is running, and the checker will suspend itself long enough to process the new commands.

If the checker takes too long to interrupt itself and respond to your commands, you have several

options. First, you can hit the interrupt key (often ˆC) on the keyboard. This will stop the checker

immediately and wait for your next command. As soon as you issue a command or push a mouse

button, the checker will start up again. To turn the checker off altogether, type the command

:drc off

From this point on, the checker will not run. Magic will record the areas that need rechecking

but won’t do the rechecks. If you save your file and quit Magic, the information about areas to

recheck will be saved on disk. The next time you read in the cell, Magic will recheck those areas,

unless you’ve still got the checker turned off. There is nothing you can do to make Magic forget

about areas to recheck; :drc off merely postpones the recheck operation to a later time.

Once you’ve turned the checker off, you have two ways to make sure everything has been

rechecked. The first is to type the command

:drc catchup

–4–



Magic Tutorial #6: Design-Rule Checking September 26, 2001

This command will run the checker and wait until everything has been rechecked and errors are

completely up to date. When the command completes, the checker will still be enabled or disabled

just as it was before the command. If you get tired of waiting for :drc catchup, you can always

hit the interrupt key to abort the command; the recheck areas will be remembered for later. To turn

the checker back on permanently, invoke the command

:drc on

5 Porting Layouts from Other Systems

You should not need to read this section if you’ve created your layout from scratch using Magic

or have read it from CIF using Magic’s CIF or Calma reader. However, if you are bringing into

Magic a layout that was created using a different editor or an old version of Magic that didn’t have

continuous checking, read on. You may also need to read this section if you’ve changed the design

rules in the technology file.

In order to find out about errors in a design that wasn’t created with Magic, you must force

Magic to recheck everything in the design. Once this global recheck has been done, Magic will

use its continuous checker to deal with any changes you make to the design; you should only need

to do the global recheck once. To make the global recheck, load your design, place the box around

the entire design, and type

:drc check

This will cause Magic to act as if the entire area under the box had just been modified: it will

recheck that entire area. Furthermore, it will work its way down through the hierarchy; for every

subcell found underneath the box, it will recheck that subcell over the area of the box.

If you get nervous that a design-rule violation might somehow have been missed, you can use

:drc check to force any area to be rechecked at any time, even for cells that were created with

Magic. However, this should never be necessary unless you’ve changed the design rules. If the

number of errors in the layout ever changes because of a :drc check, it is a bug in Magic and you

should notify us immediately.

–5–


