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Theory of the spectral line shape and gain in quantum wells
with intersubband transitions
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We investigate the spectral line shape of radiative intersubband transitions in a quantum we
determined by two factors: the electron scattering rate from states of given energy and the m
difference between the two subbands involved. The interplay between these factors leads t
essentially non-Lorentzian form of the spectral line. We develop an analytic theory of the line sha
and calculate the dependence of the intersubband optical gain in a quantum well on both
population inversion and the temperature. Under typical conditions, the effect of electr
temperature on the gain is similar to that of the lattice temperature, which points to the importa
of hot carrier effects in understanding the behavior of intersubband lasers. ©1996 American
Institute of Physics.@S0003-6951~96!00916-4#
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The quantum cascade laser~QCL!1–3 based on intersub
band transitions in a quantum well~QW! is a serious con-
tender for various applications in the midinfrared ran
~l*4 mm!. Because the QW subbands are nearly para
the QCLs are commonly considered by analogy with a tw
level laser, where the temperature dependence of ou
characteristics is controlled by thewidth of the spontaneous
emission line, the latter having the usual Lorentzian sha4

The subband nonparabolicity is then taken into account
refinement similar to inhomogeneous broadening.

As shown below, this approach is valid only at very lo
electron temperaturesTe . However, in a practical QCL, eve
at low temperaturesT, the effectiveTe may be rather high.
This results in a significant broadening of interband tran
tions by phonon emission and other collisions, which lea
to the situation where the spectral power at each wavele
is due to transitions from a broad range of initial stat
Therefore, a consistent treatment of the line shape prob
requires that both the collision broadening and the nonp
bolicity effects are taken into account on equal footing fro
the outset. In this letter we develop a first-principl
temperature-dependent model for the intersubband line s
and the resulting optical gain in a QW, which is consiste
with the experimental data available. The model has b
successfully used5 to predict the behavior of QCL as con
trolled by bothT andTe .

We shall consider a QW with infinitely high walls—
ignoring the question of how electrons are pumped into
upper subband and how they are removed from the QW.
ratio of electron populationsn1 /n2 in the two subbands will
thus be regarded as a parameter. Of all the scattering
cesses we shall include only the dominant interaction w
polar optical phonons, and neglect impurity scattering a
electron-electron interaction. These simplifying assumpti
enable a consistent analytic treatment of both the nonpar
licity and the transverse relaxation due to scattering; mo

a!Electronic mail: sluryi@sbee.sunysb.edu
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over, the evaluation of gain is reduced to one quadrature.
The nonparabolicity in a QW is estimated from the Kan

model,6 including the interaction between six valence sub
bands and two degenerate conduction bands and neglec
the spin-orbit interaction. For a QW bounded by infinite
walls, equations of this model~written in terms of envelope
functions!admit an exact solution, which gives the disper
sion relations in both subbands in the form:

En~k!5
EG

2 F11
4En

~0!

EG
1
2\2k2

meEG
G1/22 EG

2
, ~1!

whereme is the Kane effective mass at the conduction ban
bottom, EG is the semiconductor band gap, andEn

(0)

[p2\2n2/2mea
2, n51,2, are the QW energy levels in the

parabolic approximation. Expanding ink, we find the effec-
tive masses at the bottom of the two subbands

mn5meS 11
2En~0!

EG
D . ~2!

For an InGaAs QW withE2(0) –E1(0)[\V050.3 eV, the
effective mass ratio is rather large,m2 /m151.5. The nonpa-
rabolic subband structure is illustrated in Fig. 1, which als
shows electronic transitions, both radiative and nonradiativ

The line shape and the gain are determined from th
dynamic conductivity related to the intersubband transition
following the well-known techniques.7 First we solve the
density matrix equations for a two level system in the pre
ence of an electromagnetic wave at the optical frequencyV:

\Vr122@H,r#121 i\gr125eF@z,r#12, ~3a!

\Vr212@H,r#211 i\gr215eF@z,r#21, ~3b!

whereF is the electric field. The HamiltonianH entering
Eqs.~3! for the off-diagonal elements of the density matrix is
itself diagonal, but includes the nonparabolicity. Equation
~3! describe a particular ‘‘vertical’’ transition

\V~e!5\V01e22e1 , ~4!
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whereen(k)[En(k)2En(0), n51,2. The transition can be
designated bye[e2, since for a givenk ~neglecting the pho-
ton momentum!the energye2 determinese1 and vice versa
~see Fig. 1!. The damping termi\gr12 describes the trans
verse phase relaxation, whereg5g~e! results mainly from
the intrasubband optical phonon scattering.

The intersubband dipole moment^z&5z12r211z21r12,
corresponding to transition~4! equals

^z&5eFuz12u2~r222r11!S 1

V1V~e!1 ig
1

1

2V1V~e!2 ig D ,
~5!

where r225 f 2(e2) and r115 f 1(e1) are occupation prob-
abilities in each subband.

Integrating ~5! over all possible transitions, we obtai
the susceptibility,x•F5(1/2p2)*d2kê z&, and the dynamic
conductivity,szz5V Im x. When averaging over an optica
period, we find the power absorption~or generation!per unit
QW area,Wst5szzF

2/2,

Wst5
16e2uz12u2m2V

2Nq

\k`V

3E
0

`d~e/\!g~e!VV~e!@ f 2~e!2 f 1~e1!#

$@V~e!#22~V22g2!%214g2V2 , ~6!

wherek` is the dielectric permittivity at optical frequencie
andV the QW volume. In accordance with the quantum m
chanical correspondence principle, we have replaced the
ergy density of radiation by the number of photons per u
volume as follows: (k`/8p)F25\VNq /V. Equation~6! de-
scribes stimulated processes~absorption and emission!due
to the interaction with a photon modeq. Spontaneous emis
sion into the same mode is found from Einstein’s relation

An expression for the optical gaing(V) is found from
Eq. ~6! and the usual relation (\VcNq /VAk`)g5Wst /a be-
tweenWst andg, wherea is the QW width andc the speed
of light. In the natural limitg~e!!V this expression reduce
to the following form:

g5
4pe2uz12u2m2V

\3acAk`

E
0

`

deT e~V!@ f 2~e!2 f 1~e1!#, ~7!

whereT e(V) is the line shape function:

FIG. 1. The subband diagram in an infinite quantum well. The direct in
subband radiative transition energy\V depends on the wave vector of th
initial state. The largest separation between the subbandsE2(k) andE1(k)
is denoted by\V0. Also shown are inter- and intra-subband transitions w
emission of a polar optic phonon\vph .
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T e~V![
g~e!/p

@V2V~e!#21@g~e!#2
. ~8!

Spontaneous emission line in the same limit is:

Wsp5
4pe2uz12u2m2V

2

\2k`V
E
0

`

deT e~V! f 2~e!@12 f 1~e1!#. ~9!

The validity of Eqs.~6!–~9! is not restricted to any par-
ticular scattering mechanism, responsible for the transvers
phase relaxation. In order to proceed with exemplary calcu
lations, we need to make certain assumptions aboutg~e!. We
assume thatg is dominated by the interaction with polar
optical phonons.8–10 Only intrasubband scattering need be
considered, since in a narrow QW intersubband processes a
much slower due to the large momentum transfer involved.10

For a sufficiently narrow QW of any shape, one finds8,9

g~e!5
p

2

e2

\ S 1k0
2

1

k`
Dqph3HNph

~Nph11!u~e2\vph!
, ~10!

where the top line corresponds to absorption and the bottom
line to emission of optical phonons,Nph is the phonon
Planck function, u~e! is a step function, andqph
5A2mevph /\. The steplike nature ofg~e! is important in
the line shape formation. However, the ultimate sharpness o
the step, peculiar to the QW case, is not essential: resul
obtained with the 3D scattering rate function are similar.

In the numerical examples presented below, the ratioj
5n1 /n2 between the electron populations will be regarded
as an independent parameter, essentially governed by the k
netics of intersubband transitions and electron removal from
the QW. Electron distributions in the two subbands will be
assumed in a quasiequilibrium form, characterized by Ferm
functions, corresponding to an electron temperatureTe .

Figure 2~a!shows the calculated spectral line shapes for
several differentTe . Even though it is assumed that the elec-

ter-
e

ith

FIG. 2. Calculated spontaneous emission spectra atTe5T ranging from 100
to 400 K ~curves 1–4, respectively!.~a! Assumed material parameters:
EG51 eV,me50.04m0, anda576 Å, resulting inE15138 eV,E25438 eV,
andm151.28me , m251.88me . ~b! Same spectra calculated in the parabolic
model,m25m1.
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tron and the lattice temperatures coincide, we stress that
culations with a constant lattice temperatureT5100 K and
only Te varying give practically identical results. WhenTe
strongly departs fromT, the line shape is mainly determine
by Te , since the only effect ofT!Te is through the factor
Nph in Eq. ~10!. This is a noteworthy result: it shows th
carrier heating is as important for the operation of an int
subband laser as is the ambient temperature.

For comparison, Fig. 2~b! shows the spectra calculate
in the parabolic modelm15m2. We see that the nonparabo
licity has a dramatic effect on the line shape. Not only do
it broaden the spectra considerably in the long wavelen
direction, but most importantly, the maximum spectral inte
sity is no longer determined by the linewidth.

The gain spectra calculated from Eq.~7! are presented in
Fig. 3 for parameters similar to those in Fig. 2 withn2
51011 cm22 and the population inversion parameterj
[n1 /n251/3. We see that the gain can be positive even
the absence of inversion between the two subbands, i.e.
n1*n2 @see Fig. 3~for j51!#. In the model11 where both
subbands are characterized by the sameTe this effect occurs
due to nonparabolicity: at a sufficiently high wave vectork
the occupation probability of statee2(k) in the upper sub-
band is higher than that of statee1(k), even though the lowe
subband has higher overall population.

The characteristic kink seen in Figs. 2 and 3 in the lo
wave portion of the spectra, occurs atVph5V(e5\vph)
'V02(m2 /m121)vph and reflects the fact that transition
corresponding toe.\vph suffer a steplike increase in th
broadening by optical phonon emission. Accordingly, t
spectra are depressed atV,Vph and at the same time en
hanced in the vicinity ofVph on theV.Vph side. Because
of this, at highTe the gain spectra exhibit a second ma
mum nearVph which may lead to a shift in the lasing fre
quency with increasing current.5

In the entire range of temperatures presented in Fig
the peak value of the gain is suppressed compared to
parabolic case by at least an order of magnitude. The ca
lated peak gain is shown in Fig. 4~a! as a function ofTe for
different values ofj. It should be kept in mind that the pea
in gain occurs at different wavelengths for different tempe
tures, shifting to longer wavelengths with higherTe . The

FIG. 3. Calculated intersubband gain spectra for material parameters
Fig. 2~a!andn251011 cm22 for different values of the population inver
sion parameterj5 n1 /n2.
Appl. Phys. Lett., Vol. 68, No. 16, 15 April 1996
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highest gain achievable at givenn2 and Te corresponds to
j50; in the present case it is about 1.53104 cm21.

Equations~7! and ~8! yield a convenient expression for
the differential gaingn8 . Temperature dependence ofgn8 is
shown in Fig. 4~b!. Plotted against 1/Te the functiongn8 is
rather well approximated by a straight line in a wide range of
n1 /n2. The high values ofgn8 suggest that intersubband la-
sers will have a superior high-frequency performance.

In summary, we have developed a theory of the intersub-
band optical gain which takes into account the transverse
degrees of freedom of QW electrons. In essence, we have
replaced the conventional two-level model of intersubband
transitions by a two-band model, which includes from the
first principles such effects as energy-dependent scattering
and the subband nonparabolicity. We have shown that inclu-
sion of these effects leads to a qualitative change in the line
shape of the intersubband resonance. This implies that the
electron heating effects are of paramount importance in un-
derstanding the behavior of intersubband lasers.
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FIG. 4. Temperature dependence of~a! the peak gaingmax and ~b! the
differential gaingn8 for different values of the population inversion param-
eterj5n1 /n2.
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