
J. Parallel Distrib. Comput. 64 (2004) 29–35

ARTICLE IN PRESS
�Corresp

E-mail a

0743-7315/$

doi:10.1016
Load sequencing for a parallel processing utility

Saravut Charcranoon, Thomas G. Robertazzi,� and Serge Luryi

Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794, USA

Received 25 May 2000; revised 3 March 2003; accepted 23 May 2003
Abstract

The monetary cost optimization of a computer utility load distribution problem is examined. The problem is to find the sequence

in which to distribute divisible computing load from a root processor to its children processors which achieves the lowest monetary

distribution cost. The convergence performance of a heuristic greedy algorithm is studied. This problem is directly relevant to

computer utilities which offer computing and software hosting to organizations for a monetary charge.

r 2003 Elsevier Inc. All rights reserved.

Keywords: Computer utility; Divisible load; Economics; Heuristic algorithm; Single-level tree network; Software leasing; Star network
1. Introduction

There is an increasing amount of ongoing work on the
leasing, rather than purchase, of software. Application
Service Providers (ASPs), which do such leasing, have
received much attention in the past 3 years [2,10–14] as
well as an increasing amount of market share. More
recently, there have been corporate announcements on
the creation of computer utilities: computer services
providers using third-party machines. We envision a
situation where future computer utilities provide re-
searchers and developers access to high-performance
parallel machines and/or proprietary algorithms at some
charge. The machines involved may be based on new
principles currently under research such as cryogenic
peta flops technology [7] or quantum computing. These
machines may be expensive to build and operate, thus
leading to a necessity to lease their processing time in a
cost and performance efficient manner. Accounting for
leased processing time has been an open research
problem for some time. As W. Wayt Gibbs [9] put it
in a 1997 issue of Scientific American:

So far not even the most ambitious metacomputing
prototypes have tackled accounting: determining a
fair price for idle processor cycles. It all depends
on the risk, on the speed of the machine, on the cost
of communication, on the importance of the
onding author. Fax: +1-631-632-8494.

ddress: tom@ece.sunysb.edu (T.G. Robertazzi).

- see front matter r 2003 Elsevier Inc. All rights reserved.

/S0743-7315(03)00113-8
problem—on a million variables, none of them well
understood.

The question to be investigated in this paper is how
load should be sequenced for distribution to processors,
taking into account processor and link speeds and costs
so that a parallel processor can solve a submitted
problem at minimal monetary cost to both the service,
and by implication, to the user.

A number of deliberate choices were made regarding
the features of this problem:

* Single level tree (star) topology.
* Divisible load.
* Single installment sequential load distribution.
* Linear costs for communication and computation.

Generally, these choices were made for both realism
and analytical tractability. It is natural for a first study
to consider a star topology in a system whose load is
distributed to a number of satellite processors. The
divisible load model has over the years seen its
tractability proven [3,8] and well models problems
involving data parallelism. Such problems arise in
scientific, engineering and business computing. In spite
of these innocuous choices the related mathematics is
algebraically substantive. A secondary reason for the
choices is that they allow a comparison with earlier
published work by some of the authors [15] considering
computation costs only, in bus networks.

With these choices we seek in this paper to optimize
the order in which a root processor should distribute



ARTICLE IN PRESS
S. Charcranoon et al. / J. Parallel Distrib. Comput. 64 (2004) 29–3530
load to its children in order to complete the processing
of a load in a minimal amount of time. This is a
combinatorial optimization problem we call the ‘‘se-
quencing’’ problem. The thrust of this work is to
develop a greedy swapping algorithm to solve this
problem. Simple conditions are found for deciding when
to make a particular swap. It is not guaranteed that the
greedy algorithm will always converge to an optimal
solution. However, the greedy algorithm converged to
either optimal or best-known solutions with very high
probability for networks containing small or moderate
numbers of children processors. The greedy algorithm is
also substantially faster than implementations of tabu
search or simulated annealing for this problem.

One more choice regarding the problem discussed in
this paper requires some explanation. In this work there
are two objective functions to be optimized: the finish
(solution) time, and the total monetary processing and
transmission monetary cost. It is well known that there
are several approaches to solve such multiple objective
function optimization problems. The approach taken here
is to find the minimal cost processor load distribution
sequence such that for any load distribution sequence,
finish time is minimized using the methodology of [3].
That is, for each possible load distribution sequence, load
is allocated so that all processors stop computing at the
same time instant and finish time is minimized for that
specific load distribution sequence. While other ap-
proaches are certainly possible, we believe that the
proposed approach is a natural one for a first study.

This paper is organized as follows. The model and
monetary cost concept are provided in Sections 2 and 3.
The resulting cost efficient sequencing is then presented
in Section 4. A performance evaluation based on
experiments using that algorithm is discussed in
Section 5. Finally, the conclusion is given in Section 6.
2. Model, notation and load distribution

2.1. Model description

In this paper, a single-level tree (star) network where
the root processor is equipped with a front-end
processor is considered. A single-level tree network
consists of ðN þ 1Þ processors and ðNÞ links. All the
processors are connected to the root processor, p0; via
communication links. Associated with the links and
processors are the associated linear cost coefficients,
cl
1; cl

2;y; cl
N and c

p
0; c

p
1; c

p
2;y; c

p
N ; respectively. The root

processor, assumed to be the only processor at which
the load arrives, partitions a total processing load into
ðN þ 1Þ fractions, keeps its own fraction a0; and
distributes the other fractions a1; a2;y; aN to the
children processors p1; p2;y; pN respectively and se-
quentially. Each processor begins computing immedi-
ately after receiving its assigned fraction of load and
continues without any interruption until all of its
assigned load fraction has been processed. Let:
ai
 the load fraction assigned to the ith link-processor
pair
wi
 the inverse of the computing speed of the ith
processor
zi
 the inverse of the link speed of the ith link

Tcp
 computing intensity constant: the entire load is

processed in wiTcp seconds by the ith processor

Tcm
 communication intensity constant: the entire load

can be transmitted in ziTcm seconds over the ith link

Tf
 the finish time. Time at which the last processor

ceases computation.
Then aiwiTcp is the time to process the fraction
ai of the entire load on the ith processor. Note
that the units of aiwiTcp are ½load� � ½sec=load� �
½dimensionless quantity� ¼ ½seconds�: Likewise, aiziTcm

is the time to transmit the fraction ai of the entire load
over the ith link. Note that the units of aiziTcm are ½load� �
½sec=load� � ½dimensionless quantity� ¼ ½seconds�:

Our goal is to develop means to determine the optimal
sequence (order) in which load should be distributed by
the root to its children.

2.2. Cost efficient load distribution

It is intuitive that to minimize the processing finish
time only, the time efficient load distribution should be
such that all processors finish computing at the same
time. Otherwise, the processing finish time could be
reduced by transferring some fractions of load from
busy processors to idle processors. Formal proofs of this
argument in the case of linear, bus, and tree networks
appear in [3]. However, under certain sets of network
parameters, in order to minimize the processing finish
time, it is not necessary that all processors have to be
utilized. In [3] conditions are found which determine
which processors should be used to process the arriving
load in the case of a single-level tree network. Still, the
processors with non-zero assigned load have to finish
computing at the same time. In this paper it is assumed
that system parameters are such that all processors in
the network are utilized in order to achieve a cost
efficient processing of the arriving load.

2.3. Fundamental recursive equations

The process of load distribution can be represented by
Gantt-chart-like timing diagrams. The communication
time is shown above the time axis and the computation
time is shown below the time axis, as illustrated in
Fig. 1. Referring to the timing diagram and assuming
that all processors cease computation at the same time,



ARTICLE IN PRESS

P

P

P3

...
...

...

T cm
T cmT cm

α0 w 0 T cp

α w T cp1 1

α w T cp2 2

α w T cp3 3

... Tf

Tf

Tf

Tf

Tf

TfTfTf
PPPN

Tf

...
...

T cpw j

Tf

Tf

j+1
P

α w T cpN N

α j+1w j+1T cp

α j jz T cm α j+1 j+1z T cm cmαN z TN

1

2

P0
Comm

Comp

Comp

Comp

Comp

α z1 α z α z2 3 321

Comp

Comp

Comp

Comp

Pj
α j

P j-1 α w T cpj-1 j-1

...

Fig. 1. Timing diagram: normal case.

S. Charcranoon et al. / J. Parallel Distrib. Comput. 64 (2004) 29–35 31
one can derive fundamental recursive equations as

aiwiTcp ¼ aiþ1ziþ1Tcm þ aiþ1wiþ1Tcp;

i ¼ 0;y;N 	 1; ð1Þ

aiþ1 ¼ kiai ¼
Yi

j¼0

kj

 !
a0; i ¼ 0;y;N 	 1; ð2Þ

where

ki ¼
wiTcp

ðziþ1Tcm þ wiþ1TcpÞ
; i ¼ 0;y;N 	 1:

Clearly, from Eqs. (1) and (2), there are N equations
and N þ 1 unknowns. An additional equation, the
normalization equation, is needed in order to solve this
system of equations. The normalization equation is,

a0 þ a1 þ?þ aN ¼ 1: ð3Þ
With the normalization equation, one then resolves the
recursive equations, Eq. (1), to obtain the closed-form
expression of a0; the fraction of load assigned to the root
processor. Once a0 is known, the other processor load
fractions can be obtained by substituting a0 into Eq. (2)
and solving recursively as follows:

a0 ¼ 1þ
XN

i¼1

Yi	1

j¼0

kj

" #" #	1

; ð4Þ

¼ 1

D

YN
i¼1

ðziTcm þ wiTcpÞ; ð5Þ

a1 ¼
1

D
ðw0TcpÞ

YN
i¼2

ðziTcm þ wiTcpÞ; ð6Þ



ARTICLE IN PRESS
S. Charcranoon et al. / J. Parallel Distrib. Comput. 64 (2004) 29–3532
an ¼ 1

D

Yn	1

i¼0

ðwiTcpÞ
YN

i¼nþ1

ðziTcm þ wiTcpÞ; ð7Þ

aN ¼ 1

D

YN	1

i¼0

ðwiTcpÞ; ð8Þ

where

D ¼
YN
i¼1

ðziTcm þ wiTcpÞ þ
XN

n¼1

Yn	1

i¼0

ðwiTcpÞ
 ! 

�
YN

i¼nþ1

ðziTcm þ wiTcpÞ
 !!

: ð9Þ

3. Sequencing and monetary cost

3.1. Sequencing

Consider a single level tree network with the following
ordered set:

Y ¼ fp0; ðl1; p1Þ;y; ðlj; pjÞ; ðljþ1; pjþ1Þ;y; ðlN ; pNÞg:
This indicates that processor p1 is the first processor that
is assigned a fraction of load from p0 followed by
processor p2 and so on. Link-processor pairs ðlj; pjÞ and
ðljþ1; pjþ1Þ in the ordered set Y above may not
necessarily be physically adjacent. Any change in the
ordered set above is equivalent to a corresponding
change in the sequence of load distribution. Therefore,
sequencing is a mechanism that changes one ordered set
to another ordered set. In this paper we seek to do this
sequencing in a cost efficient manner. Note that load
distribution in this context involves software control.
No hardware changes are made to the network.

3.2. Link-processor monetary cost

The link-processor monetary cost for processing a
fraction of load at any processor is defined as the cost
incurred from utilizing the processor and its correspond-
ing link in order to process the underlying fraction of
load. We assume that the cost coefficients associated
with links and processors are static. They do not change
with either the level of load in progress or a period of
time when the job arrives. This cost is defined only in
terms of accounting for the duration during which the
resource is busy serving the assigned divisible load. A
linear cost model is assumed. Let:
cp
n
 the computing cost per second of utilizing

the nth processor

cl

n
 the communication cost per second of
utilizing the nth link
cp
nwn
 the computing cost per unit load of

utilizing the nth processor
cl
nzn
 the communication cost per unit load of

utilizing the nth link

ðcp

nwn þ cl
nznÞ
 the processing cost per unit load of the

nth link-processor pair.
3.3. Total monetary cost

Total monetary cost is a cost incurred for a network
to process an entire load. It is a linear addition of all
individual link-processor costs incurred by utilizing
individual link-processor pairs. This individual cost
depends on the assigned fraction of load, which in turn
is determined by an order of load distribution. There-
fore, this total cost depends on the sequence of load
distribution. In this paper, the total cost of processing
an entire of load is the prime performance metric to be
optimized. Define:

C0 ¼ c
p
0w0Tcp; ð10Þ

Cn ¼ cl
nznTcm þ cp

nwnTcp; n ¼ 1;y;N: ð11Þ
Cn
 the cost of processing the entire of load on the
nth processor
anCn
 the cost of processing the assigned fraction of
load ðanÞ on the nth processor.
The total cost, Ctotal ; is defined as a summation of the
individual processing costs incurred at each link-
processor pair. That is,

Ctotal ¼ a0C0 þ
XN

n¼1

anCn: ð12Þ

By substituting a0 and all an from the previous section
into Eq. (12) one obtains the total monetary cost
expression that explicitly shows the jth and ð j þ 1Þst
link-processor pairs as

Ctotal ¼
1

D

YN
i¼1

ðziTcm þ wiTcpÞðcp
0w0TcpÞ

(

þ
Xj	1

n¼1

Yn	1

i¼0

ðwiTcpÞ
 !"

�
YN

i¼nþ1

ðziTcm þ wiTcpÞðcl
nznTcm þ cp

nwnTcpÞ
 !#

þ
Yj	1

i¼0

ðwiTcpÞ
YN

i¼jþ1

ðziTcm þ wiTcpÞ

�ðcl
jzjTcm þ c

p
j wjTcpÞ

þ
Yj

i¼0

ðwiTcpÞ
YN

i¼jþ2

ðziTcm þ wiTcpÞ

�ðcl
jþ1zjþ1Tcm þ c

p
jþ1wjþ1TcpÞ



ARTICLE IN PRESS
S. Charcranoon et al. / J. Parallel Distrib. Comput. 64 (2004) 29–35 33
þ
XN

n¼jþ2

Yn	1

i¼0

ðwiTcpÞ
YN

i¼nþ1

ðziTcm þ wiTcpÞ
"

� ðcl
nznTcm þ cp

nwnTcpÞ
#)

: ð13Þ

Since the total cost can be put in a simple form as

Ctotal ¼
N

D
: ð14Þ

Thus, the corresponding numerator, N; is the collec-
tion of terms within the curly braces. The corresponding
denominator, D; with the terms due to the jth and the
ð j þ 1Þst link-processor pairs explicitly shown, is

D ¼
YN
i¼1

ðziTcm þ wiTcpÞ

þ
Xj	1

n¼1

Yn	1

i¼0

ðwiTcpÞ
YN

i¼nþ1

ðziTcm þ wiTcpÞ
 !

þ
Yj	1

i¼0

ðwiTcpÞðzjþ1Tcm þ wjþ1TcpÞ

�
YN

i¼jþ2

ðziTcm þ wiTcpÞ

þ
Yj	1

i¼0

ðwiTcpÞðwjTcpÞ
YN

i¼jþ2

ðziTcm þ wiTcpÞ

þ
XN

n¼jþ2

Yn	1

i¼0

ðwiTcpÞ
 ! 

�
YN

i¼nþ1

ðziTcm þ wiTcpÞ
 !!

: ð15Þ

4. Cost efficient sequencing

The heuristic algorithm will, at each iteration, swap
the logical position of two processors which are logically
adjacent in the load distribution sequence if it leads to a
cost improvement. One can also find expressions for the
cost of a swapped sequence as a ratio C0

total ¼ N 0=D0:
Taking the difference Ctotal 	 C0

total one can, with some
algebra, find conditions under which swapping leads to
an cost improvement. These conditions are summarized
below.

Theorem 1. In a single-level tree network if one of

the following conditions is satisfied, then the total cost

of the adjacent pairwise swapped sequence,
C0

totalðy
0
ð1;2;y;jþ1;j;y;NÞÞ; is less than the total cost of the

current sequence, Ctotalðyð1;2;y;j;jþ1;y;NÞÞ; for 1pjoN:
Otherwise C0

totalðy
0
ð1;2;y;jþ1;j;y;NÞÞ is greater than or equal

to Ctotalðyð1;2;y;j;jþ1;y;NÞÞ:
(1)
 zjozjþ1 and
zj

Cj
o zjþ1

Cjþ1
and C0

totaloCtotal :

(2)
 zj ¼ zjþ1 and

zj

Cj
o zjþ1

Cjþ1
:

(3)
 zj4zjþ1 and
zj

Cj
o zjþ1

Cjþ1
:

(4)
 zj4zjþ1 and
zj

Cj
¼ zjþ1

Cjþ1
:

(5)
 zj4zjþ1 and
zj

Cj
4 zjþ1

Cjþ1
and C0

totaloCtotal :
Corollary 1. In a homogeneous single-level tree network

where all link speeds are identical (i.e. a bus network) and

all processor speeds are identical, the total cost, Ctotal ; is

minimized over all load distribution sequence if and only if

the sequence of load distribution is arranged to satisfy the

following condition:

C1pC2p?pCN ;

where

ðcl
1zTcp þ c

p
1wTcpÞp ðcl

2zTcp þ c
p
2wTcpÞp?

p ðcl
NzTcp þ c

p
NwTcpÞ:

That is, the optimal load distribution sequence for a
homogeneous bus network is one where load distribu-
tion is in non-decreasing order of the sum of the link and
processor costs.
5. Performance results

5.1. Convergence study

One can develop an algorithm based on a greedy
strategy, i.e., it makes the best choice at each iteration. It
is also based on local search. A local search attempts to
find a solution or a sequence better than the current one
through a search in the neighborhood of the current
sequence. In this paper two sequences are neighbors if
one can be obtained from the other by one logically
adjacent pairwise swap. There are thus ðN 	 1Þ
sequences in the neighborhood of any sequence of N

processors.
Based on the concept of greedy strategy and local

search [1], at each step the algorithm searches its
neighbors and finds the best one in terms of the lowest
total cost and adopts it as the next sequence. It
continues until no further improvement in Ctotal can be
made, then it stops. The total cost is guaranteed to be
improved in each step by the conditions in the theorems
if the algorithm moves to a better sequence indicated by
the theorems. By the aid of the theorem for adjacent
pairwise swapping, the number of neighbors for
potential candidates in a local search can be reduced.
The sequence found using the greedy algorithm was
compared to the best sequence found via an exhaustive
search algorithm.

To evaluate the effectiveness of the proposed algo-
rithm, a number of experiments were conducted on a



ARTICLE IN PRESS
S. Charcranoon et al. / J. Parallel Distrib. Comput. 64 (2004) 29–3534
single-level tree network. A program was designed to
generate a prescribed number of sets of the parameters
wi; zi; cl

i ; c
p
i ; Tcm; and Tcp randomly and uniformly in

the interval ½0; 10� for wi; zi; ½0; 20� for cl
i ; c

p
i and ½0; 5�

for Tcm; and Tcp: These parameters serve as the starting
point of the greedy cost-efficient sequencing routine.

The first experiment in running the greedy cost
efficient sequencing program on a single-level tree
network, is performed for one root processor and five
children processors. The total number of runs is 10 and
for each run 10,000 random sets of network parameters
were generated. The results from this experiment are
that the greedy algorithm always converged to an
optimal sequence, and also indicate that the optimal
sequence is not necessarily unique.

The second experiment was conducted on a single-
level tree network with a number of children processors
varied from 4 to 7. For each size of network, 10,000
random sets of network parameters were generated. In
the case of the number of children processors being 8,
1000 sets of parameters were generated. The results also
show that the program always converged to a minimum
total cost sequence and the optimal sequence was not
necessarily unique. In the experiments run the greedy
algorithm always converged to the minimum total cost
sequence of load distribution regardless of the sequence
it was initialized with.

The average number of iterations per number of
children is 6.0 iterations for a 5 child tree, 23.8 iterations
for a 10 child tree and 54.5 iterations for a 15 child tree.
One numerical difficulty encountered was an inability of
the greedy algorithm to generate cost differences large
enough to allow convergence for more than about 22
children.

It should be noted that the solution quality appears to
be problem dependent. For instance, a related work [6]
considers the problem of arranging processor location in
a star network (shifting processors from link to link) as
part of a configuration design problem. For this
problem it was found, that for small N; sub-optimal
solutions were much more likely to occur using a
straight forward implementation of a greedy algorithm
than for the problem of this paper.

5.2. Convergence remarks

Two definitions that will be used below are now
presented.

Definition 1. A compliant sequence is a sequence such
that no adjacent pair of link-processors meets with any
of the conditions of Theorem 1.

Definition 2. An optimal sequence is a sequence such
that the associated total cost is less than or equal to that
of any other load distribution sequence.
Based on earlier work published in [4] we conjectured
that a sequence of load distribution is a compliant
sequence if and only if it is an optimal total cost
sequence. If this was true our greedy algorithm, which
produces compliant solutions, would always produce
optimal solutions. More recently in a companion paper
[5] tabu search and simulated annealing were used to
find solutions when the number of children pairs is
higher than 8. For N greater than 20, network instances
were found where the proposed greedy algorithm gives
suboptimal solutions. That is, it provides (locally
optimal) solutions with a higher total cost than the
solutions obtained by tabu search and simulated
annealing. This finding thus voids the validity of the
only if part of above conjecture. We note also that the
final sequences given by tabu search and simulated
annealing were also found to be compliant sequences.

Nonetheless, the results from the companion paper
indicates that the proposed greedy algorithm appears to
work well for problems of small to medium size
although it shows some suboptimal solutions for a large
size network. Particularly, it is very attractive in terms of
a running time, i.e., its running time is lower than those
of the other two algorithms. For certain parameters the
greedy algorithm is three times faster than implementa-
tions of tabu search and simulated annealing. This is
even more pronounced when N is large.
6. Conclusions

It has been found that monetary cost based optimiza-
tion of computer utility load distribution sequencing,
even using generic assumptions of load divisibility,
linear monetary costs and a star topology, leads to a
fairly complex exercise in algebra. No simple analytic
determination of an optimal load distribution sequence
appears possible for this problem though analytic
conditions for best greedy algorithm decisions were
found. The determination of efficient (and often
optimal) load distribution sequences is possible using a
number of combinatorial algorithms. Open research
problems this research leads to include sequencing for
large and alternate network topologies based on
monetary cost and alternative monetary cost modeling.

The growth of software leasing makes viable the leasing
of processing time and proprietary algorithms on third-
party machines. This could be a cost-effective means for
the research community to maximize the impact of
research computing budgets. If so, problems of the type
discussed in this note will be of increasing interest.
Acknowledgments

The support of NSF Grant CCR-99-12331 is
acknowledged.



ARTICLE IN PRESS
S. Charcranoon et al. / J. Parallel Distrib. Comput. 64 (2004) 29–35 35
References

[1] E. Aarts, J.K. Lenstra (Eds.), Local Search in Combinatorial

Optimization, John Wiley, Chichester, England, 1997.

[2] C. Bennett, G.T. Timbrell, Application service providers: will they

succeeed?, Inform. Sys. Frontiers 2 (2000) 195–211.

[3] V. Bharadwaj, D. Ghose, V. Mani, T.G. Robertazzi, Scheduling

Divisible Loads in Parallel and Distributed Systems, IEEE

Computer Society Press, Los Alamitos, CA, 1996.

[4] S. Charcranoon, T.G. Robertazzi, S. Luryi, Cost efficient load

sequencing in single-level tree networks, in: Proceedings of the

1998 Conference on Information Sciences and Systems, Princeton

University, Princeton, NJ., March, 1998, also related: US Patent

6,370,560, S. Charcranoon, T.G. Robertazzi, S. Luryi, Load

sharing controller for optimizing resource utilization, April 9,

2002.

[5] S. Charcranoon, T.G. Robertazzi, S. Luryi, Heuristic methods for

optimizing computing and communication costs for networked

computer utilities, submitted for publication.

[6] S. Charcranoon, T.G. Robertazzi, S. Luryi, Parallel processor

configuration design with processing/transmission costs, IEEE

Trans. Comput. 49 (2000) 987–991.

[7] M. Dorojevets, COOL approach to petaflops computing,

in Parallel Computing Technologies, Lecture Notes on

Computer Science, Vol. 1662, Springer-Verlag, Berlin, 1999,

pp. 351–364.

[8] D. Ghose, T.G. Robertazzi (Eds.), Special issue of Cluster

Comput. on Divisible Load Scheduling 6 (2003) 5–86.

[9] W.W. Gibbs, World wide widgets, Sci. Amer. 276 (1997) 48.

[10] H.-A. Jacobsen, O. Gunther, Middleware for software leasing

over the internet, in: Proceedings of ACM E-Commerce 99, 1999,

pp. 87–95.

[11] C. Kenyon, G. Cheliotis, Architecture requirements for commer-

cializing grid resources, in: Proceedings of IEEE International

Symposium on High Performance Distributed Computing, 2002,

pp. 215–224.

[12] N. Marchand, H.-A. Jacobsen, An economic model to study

dependencies between independent software vendors and applica-

tion service providers, Electron. Commerce Res. 1 (2001)

315–334.

[13] R. Patnayakuni, N. Seth, Why license when you can rent? Risks

and rewards of the application service provider model, in:

Proceedings of ACM SIGCPR 2001, 2001, pp. 182–187.

[14] A. Plepys, Software renting—better business, better environment:

the case of application service providing (ASP), in: Proceedings of

2002 IEEE International Symposium on Electronics and the

Environment, 2002, pp. 53–58.

[15] J. Sohn, T.G. Robertazzi, S. Luryi, Optimizing computing costs

using divisible load analysis, IEEE Trans. Parallel Distrib.

Systems 9 (1998) 225–234, also related: US Patent 5,889,989,

J. Sohn, T.G. Robertazzi, S. Luryi, Load sharing controller for

optimizing monetary cost, March 30, 1999.
Saravut Charcranoon received the B.Eng

in Electrical Engineering from Chula-

longkorn University, Bangkok, Thailand

in 1989, the M.S. in Electrical Engineer-

ing from Washington University in

St.Louis, Missouri in 1993 and the

Ph.D in Electrical Engineering from

Stony Brook University in 1998. During

1989-1991 and 1993-1995, he worked as
an engineer at the data communication section, the Commu-

nication Authority of Thailand, Bangkok, Thailand. Since 1998,

he has been working as a research scientist in the network

strategy department, Alcatel USA, Plano, Texas. His research

interest is primarily in the control and management of networks

and distributed systems, and network performance analysis.
Serge Luryi received his Ph.D. degree

in physics in 1978 from the University

of Toronto. In 1980 he joined Bell

Laboratories in Murray Hill, NJ, and

became interested in semiconductor

devices. In 1994 Dr. Luryi joined Stony

Brook University, where he is currently

a Distinguished Professor and Chair of

Electrical and Computer Engineering.

He is also Director of the NY State
Center for Advanced Sensor Technology.

During 1986-1990 Dr. Luryi served as the Editor of IEEE

Transactions on Electron Devices. He was elected Fellow of

the IEEE in 1989 and Fellow of the American Physical Society

in 1993 for contributions to the theory of electron transport in

low-dimensional systems and invention of novel electron

devices. He is also a Fellow of the IEEE.
Thomas G. Robertazzi has been a mem-

ber of the Dept. of Electrical and

Computer Engineering at Stony Brook

University since 1983, where he is

currently a Professor. He received the

Ph.D from Princeton University and the

B.E.E. from The Cooper Union. His

research interests include parallel system

scheduling, grid computing, metacom-

puting, performance evaluation and
wireless communications. Prof. Robertazzi has authored texts

on performance evaluation and telecommunications network

planning. He is a Senior Member of the IEEE.


	Load sequencing for a parallel processing utility
	Introduction
	Model, notation and load distribution
	Model description
	Cost efficient load distribution
	Fundamental recursive equations

	Sequencing and monetary cost
	Sequencing
	Link-processor monetary cost
	Total monetary cost

	Cost efficient sequencing
	Acknowledgements
	References


