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'The ;~nisotropic displacement-displacemenlent correlation function for the two types o f  pairs o f  
nearest neighhours in solid hcp hydrogen and deuterium is studied. Two  mechanisms contribut- 
ing to the deviation o f  the pail-distribution function from axial symmetry around the pair asisare 
~dentified. The one is clue to the anisotropy o f  the phonon dispersion relations and is treated in 21 

generalized Debye model parameterized in terms o f  the elastic constants. The elasticity tensor is 
decomposetl into ~.otationnlly irreducible parts, ant1 certain new re l~~t ions  between the elastic 
constants o f  hcp crystals with central forces are derived. The other mechanism arises f~.om the 
irnniedinte, anisotropic environment o f  a pair encl is treated using a generalized Einstein model. 
The relevance o f  these results for the interpretation o f  the microwave spectrum o f  pairs o f  
or-thohyclrogen molecules in parahydrogen is ; r l w  discussed. 

On etudie 1;) fonction de corl-elation anisotrope deplacement-deplaceniet pour les deux types 
de pnires de p l ~ ~ s  proches voisins dans les cristaux hc de 1'hydl:ogene et du deuterium solides. On 
identifiedeux rnicanismesqui contribuent i hive devier la fonction de distribution cles pniresde la 
syrnetrie axiale autous de I'axe des paires. L e  premier mecanisme est dfi ii I'anisotropie des 
rel;rtions de dispersion cles phonons, et on le tmite clans le cadre d'un motlele de Debye generalise 
dont les parametres sont exprimis en termes des constantes d'elasticite. L e  tenseur d'elasticite 
est dicompose en parties rotationnellenient irreductibles. et certaines relations nouvelles entre 
les constantes d'elasticite des cristaux hc avec forces centrales sont etablies. Le  second 
mecanisme provient de I'environnement irnrnediat anisotrope d'une paire, et on le tlxite en 
utilisant un rnodkle dqEinstein gene~xlise. On discute a ~ ~ s s i  la portee de ces resultats sur I'in- 
terprktation du spectre de micro-ondes de pnires de molecules d'orthohydrogene dans le 
p;rrahydrogkne. 

[T~xdu i t  par le journal] 
Can. J. Phys. .57.  136(1979) 

I. Introduction 
The recent observation ( l , 2 )  at high resolution of 

the microwave absor~tion sDectrum of mil-s of 
orthohydrogen molecules in parahydrogen crystals 
has provided extremely accurate data about the 
interniolecular interactions in the solid. A key ele- 
ment in the theory of the rotational level structure 
of the solid is the replacement of the intermolecula~- 
interactions by the 'renormalized' interactions 
which, in first approximation, are given by the av- 
erage values of the instantaneous interactions over 
the vibrational motion of the centres-of-mass of the 
niolecules (3-6). In solid hydrogen at low temper- 
atures only the motion due to the zel-o-point lattice 
vibrations need be considered. 

According to neutron scattering experiments (7), 
the single-particle distribution of the moleculal- dis- 
placements around the lattice sites is spherically 
symmetric, as is natural in view of the close-packed 
structure of the solid. In first approximation, the 
pair distribution functions describing the c o ~ ~ e l a -  
tions in the relative motions of the two molecules in 
nearest neighbour, and more distant, pairs are also 

lSupported by a grant from the National Research Council o f  
Canada. 

spherically symmetric. The renormalization of 
anisotropic interactions of definite tensorial form 
then does not change this form but only the mag- 
n i t ~ ~ d e  of the coupling constants. For multipolar 
interactions, such as the electric quadrupole-quad- 
rupole (EQQ) interaction, the coupling constants 
actually remain unchanged (8). 

In higher approximation, the pair distribution 
functions show an axially symmetl-ic anisotropy 
due to a smaller amplit~ide of the relative motion of 
the two molecules along the line joining them than 
perpendicular to i t  (3, 4, 6). The I-esulting re- 
normalized pair interactions are still axially sym- 
metric in this appl-oximation, and in particular the 
form of the EQQ interaction is not changed but the 
EQQ coupling constant for nearest neighbours in 
solid hydrogen is I-educed by about 10-20%. In the 
next stage of refinement one must expect that due 
to the dependence of the phonon frequencies and 
polarizations on the direction of propagation, and 
due to the 'ifi~alline environment of a pair, the 
axial symmetry of the pair distribution function will 
be broken. Averaged over such a distribution, the 
EQQ interaction yields a component which contri- 
butes to the splitting of the ground rotational level 
of an orthohydrogen pair in a parahydrogen matrix. 

0008-47-04/79/020136- I ltF0 1.00/0 
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The inclusion of this effect has been found indis- 
pensable fo~al-I-iving at a consistent analysis of the 
microwave results. The magnitude of the effect is 
descl-ibed by the nonaxiality pa~.aniete~-v defined as 

111  v = ( r lX2  - II!,~) /RO2 

where u =  u, - u, is the relative displacement of 
molecules I and 2 with equilibrium separation R,, 
the z axis is along the equilibrium intern~olecul~u. 
line, and the .t- and y axes are chosen in n suitable 
way relative to the surroundings of the pair, cf. 1.51 
and [6]. The order of magnitude of the absolute 
value of q obtained ( 5 )  from an analysis of the 
microwave spectra is 2 x which should be 
compared with the value 1 .  I x lo-' of (~I, , ' ) /R,~' .  

4 cf. 171. One of the purposes of the present paper is 
to present a calculation of T) for in-plane (ip) and 
out-of-plane (op) pairs based on the lattice dynami- 
cal properties of the solid. 

In the self-consistent phonon theory (9), the 
ground state wave function is assumed to be the 
product of a Gaussian and a Jastrow function. The 
latter describes the short-range correlations in the 
hard-core region of the intermolecular potential, 
whereas the former gives meaning to the phonon 
concept in quantum crystals. As pointed out by 
Holmel ( lo) ,  the internal consistency of this proce- 
dure requires that the Jastrow function should af- 
fect explicitly only the moments of the pail- dis- 
tribution function higher than the second. Since q 
depends only on the second moments 

[21 ( L I , L I ~ )  = $g(u)rrarrp du 
of the pair distribution function. g(u), we may re- 
place g ( ~ )  in the calculation of v by its Gaussian 
part which corresponds to the ground state of a 
model harmonic Hamiltonian. The force constants 
appearing in the latter can be obtained from the true 
intermolecular potential by the usual methods of 

t h e  theory of quantum crystals (9), and these force 
constants, and hence the Gaussian part ofg(u), will 
of course depend implicitly on the assumed Jastrow 
function. Such a calculation requires a large com- 
putational effort, and will not be attempted here. 
Instead we approximate the above harmonic 
Hamiltonian by simple models requiring only a 
small number of parameters. 

Two contributions to v of a rather different na- 
ture can be distinguished and will be calculated in 
this paper. The one arises from the dependence of 
the phonon frequencies and polarizations on the 
direction of propagation relative to the c axis. This 
effect is present also in an anisotropic continuous 
medium where the pair 1 ,2 can be any two points. A 

natural model for the calculation of this effect is a 
genei-alized Debye model in which the anisotropy 
of the phonon propagation is taken into account. 
This model is parameterized in terms of the long- 
wavelength modes which in turn depend on the 
elastic constants of the medium, for which the ex- 
perimental values can be used, obtained from neu- 
tron scattering, BI-illouin scattering, or speed-of- 
sound experiments. To  C;II.I.~ out this program it is 
convenient to decompose the elasticity tensol- into 
parts tl-ansfol-ming irreducibly ~ ~ n d e ~  rotations, as 
discussed in Sect. 3. Certain new relations between 
the elastic constants of hcp structures obtained 
along these lines as a by-PI-oduct, and of interest in 
connection with the comp~.essibility of these crys- 
tals, at-e also discussed in Sect. 3. The calculation 
of the pai~cc?!relation matrix [2] on the basis of the 
anisotropic Debye model is presented in Sect. 4. 
The Debye model cannot be expected to be accu- 
rate for the short-wavelength modes for which the 
molecula~. displacements in the real crystal, as 
contrasted to the continuum. will depend on the 
precise arrangement of the immediately surround- 
ing molecules of the pair. This effect and in par- 
ticular the influence of the difference in the sur- 
roundings of the two types of pail-, is investigated in 
Sect. 5 on the basis of a gener-alized Einstein model 
in which the coupling between neighbouring. origi- 
nally isotropic Einstein oscillators, is taken into 
account by perturbation theory. In Sect. 6 our re- 
sults are compared with those in ref. 6, and the 
consequences for the analysis of the microwave 
spectlvm are discussed. 

2. Definition of the Different Coordinate Frames 
It is convenient to list together the three frames 

used in the calculations. The local frames intro- 
duced here are the same as in ref. 4, but slightly 
different fi-on1 those used in ref. 6. 

( ( I )  TIIP Cryst~il F ~ C I I ~ Z P  
The crystal frame is (i, j ,  f ) ,  where f  is directed 

along the c axis of the crystal, and the if plane 
contains the vectol-r connecting the two molecules 
in the unit cell. The primitive translation vectors 
are 

t, = cf = (8/3)11' c r k  
and 

The local frames for the ip and op pairs are cho- 
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sen such that the two molecules lie on the local z 
axis which points from molecule 1 to 2, and such 
that the local s z  plane is a plane of reflection sym- 
metry of the lattice. 

(O) The It[-plrrrle Frrrrlre 
The unit vectors 2, j, & of this fi'ame are defined 

b Y 
'/f = 3-11? (24 - t,) 

[51 r r j  = - (3/8)I1't3 

rr&= ti 

and the two molecules are at R, = 0 and R, = t2. The 
ip fi'ame is obtained from the crystal frame by a 
rotation with Euler angles (apy) = (Bn, i n ,  -in). 

( c )  The Orrt-of-plcrtie Frrrtne 
The op frame with unit vectors 2.9, & defined by 

= 21I?(St3 - ' :it, - $ti) 

[6al r r j  = t, - t, 

cr&=z 

The two molecules are at R, = 0 and R,= z and 
belong to the same uni t  cell. The Euler angles of 
the op frame relative to the crystal frame are (0, 
p,, 0) where cos2 0, = 3. 

In  the present context a more natural choice of 

and 

the op frame is to rotate the frame [6] through 90" 
around the z axis, giving 

, t l = j ,  j l =  -,f, Z ' =  2 [I31 
16/71 
For both pairs the s axes are then perpendicular to 
the c axis. We note that since qf(op)= -q(op), the 

the brackets being definite expressions involving 
the force constants of the lattice. The quantity [lo] 
is the contribution from the so-called internal strain 
which is the microscopic displacement of the sub- 
lattices relative to each other induced by an exter- 
nally imposed macroscopic deformation. 

The elasticity tensor CaPY~ossesses  the point 
group symmetry of the lattice and the additional 
symmetry relations ( I  I )  

[ I l l  p B r 6  = CPayG = C U P S - (  = (J5yaB 

To take advantage of these symmetry properties it 
is convenient to use spherical tensors. Under rota- 
tions of the coordinate system the fourth rank ten- 
sor C transforms contragrediently to a direct prod- 
uct of two symmetrical, second rank, Cartesian 
tensors, since for an eigenmode of [7] the quantity 

[ 121 CUPvs (lp‘j6 cuey = po' 

is invariant. The tensor C is reducible and out of its 
components one can form five irreducible tensors, 
either according to the coupling scheme (yq)(ee) or 
(rle)(qe). Using the former, we obtain the set 

C4 - {(qq)? ; (ee)?j4." 

relative sign of q for the two pairs depends i n  the 
choice of frame. 

3. The Elastic Constants and the Anisotropy of the 
Long-wavelength Modes in Hexagonal Crystals 
The frequencies, o(q), and polarization vectors, 

e(q), of the long-wavelength modes (qcr << 1) in a 
crystal satisfy a wave equation of the form 

[71 pw2e = C~BY" 
a clp46ey 

where the indices refer to Cartesian components, 
and the summation convention is used. For a com- 
posite lattice, the elasticity tensor C consists of two 
par-ts ( 1 1, 12) 

[ 81 C = Cext + Cint 

where in the notation of ref. 11, p. 239, 

[91 C:!r6= LEY, P61+ [YO, a61 - [y6, aPl 

with a total of 9+5+5+ 1 + 1=21 components. In 
[13] the - mean "contravariant to," {A j ;B j ' }J . ' f  

denotes the M component of a spherical tensor of 
rank J formed from the irreducible tensors Aj and 
Bj 1 

and 

where (q, 8,#nd (I ,  p ,  a )  are the polar coordi- 
nates of q an e, respectively, and 

Tensors of odd rank and those containing odd-rank 
tensors in the intermediate stage of the coupling, 
vanish in  virtue of the relations [I I]. The set of 
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in-educible tensors obtained by using the coupling 
scheme (qe)(qo) in [I31 will be denoted by CI,,,""'. 
The sets CI,,I1tlr') and Ct,Iltr"' are equivalent in the 
sense that [hey are related by a unitary transforma- 
tion. 

The number of independent components of C is 
reduced further by the point symmetry of the lat- 
tice. For an isotropic medium only the two scalars 
Cootoo) and remain, the Lame coefficients. 
Under cubic syrnmetry the combination C,, + 
(5114)"' (C,, + C4a) is invariant and hence may be 
nonvanishing, resulting in a total of three indepen- 
dent elastic parameters. For a hexagonal system 
there are five nonvanishing components, Cootoo', 
Coo('", C20(20', C2,,(22), and C40t2", which are in- 
variant under rotat~ons around the (. axis. Expres- 
sions for the irreducible components of C in terms 
of the Cartesian components are given in the Ap- 
pendix. 

For a close-packed hexagonal lattice no further 
reduction of the nurnber of independent compo- 
nents is possible on the basis of syrnmetry, since 
the symmetry elements are the same for all values 
of clrr. However, for clrr = (8/3)Il2 an "accidental 
degeneracy" arises (13). Consider a lattice sum of 
the form 

where f(R) falls off faster than R - 3 ,  SO that the sum 
converges absolutely. If.f(R) is decomposed into 
components tl-ansforming as spherical tensors 
under rotations, the contributions from the first two 
shells of neighbours to the second-rank compo- 
nents vanish identically for any f(R). As an illustra- 
tion of this property consider an arrangement of 
charges on the lattice where each of the 12 sites 
nearest to the central site is assigned a charge q , .  
and each of the 6 next nearest sites a charge 4,. The 
quadrupole moment of this arrangement as a func- 
tion of clcr goes th ro~~gh  zero at the point (813)"'. 
The contributions frorn the more distant shells to 
the second-rank part of [I81 alternate in sign and as 
a result this part is usually negligibly small. 

The above property of the hcp lattice leads to an 
additional reduction of the number of independent 
elastic parameters if one assumes pairwise, central 
effective interactions. The external part of the 
elasticity tensor can then be expl-essed (ref. 11 ,  p. 
248) in the form [18], and in an hcp lattice the two 
second-rank components of C,,, therefore vanish 
for all practical purposes, 

On the other hand, C,,, is not of the form [I81 even 
for central forces. and its second-rank components 
therefore need not vanish.' However, CZotZo)ln, and 
C20(ZZ'I, are not independent. One can show frorn 
the hexagonal symmetry that for central forced 

[ 201 C'O('O)llll = 0 

where the definition of differs frorn [I31 by the 
order of the coupling, 

[211 C10t20' - { (qe)' : (gel0} lo 

Since c ~ , , ( ~ ~ ) , , ,  is a linear combination of C20t'o',Xt 
and C10t2",,,, [I91 and [20] together imply that 

for hcp crystals and central forces. Transcribed 
into the conventional matrix notation (cf. the Ap- 
pendix), [22] reads 

This relation has been known empirically for sev- 
eral years. Franck and Wanner ( 1  5) derived it for 
hcp helium from the compressibility data for hy- 
drostatic pressure, which show that the c/rr ratio 
does not change with pressure. Since the anisot- 
ropy of the compressibility of hexagonal crystals is 
determined by the single coefficient (16) 

[241 P = C33 + C1.3 - C12 - CI I 

this coefficient must vanish for helium, thus im- 
plying [23]. Wannel-and Meyer (17) noted that vari- 
ous hcp crystals have a similar elastic behaviour, in 
contrast to crystals for which clrr is not equal to 
(8/3)Ifi. This led them to postulate the validity of 
[23] for solid parahydrogen for which the pressure 
dependence of clrr had not been investigated, but 
for which c/o was known to be very close to (813)'" 
at normal pressure. This argument can now be re- 
versed. The validity of [23] for hcp crystals with 
central forces leads to their isotropic compress- 
ibility. 

We now return to the wave equation 171, and we 
note that i t  is equivalent to the variational problem 
of finding the extrema of the invariant form 

a Iza- for a fixed q a n d ~ ~ y i n g  e subject to the norm I '  
tion condition" wvJ 

'It was claimed recently (14) that the central potential model 
predicts zero internal strain in the hcplattice. but thisconclusion 
is incorrect. Contrary to the author's assertion. his expression 
(9.30). p. 101, does not vanish even for the simplest nearest 
neighbourcentlxl force model. 
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1261 (J"(J, = 1 We rewl-ite 1251 in terms of the irreducible tensors 

The vectors e(q) for which fq(e) is stationary satisfy 1131, 

[7] and hence are the polarization vectors of the [28] I,,(e) = C C CL,M("')i(qq)', (ee)")L" 
modes with wave vector q. The stationary values of I , [ '  L.M 

I,(e)determine the frequencies thl-ough the relation Using [ 14]-[16], the explicit expression for [,(e) in 

~271 po2(q) = fq[e(q)l terms of the polar angles of q and e in the crystal 
frame is readily found to be 

- - 

[291 c!-'fq(e) = ( 1 /3)C,,,,'00' - ( 1 / 6 d 2 ) ~ ~ ~ , " ~ ' ( 2  + 3 cos 28 + 3 cos 2P) + ( 1 /24)A,"( I + 3 cos 2P) 
x ( I  + 3 cos 28) - $A ," sin 2P sin 28 cos (a - 4) + (I/8)A222(1 - cos 2P)(l - cos 28) cos [2(cc - +)] 

whel-e the coefficients A,,," are linear combinations 
of the elastic constants given by 

or by [A5]. Minimization of [29] with respect to cc 
and p yields thl-ee orthogonal directions of polari- 
zation fol-each 4 = (8. +), viz.. 

[3Il a , = + ,  tan 2Pz = B(8) (e,) 

cc, = + + n, tan 2P, = -B(8) ( e , )  

where 

[32] B(O) = 
2(C,, + C, ,) sin 28 

C33 - Cll -I- (C, 1 -I- C33 - 2C,,) cos28 

The vector e, lies in the basal plane perpendicular 
to q and specifies the truly transverse mode (T,). 
The other two modes, with displacement vectors 
lying in the plane containing q and the z-axis, are 
called quasilongitudinal ( L )  and quasitransverse 
(T,). It is always possible tochoose the valuesof the 
arc tangent in [31] so that the L mode corresponds 
to e, and the T, mode to e, . 

We note that the result [31] has been established 
for a general hexagonal lattice without assuming 
the validity of [23]. I t  shows that the polarization 
vectors of the sound waves in an arbitrary hexag- 
onal crystal depend on only four of the five elastic 
constants and are independent of C,, .  Mol-eovel-, 
C12 is involved only in the expression for the fre- 
quency of the T, mode and not in those for the other 
two modes. The thl-ee speeds of sound, uj = oj/q,  in 
the direction of 4 = (8, +) al-e found from [27] and 
[29]. Substituting[3l] into[29], we obtain the result 

[331 pu12(e) = j; +fi cos 20 

+ g3 cos 20 cos 2 P 2 , 3  + exp [i(+ - 
x g4 sin 28 sin 2PzV3 

where 

and 

We see that C, ,  appears only in [33]. If we rewrite 
this equation in the form 

it  becomes appasent that a speed-of-sound mea- 
surement of C I 2 ,  which would allow a test of the 
validity of the I-elation [23], requires a measurement 
of the speed of the TI mode propagating at 21 

sufficiently large inclination to the c axis. 
The dispel-sion relations [33], [34] for elastic 

waves in hexagon~ll crystals have been known for a 
long time (18). However, we believe that the 
method of derivation proposed here, as well as the 
simple analytic form [3 I] for the polarization direc- 
tions, are new. The most important result for our 
present purpose is the anisotropy of the long- 
wave-length modes described by [31], [33], [34], 
which will be applied in the next section to the 
calculation of the nonaxiality panmeter.  

4. Calculation of the Pair Correlation Function and 
Nonaxiality Parameter in the Anisotropic 

Debye Model 
Solid parahydrogen has an hcp structure with 

two identical molecules per unit cell. In the Debye 
model of t w t t i c e  vibrations, the three optic 
modes corresponding to each wave vector in the 
first Bsillouin zone (BZ) are treated as acoustic 
modes extl-apolated to wave vectors in the second 
BZ. In terms of the normal modes of the corre- 
sponding harmonic lattice Hamiltonian, the dis- 
placement correlation matrix for a pair of 
molecules at a separation R , , ,  
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is then given by 

where MN is the total mass of the crystal. 
The main approximation involved in the Debye 

model is that the true dispersion relations are re- 
placed for all q by the long-wavelengt h limit, 

where uj(q) is the speed of sound of polarization j in 
the direction q. In  the generalized, or anisotropic, 

i Debye model adopted here, the velocities of sound 
are assumed to be given by [33], [34], and the 
polarization vectol-s by [31]. Substituting [40] into 
[39], and replacing the sum over 4 over the first and 
second BZ by an integral over a Debye sphere with 
radius q,  given by 

we obtain 

This radial integral can be perfot-med exactly, giv- 
ing 

[44] f(B, R12) = yr1'[/7i(Y 12) + Y12-' + $1 

and 

[461 tl  , ( x )  = - (COS .r + ,v sin s)/.r2 

The remaining angular integral in [42] was 
evaluated numerically for various sets of elastic 
constants parameterizing ujJq) and e!(q) as given by 
[31]-[36]. In Table 1 we llst the different sets of 
elastic constants used in the calculations. These 
include the experimental sets of Nielsen (7), Wan- 
nerand Meyer(l7), and Thomas (l9), as well as the 
theoretical set calculated by Goldman (20) on the 
basis of the self-consistent phonon theory. The re- 
sults of calculations of the dimensionless displace- 
ment con-elation matrix, Aup/RO2,  are shown in 
Table 2 where the superscripts refer to the local 
frames [5] and [60]. 

As seen from Table 2, the results for the different 
sets of elastic constants are reasonably consistent, 
except for the Wanner and Meyet- (17) set. 
Moreover. the Wannerand Meyerelastic constants 
lead to another difficulty. We have also calculated 
the matrix AUp for hcp deuterium using the elastic 
constants and lattice parameters quoted in Nielsen 
(7) and Wanner and Meyet- (17). Using the Nielsen 
data, we find that the resultant matrix for D2 is very 
nearly propol-tional to that for H2, 

As a result, the ratio of q for the two solids is the 
same for ip and op pairs. This result is very plausi- 
ble in view ofthe similarity ofthe two solids. On the 
other hand. using the Wanner and Meyer (17) elas- 
tic constants, a relation similar to [47] is not ob- 
tained and the ratio q(D2)/q(H2) we calculate is 
quite different for the two pairs. viz., 1.59for ip and 
0.54 for op pairs. From this unreasonable result we 
conclude that the Wanner and Meyer set of elastic 
constants is not internally consistent. 

From Table 2 i t  may appear that the results forq 
are not very sensitive to the precise values of the 
elastic constants used in the calculation, since there 
is a rather wide variation in the elastic constants 
shown in Table 1 .  However, we wish to point out 
that q is quite sensitive to the internal consistency 
of the elastic constants within a set. This point is 
illustrated by the following. Goldman (21) has sepa- 
rately calculated the external contribution [9] to the 
elasticity tensol- in solid H, and D,. As discussed in 
Sect. 3. this tensor has only three independent 
parameters because of the 'accidental' vanishing in 
a close-packed lattice of its two second rank com- 
ponents. It is convenient to take C,,, C,,, and C4, 
as the independent parameters, since in a hexa- 
gonal lattice these receive no contribution from the 
internal strain and must therefore be equal to the 
corresponding parameters of C,,,. The remaining 
two parameters, C ,  ,""' and C,,'"', can be obtained 
from [19] and zu-e given by 

Taking the values ofC,,,  C33, and C4, from Table 1,  
the Goldman (p&t, we find C, , ""'= 4.10 kbar and 
C I ~ " ~ '  = 0.98Ebar: which agree with the values 
quoted in ref. 21. Comparing these values with the 
Goldman set, we see that neglect of the internal 
strain contribution to C results in an error of about 
10% for C, , and 30% for C,,. On the other hand, we 
find that these relatively small changes in C lead to a 
dramatic change in the values of q ,  viz., 
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TABLE 1. Various sets of elastic constants (in kbar) for solid hydrogen and deuterium 

Reference CI I CIZ  c3 3 c13 C,, V (cnl3/mol) 

Nielsen (7)" H, 4 .2  1.8 5 .1  0.5 1 .1  22.8 
D 2 8 . 2  2.9 10.2 0 .9  2 .3  19.94 

Wanner and Hz  3.62 1.19 4.40 0.41 0.83 22.87 
Meyer (17)h D 2  6.68 2.32 7.88 1 . 1 1  1.64 20.19 

Thomas (19)' Hz 3.32 1.30 4.08 0.56 1.04 23.20 

"Neutron scattering in p-HZ at  5.4 K and o-D, at 5 K. 
'~Vclocity of sound measurements o n  n-HI and o-D, at  4.2 K 
'Brillouin scatlering in p-I-I2 at  13.2 K. 
Theoretical c;~lculations for p -H2  at  0 K.  

TABLE 2. Displacen~ent correlation matrix and nonaxiality parameter in the an~sotropic Debye 
nlodel. Based on various sets of elastic constants designated as in Table 1 

(o) In-plane pairs, frame [5] 

10'Ro-2 x 

Reference AYS A:= As: ( x lo3) 

Wanner and 
Meyer (17) Hz 2.048 2.040 1.921 0 0.08 

Nielsen (7) Hz 1.955 1.835 1.819 0 1.20 

Thomas (19) Hz 2.092 1 ,943 1 ,957 0 1.49 

Goldman (20) HZ 1 ,994 1.877 1.869 0 1.17 

Wanner and 
Meyer (17) D2 1.185 1.172 1.111 0 0.13 

Nielsen (7) D 2 1.064 1.013 0.998 0 0.51 

(b) Out-of-plane pairs, frame [6b] 

Wanner and 
Meyer (17) 

Nielsen (7) 

Thomas (19) 

Goldnian (20) 

Wanner and 
Meyer (17) 

Nielsen (7) 

A,.;. A~ . . .  q ' (x103)  

where the correct values obtained with the Goldman 
set (20), in which the internal strain contribution is 
included, are shown in parentheses. 

In connection with the results shown in Table 2, 
we make the following remarks. The distribution in 
the relative displacements, u = u, - u, ,  can be 
represented by an ellipsoid M, Map LI,LI~ = 1, where 

M a h s  the inverse of the correlation matrix Asp 
defined by [38]. According to Table 2, the principal 
axes of M f&-$r-i,airs coincide with the axes [5], as 
demanded by the crystal symmetry, and M is flat- 
tened along they axis, i.e., along the crystal c axis, 
giving a positive q .  For op pairs, the third principal 
axis o f M  makes a small angle of the order of lo with 
the local z' axis, and the flattening along they' axis 
is less than for ip pairs, resulting in a smaller but still 
positive q ' .  These results are as  expected for a 
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model describing a continuous, uniaxial medium in 
which the shape of the correlation ellipsoid for two 
points of given separation can depend only on the 
angle, O r , ,  between the c axis and the line joining 
the two points. For O I 2  = 0, M must be axially 
symmetric, for O , ,  = i n ,  the asymmetry must be a 
maximum, and for a reasonably smooth anisotropy 
of the sound propagation, the asymmetry of M can 
be expected to vary smoothly between these two 
limits. In particulal-, the sign of q should be the 
same for all 012 ,  provided the s axis of the local 
frame is always chosen parallel to the basal plane. 
These properties are all borne out by the I-esults in 
Table 2. 

5. Calculation of the Nonaxiality Parameter in a 
Perturbed Einstein Model 

As explained in Sect. 1 ,  the effect of the im- 
mediate crystalline environment on the pair corre- 
lation function of a pair of nearest neighbouring 
molecules cannot be expected to be given col-rectly 
in the Debye model introduced in Sect. 4, since in 
that model the motion of the molecules is assumed 
to be equal to that of the coiresponding points in a 
continuous medium. We investigate this 'crystal- 
line' effect here on the basis of an Einstein model 
perturbed by the intermolecular interaction which 
provides a coupling between neighbouring Einstein 
oscillators, which leads to a nonvanishing q de- 
pending on the spatial arrangement of the foul- 
common nearest neighbours of the pair. 

The Hamiltonian for the lattice is 

where K is the kinetic ener-gy of the translational 
motion of the molecules and V the total ~otential  
energy of inter-action. In the Einstein model the 
Hamiltonian [50] is replaced by 

1511 H ,  = K + C j n~o , r r ,~  - K + I/, 
1 

where o, can be obtained by minimizing the ex- 
pectation value of H over the ground state, lo), of 
H,. We obtain instead a value of o, from the mea- 
sured width of the single-particle distl-ibution func- 
tion, 

[521 yZ = (3fi/2rnoE) 

[531 V, = v - V, 

as a perturbation which in second order produces 
correlations leading to a nonvanishing value of q .  
The perturbed ground state correct to second order 
in  is given hi \$,)  = TJO), where Tis the operator 
(22) 

The primes indicate exclusion of the ground state, 
ps is the projection operator onto the degenerate 
manifold of states with energy 

N = C N , = 0 , 1 , 2  , . . . ,  
i 

and 

We assume for V a quadratic expression in the 
displacements ui of the form 

C55l v = + l ~ ~ . @ ~ ~ . l ~ ~  
i ,i 

where the constants @,are regarded as the effective 
force constants in the model harmonic Hamiltonian 
in the spirit of quantum crystal theory. We 
parametrize these force constants in terms of a 
model of pairwise, nearest neighbour, central ef- 
fective interactions. 

C56l v = C +(Rij2) 
i <  i 

giving 

[571 a i j a P  = - 4R,jaRijp+" - 26,,+' 

where Rij = Rj - R,, a and p denote Cartesian 
components, and 

[581 $' = (d$ld(R2)),,,, $" = (dZ$ld(R')'),,, 

are the two parameters characterizing the model. 
The perturbation [53] is then given by 

According to inelastic neutron scattering data (7), The last term turns out to give no contl-ibution to q 

this quantity in solid hydrogen at T = 5.4 K has the and may be discarded. 
In the perturbed ground stateq is given by value 0.48 A', giving o, = 9.8 x 1012 radls, or TE = 

In the Einstein model, the pair correlation func- 
whel.e is the operator tion is axially symnietric and q vanishes. We now 

introduce [611 R = ( ~ 1 2 ~  - -11 lX)' - (1[zu - ulu)* 
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/a) . <. (61 

FIG. I. Ne>irest-neighbo~~r.environment of ip pairs ( [ I )  and op  pairs (1)) in an hcp lattice. For both pair5 the vector R, ,  points 
out of the page. The four common nearest neighbours of each pair. shown by the bli~ck dots lie on a circle of  ~ x d i l ~ s  d 3 ~ , ,  in 
the plane pel.pendiculal. to and bisecting R , ? .  

which can be written as  a sum of a single-particle neighbow-s of the pair 1 ,  2, cf. Fig. 1 .  The angle 
and a two-particle operator, R = R l  + R2,  where between Rl,l and RZl, is 600 for all four neighbours 

and both types of pair, and Rl,L. Rz,, = iRo2,  but the 
[62] R I  = (11 x2 - i l l  u2) + ( ~ 1 ~ ~ ~  - L I ~ ~ , ~ )  sum in [66] is different for the two types corre- 
[63] R2 = 2(111 l,llz,, - 11 lx112x) sponding to p = ip and p = op, and is given by 

In the central-force model, R l  gives no contribution [67] C ( R ,  , , x ~ 2 , , '  - R ,  , , L ~ ~ , l , y )  = y( l l )~02  
to [601, I, 

because for. central forces the perturbed single- 
particle distribution function remains spherically 
symmetric in second order. 

Using [54], [57], [59], and [64], we obtain 

+ 2 Re (OIRzpzVlp2Vl 10)]/(213,~0~)~ 

The only nonvanishing terms are of the form 

and 

where 3 refers to one of the four nearest neighbours 
common to molecules 1 and 2. This shows the 
nature of the processes contributing to q in this 
model. The term u ~ . @ ~ ~ . u ~  in Vl gives rise to an 
axially symmetric distortion and does not contri- 
bute to q ,  and the same remark applies to the purely 
quadratic terms in [59]. From [65] we obtain 

X C (RI~,"R~, ,~ '  - R i , , Y R ~ , , B ) R ~ , , ~ R ~ l ,  
11 

where the sum over 17 extends over the four 

where y(ip) = + and y(op) = 1, and s and y refer to 
the pail frames defined in Sect. 2. Combining [60], 
[66], and [67], we get 

For the effective potential $ we use the Lennard- 
Jones potential of Raich and Kanney (23), with E = 
1.25 x 10-I' erg and o = 3.46A, which was ob- 
tained by fitting the measured k = 0 optical phonon 
frequencies in parahydrogen to a harmonic lattice 
model. This is clearly the most appropriate poten- 
tial to use in an Einstein model. The value of R, 
used in ref. 23 was 3.756 A ,  giving $" = 2.1 x 1016 
erg/cm4, and hence 

Thus in the Einstein model the magnitudeofq forip 
pairs is smaller than for op  pairs, reflecting the fact 
that the immediate environment of ip pairs is more 
symmetric t b 8 b r o p  pairs, cf. Fig. I and [67]. This 
result is in contrast to that for the Debye model 
where ~ ( i p )  is larger than ql(op). The two results 
are not contradictory, however, since the variation 
in q in the Debye model is largely determined by the 
angle, O I 2 ,  between the pair axis and the c axis, 
whereas in the Einstein model the value of O , ,  is 
irrelevant and the immediate environment plays the 
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determining role. We assume the two contributions 
to be additive and we regard the Einstein contribu- 
tion as a correction of the short-wavelength con- 
tribution in the Debye model. This tends to de- 
crease q(ip) and to increase ql(op), and hence to 
reduce the difference between the two pairs PI-e- 
dicted by the Debye model. 

The Einstein model predicts a definite ratio, 
q(op)lq(ip) = 3, and a definite sign of q ,  which can 
be expected to be realistic. On the other hand, the 
magnitude of the Einstein contribution is quite Lln- 
certain, since i t  depends on (/"(Rll)' which is doubt- 
less not given correctly by the Lennard-Jones 
model. At present, the magnitude of the Einstein 
contribution is therefore best regarded as an ad- 

4 justable parameter, to be determined if possible 
from the experimental data, asdiscussed in the next 
section. 

6. Concluding Remarks 
Assuming that the contributions calculated in the 

Debye and Einstein models are additive, the final 
expression for q for the two types of pair, p. are 

[ 701 q(p) = ~ o ( P )  + ~ E ( P )  

where with respect to the local frames [5] and [6] we 
have 

of a thl-ee-particle distribution function in the form 
of a procluct of three Jastrow fi~nctions, the result 
being 

The latter calculation is essentially equivalent to 
our Einstein model, and the values [75] are in rea- 
sonable agreement with [69]. However, the nu- 
nieric~~l values are very uncertain. since the 
parameter (/"(R,)' in [69] and a similar pai.anieter 
involved in [75] may easily be in error by one or two 
01-del-s of magnitude. 

The discl-epancy between [74] and our come- 
sponding Debye model I-esult is not understood. 
Our result appears more reasonable since. as dis- 
cussed in Sect. 4, in an elastically uniaxial niedium 
one expects q(ip) and q(op) to be of the same order 
of magnitude, and Iq(op)l < [q(ip)l, whereas [74] 
predicts the opposite relation and almost an order 
of magnitude difference. On the basis of [73]-[75] 
it was assumed in ref. 6 that q(op) = 4q(ip). In our 
opinion, this assi~mption is incorrect and is the 
origin of the difficulties remaining in the analysis of 
the microwave spectl.um cal-ried out in ref. 6, as will 
be discussed in a separate paper. 

Another conclusion can be dl-awn from our 
generalized Debye model relevant to the interpl-e- 
tation of the microwave results. Consider the 'ob- 
lateness' parameter 

and which measures the axially symmetric flattening of 

where according to [68] we have A < 0. The values 
[71] correspond to the set of elastic constants from 
Nielsen (7) (H,). and A is regarded as an adjustable 
parameter. Using [70], [7 I], [72], we find3 from an 
analysis of the microwave data given in ref. 2 that 
lAl 510-4 and that A < 0 in agreement with the pre- 
diction [68]. 

Our results for q are quite different from those 
obtained in ref. 6. and in this connection we wish to 
make the following remarks. In ref. 6, q was ob- 
tained as  a sum of two contributions, viz., 

[731 q ( ~ )  = l-11 (P) + ~ A P )  
where q ,  appears as a parameter in the self- 
consistent harmonic phonon wave function calcu- 
lated by V. V. Goldman (unpublished) and quoted 
in ref. 6, with the values 

[74] q l ( ip)=  -0.1 x lop4, q l (op)=  -0.7 x 

whereas q, is calculated numerically with the help 

3S. Luryi and J .  Van K~.anendonk. To be publlshetl. 

the pair distribution function, or of the e l ~ i ~ s o i d  M 
defined in Sect. 4, along the local ;7 axis, which is 
responsible for the reduction of the multipolal- cou- 
pling constants. As seen from Table 2. [ is larger for 
op than for ip pairs, and the multipolar reduction 
factors, kjAlSj .  which decrease with increasing [, 
must hence be largerfol-ip thanfol-op pairs. For the 
EQQ interaction we find, using the set of elastic 
constants of ref. 7 and assuming c /~ r  = (8/3)11', 

Therefore, a nonvanishing empirical value of the 
difference [77] of this order of magnitude or smaller 
cannot be interpreted a \  due to a deviation of the 
CILI ratio from the close-packed value, as suggested 
in ref. 2. $:-, 
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Appendix: The Irreducible Components of the 
Elasticity Tensor 

The explicit expression for the irreducible com- 
ponents [13] of the elasticity tensor C with Carte- 
sian components Cu""", corresponding to the cou- 
pling scheme (qq)(ee)  is 

where Ull, is the matrix of the transformation from 
Cartesian to spherical components, which has the 
nonvanishing elements 

The transformation [ A l l  is unitary in the sense that 

In evaluating [ A l l  it is convenient to use the Voigt 
notation in which the six pairs of Cartesian indices 
are replaced by single numerical indices according 
to the ~ c h e m e s ~ t -  = 1, yy = 2 ,  zz = 3 ,  y z  = 4 ,  xz  = 5, 
,vJl = 6 ,  e.c c.r.r!~!~ = c!i~i.rx = c c r r r z  = - .  3 1 2  * C,,, etc. 

Using [ A l l  for the independent components for 
hexagonal symmetry, we obtain 

where 
~ ~ 0 0  = (1/3)(C33 f 4C44 + ~ C I  I - C I Z )  

AO2O = - ( d \ / 2 / 6 ) ( 2 ~ ~ ~  + 2C44 - 3CI 1 + C I ~ )  

[A51 A o n  = (1/6)(4C33 - 8C44 + 3CI1 - CI2) 

A , "  = - ( C 1 3  + C44) 

A l Z 2  = i ( C I  I + C 1 2 )  

The final expressions for the in-educible compo- 
nents in terms of the elastic constants are 

The set of irreducible components correspond- 
ing to the alternative coupling scheme ( q ~ ) ( q e )  can 
be obtained by replacing Caa'"' in [ A  I ]  by can'bb' 
- - Cn"'". In particular, one finds in this way 

[A71 C20(20'= - ( d 2 / 3 ) ( ~ 3 3  + c13 - C I I  - C I Z )  

Since in an hcp lattice with central fol-ces c20(20'= 
0, we have that 

LAXI p = c33 + c13 - C I I  - C12 

vanishes in such a lattice, Finally, from [A61 and 
[A7] .  ordirectly from the definitions, it follows that 

[A91 3c2&= c20(20'+ f i ~ ~ ~ ( ~ ~ )  
- 

Hence if p = 0, we also have C2,"O'= - d 7 ~  z o '22'. 




