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Elastic constants and anisotropic pair correlations in solid hydrogen and deuterium!
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The anisotropic displacement—displacement correlation function for the two types of pairs of
nearest neighbours in solid hep hydrogen and deuterium is studied. Two mechanisms contribut-
ing to the deviation of the pair distribution function from axial symmetry around the pair axis are
identified. The one is due to the anisotropy of the phonon dispersion relations and is treated in a
generalized Debye model parameterized in terms of the elastic constants. The elasticity tensor is
decomposed into rotationally irreducible parts, and certain new relations between the elastic
constants of hep crystals with central forces are derived. The other mechanism arises from the
immediate, anisotropic environment of a pair and is treated using a generalized Einstein model.
The relevance of these results for the interpretation of the microwave spectrum of pairs of
orthohydrogen molecules in parahydrogen is also discussed.

On étudie la fonction de corrélation anisotrope déplacement-déplacement pour les deux types
de paires de plus proches voisins dans les cristaux he de I'hydeogene et du deutérium solides. On
identifie deux mécanismes qui contribuent a faire dévier lafonction de distribution des paires de la
symétrie axiale autour de I'axe des paires. Le premier mécanisme est di a 'anisotropie des
relations de dispersion des phonons, et on le traite dans le cadre d’un modéle de Debye généralisé
dont les paramétres sont exprimés en termes des constantes d’élasticité. Le tenseur d'élasticité
est décomposé en parties rotationnellement irréductibles, et certaines relations nouvelles entre
les constantes d'élasticité des cristaux hc avec forces centrales sont établies. Le second
mécanisme provient de I'environnement immédiat anisotrope d’une paire, et on le traite en
utilisant un modéle d'Einstein généralisé. On discute aussi la portée de ces résultats sur I'in-
terprétation du spectre de micro-ondes de paires de molécules dorthohydrogéne dans le
parahydrogene.

[ Traduit par le journal]
Can.J. Phys., 57, 136 (1979)

1. Introduction

The recent observation (1, 2) at high resolution of
the microwave absorption spectrum of pairs of
orthohydrogen molecules in parahydrogen crystals
has provided extremely accurate data about the
intermolecular interactions in the solid. A key ele-
ment in the theory of the rotational level structure
of the solid is the replacement of the intermolecular
interactions by the ‘renormalized’ interactions
which, in first approximation, are given by the av-

—erage values of the instantaneous interactions over
the vibrational motion of the centres-of-mass of the
molecules (3—6). In solid hydrogen at low temper-
atures only the motion due to the zero-point lattice
vibrations need be considered.

According to neutron scattering experiments (7),
the single-particle distribution of the molecular dis-
placements around the lattice sites is spherically
symmetric, as is natural in view of the close-packed
structure of the solid. In first approximation, the

spherically symmetric. The renormalization of
anisotropic interactions of definite tensorial form
then does not change this form but only the mag-
nitude of the coupling constants. For multipolar
interactions, such as the electric quadrupole—quad-
rupole (EQQ) interaction, the coupling constants
actually remain unchanged (8).

In higher approximation, the pair distribution
functions show an axially symmetric anisotropy
due to a smaller amplitude of the relative motion of
the two molecules along the line joining them than
perpendicular to it (3, 4, 6). The resulting re-
normalized pair interactions are still axially sym-
metric in this approximation, and in particular the
form of the EQQ interaction is not changed but the
EQQ coupling constant for nearest neighbours in
solid hydrogen is reduced by about 10-20%. In the
next stage of refinement one must expect that due
to the dependence of the phonon frequencies and
polarizations on the direction of propagation, and

pair distribution functions describing the correla-
tions in the relative motions of the two molecules in
nearest neighbour, and more distant, pairs are also
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due to the 'erftalline environment of a pair, the
axial symmetry of the pair distribution function will
be broken. Averaged over such a distribution, the
EQQ interaction yields a component which contri-
butes to the splitting of the ground rotational level
of an orthohydrogen pair in a parahydrogen matrix.
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The inclusion of this effect has been found indis-
pensable for arriving at a consistent analysis of the
microwave results. The magnitude of the effect is
described by the nonaxiality parametern defined as

1] n= <”1'2 - “1/2> /Roz

where u= u, — u, is the relative displacement of
molecules | and 2 with equilibrium separation R,
the z axis is along the equilibrium intermolecular
line, and the x and y axes are chosen in a suitable
way relative to the surroundings of the pair, cf. [5]
and [6]. The order of magnitude of the absolute
value of n obtained (5) from an analysis of the
microwave spectra is 2 x 1073 which should be
compared with the value 1.1 x 1072 of (u,,2)/R,?,
cf. [7]. One of the purposes of the present paper is
to present a calculation of m for in-plane (ip) and
out-of-plane (op) pairs based on the lattice dynami-
cal properties of the sold.

In the self-consistent phonon theory (9), the
ground state wave function is assumed to be the
product of a Gaussian and a Jastrow function. The
latter describes the short-range correlations in the
hard-core region of the intermolecular potential,
whereas the former gives meaning to the phonon
concept in quantum crystals. As pointed out by
Horner (10), the internal consistency of this proce-
dure requires that the Jastrow function should af-
fect explicitly only the moments of the pair dis-
tribution function higher than the second. Since 7
depends only on the second moments

(2] (t,11p) =fg(u)uqug du

of the pair distribution function, g(u), we may re-
place g(u) in the calculation of n by its Gaussian
part which corresponds to the ground state of a
model harmonic Hamiltonian. The force constants
appearing in the latter can be obtained from the true
intermolecular potential by the usual methods of

‘the theory of quantum crystals (9), and these force

constants, and hence the Gaussian part of g(u), will
of course depend implicitly on the assumed Jastrow
function. Such a calculation requires a large com-
putational effort, and will not be attempted here.
Instead we approximate the above harmonic
Hamiltonian by simple models requiring only a
small number of parameters.

Two contributions to n of a rather different na-
ture can be distinguished and will be calculated in
this paper. The one arises from the dependence of
the phonon frequencies and polarizations on the
direction of propagation relative to the ¢ axis. This
effect is present also in an anisotropic continuous
medium where the pair 1, 2 can be any two points. A

natural model for the calculation of this effect is a
generalized Debye model in which the anisotropy
of the phonon propagation is taken into account.
This model is parameterized in terms of the long-
wavelength modes which in turn depend on the
elastic constants of the medium, for which the ex-
perimental values can be used, obtained from neu-
tron scattering, Brillouin scattering, or speed-of-
sound experiments. To carry out this program it is
convenient to decompose the elasticity tensor into
parts transforming irreducibly under rotations, as
discussed in Sect. 3. Certain new relations between
the elastic constants of hcp structures obtained
along these lines as a by-product, and of interest in
connection with the compressibility of these crys-
tals, are also discussed in Sect. 3. The calculation
of the pair correlation matrix [2] on the basis of the
anisotropic Debye model is presented in Sect. 4.
The Debye model cannot be expected to be accu-
rate for the short-wavelength modes for which the
molecular displacements in the real crystal, as
contrasted to the continuum, will depend on the
precise arrangement of the immediately surround-
ing molecules of the pair. This effect and in par-
ticular the influence of the difference in the sur-
roundings of the two types of pair, is investigated in
Sect. 5 on the basis of a generalized Einstein model
in which the coupling between neighbouring, origi-
nally isotropic Einstein oscillators, is taken into
account by perturbation theory. In Sect. 6 our re-
sults are compared with those in ref. 6, and the
consequences for the analysis of the microwave
spectrum are discussed.

2. Definition of the Different Coordinate Frames

It is convenient to list together the three frames
used in the calculations. The local frames intro-
duced here are the same as in ref. 4, but slightly
different from those used in ref. 6.

(a) The Crystal Frame . R
The crystal frame is (7, j, k), where k is directed
along the ¢ axis of the crystal, and the ik plane
contains the vector T connecting the two molecules
in the unit cell. The primitive translation vectors
are
t =332 i—j)
[3] SRR (312 4 )
t=ck=(8/3)"uk
and
[4] T=30+ Bt

The local frames for the ip and op pairs are cho-
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sen such that the two molecules lie on the local z
axis which points from molecule 1 to 2, and such
that the local xz plane is a plane of reflection sym-
metry of the lattice.

(b) The In-plane Frame
The unit vectors £, §, Z of this frame are defined
by

af= 37122 - t,)
(3] ay=—(3/8)1t
az=1t

and the two molecules are at R, = 0and R, = ¢,. The
ip frame is obtained from the crystal frame by a
rotation with Euler angles (apy)= @7, 31, —31).

(¢) The Out-of-plane Frame
The op frame with unit vectors £, 3, Z defined by

ak =220 — &t — 51,)
[6a] ay=t,— t,
az=n1 '

The two molecules are at R, =0 and R,=1 and
belong to the same unit cell. The Euler angles of
the op frame relative to the crystal frame are (0,
By, 0) where cos? B, = 3.

In the present context a more natural choice of
the op frame is to rotate the frame [6] through 90°
around the z axis, giving

[6b] =3, y=-1 2=

For both pairs the x axes are then perpendicular to
the ¢ axis. We note that since 1'(op)= —n/(op), the
relative sign of 1 for the two pairs depends on the
choice of frame.

--3; The Elastic Constants and the Anisotropy of the

Long-wavelength Modes in Hexagonal Crystals

The frequencies, ®(q), and polarization vectors,
e(g), of the long-wavelength modes (qu<< 1) in a
crystal satisfy a wave equation of the form

[7] p(‘)zea = CO!B75 qﬁqéey

where the indices refer to Cartesian components,
and the summation convention is used. For a com-
posite lattice, the elasticity tensor C consists of two
parts (11, 12)

[8] C = Cext + C'mt
where in the notation of ref. 11, p. 239,
[9]  Cef=[ay,BS]+ [¥B,ad] — [, o]

and
[10] Cfe = (aB, vd)

the brackets being definite expressions involving
the force constants of the lattice. The quantity [10]
1s the contribution from the so-called internal strain
which is the microscopic displacement of the sub-
lattices relative to each other induced by an exter-
nally imposed macroscopic deformation.

The elasticity tensor C**® possesses the point
group symmetry of the lattice and the additional
symmetry relations (11)

[ l l] Cuﬁ'!5 = Cpu'l’s = Cuﬁﬁ‘f = Ca'ldﬁ

To take advantage of these symmetry properties it
is convenient to use spherical tensors. Under rota-
tions of the-coordinate system the fourth rank ten-
sor C transforms contragrediently to a direct prod-
uct of two symmetrical, second rank, Cartesian
tensors, since for an eigenmode of [7] the quantity
[12] C*P® g5 e 0, = pw?

is invariant. The tensor C is reducible and out of its
components one can form five irreducible tensors,
either according to the coupling scheme (gg)(¢e) or
(¢ge)ge). Using the former, we obtain the set

Cau?® ~ {(qq)*; (ee)* ¥
Coy?2 ~ {(qq)*; (ee)?}?
[13] CZJI(ZO)N {(qq)l7 (ee)O}ZJI
C()O('ZZ)N {(qq)l’ (ee)Z}OO
Coo® ~ {(gq)°; (ee)0}00

with a total of 94545414+ 1=21 components. In
[13] the ~ mean ‘‘contravariant to,”” {A/;B/' /M
denotes the M component of a spherical tensor of
rank J formed from the irreducible tensors 47 and
B,

[14] {AGBIYY = % C(jj'J; mm M)A B/™

n,m’

and
[13] (ggy™= C(11/;000)q* C;,(0, )
[ 16] (ee)j"‘ = (I 1] ;000) ij(B o)

where (q, 6,. Q:;mdk (1, B, o) are the polar coordi-
nates of ¢ afid e, respectively, and

[17]  Cin(®, d)= (4n/2j + D' Y;u(0, 0)

Tensors of odd rank and those containing odd—r:cmk
tensors in the intermediate stage of the coupling,
vanish in virtue of the relations [11]. The set of
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irreducible tensors obtained by using the coupling
scheme (ge)(ge) in [13] will be denoted by Cpy ™.
The sets Cp, ;4" and Cp,¥"” are equivalent in the
sense that they are related by a unitary transforma-
tion.

The number of independent components of C is
reduced further by the point symmetry of the lat-
tice. For an isotropic medium only the two scalars
Coo®® and Cy,@? remain, the Lamé coefficients.
Under cubic symmetry the combination C,, +
(5/14)12 (C 4, + Cauz) is invariant and hence may be
nonvanishing, resulting in a total of three indepen-
dent elastic parameters. For a hexagonal system
there are five nonvanishing components, Cy,®?,

" Coo??, C16?%, Cyy®¥, and C,,2*, which are in-

variant under rotations around the ¢ axis. Expres-
sions for the irreducible components of C in terms
of the Cartesian components are given in the Ap-
pendix.

For a close-packed hexagonal lattice no further
reduction of the number of independent compo-
nents is possible on the basis of symmetry, since
the symmetry elements are the same for all values
of ¢/a. However, for ¢fa = (8/3)!? an “*accidental
degeneracy’ arises (13). Consider a lattice sum of
the form

[18] S= 3 fR)

where f(R) falls off faster than R™3, so that the sum
converges absolutely. If f(R) is decomposed into
components transforming as spherical tensors
under rotations, the contributions from the first two
shells of neighbours to the second-rank compo-
nents vanish identically for any f{R). As an ilustra-
tion of this property consider an arrangement of
charges on the lattice where each of the 12 sites
nearest to the central site is assigned a charge g,
and éach of the 6 next nearest sites a charge ¢,. The

-quadrupole moment of this arrangement as a func-

tion of c/a goes through zero at the point (8/3)!/2.
The contributions from the more distant shells to
the second-rank part of [ 18] alternate in sign and as
a result this part is usually negligibly small.

The above property of the hcp lattice leads to an
additional reduction of the number of independent
elastic parameters if one assumes pairwise, central
effective interactions. The external part of the
elasticity tensor can then be expressed (ref. 11, p.
248) in the form [18], and in an hep lattice the two
second-rank components of C,, therefore vanish
for all practical purposes,

[19] Cr0® = C10% P = 0

On the other hand, C;,, is not of the form [18] even
for central forces, and its second-rank components
therefore need not vanish.? However, C,,?%;, and
5% are not independent. One can show from
the hexagonal symmetry that for central force.

[20] Czo(zmim =0

where the definition of C differs from [13] by the
order of the coupling,

[21] Cwam,\, {(qe)z ._(qe)O}zo

Since €%, is a linear combination of C5,%%,
and C53?%,(, [19] and [20] together imply that

(22] C:()QO) =0

for hep crystals and central forces. Transcribed
into the conventional matrix notation (cf. the Ap-
pendix), [22] reads

(23] Cy3+C3—C,—C ;=0

This relation has been known empirically for sev-
eral years. Franck and Wanner (15) derived it for
hcp helium from the compressibility data for hy-
drostatic pressure, which show that the ¢/a ratio
does not change with pressure. Since the anisot-
ropy of the compressibility of hexagonal crystals is
determined by the single coefficient (16)

[24] B=Ci:+C3—Cp— Cyy

this coefficient must vanish for helium, thus im-
plying [23]. Wanner and Meyer (17) noted that vari-
ous hcp crystals have a similar elastic behaviour, in
contrast to crystals for which ¢/a is not equal to:
(8/3)!2. This led them to postulate the validity of
[23] for solid parahydrogen for which the pressure
dependence of ¢/a had not been investigated, but
for which c¢/a was known to be very close to (8/3)!/2
at normal pressure. This argument can now be re-
versed. The validity of [23] for hcp crystals with
central forces leads to their isotropic compress-
ibility.

We now return to the wave equation [7], and we
note that it is equivalent to the variational problem
of finding the extrema of the invariant form

[25] (&)= C*P* guq; eqe,

forafixed ¢ and‘&gying e subject to the normaliza-
tion condition™™

21t wus claimed recently (14) that the central potential model
predicts zero internal strain in the hep lattice, but this conclusion
is incorrect. Contrary to the author’s assertion, his expression
(9.30), p. 101, does not vanish even for the simplest nearest
neighbour central force model.
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[26] e, =1

The vectors e(q) for which / (e) is stationary satisfy
[7]1 and hence are the polarization vectors of the
modes with wave vector ¢g. The stationary values of
1 (e) determine the frequencies through the relation

[27] pwi(q) =1 [e(q)]

We rewrite [25] in terms of the irreducible tensors
[13],

(28] 1(e) = ZILZ Con'"(qq), (e) '}
LU LM
Using [14]-[16], the explicit expression for /,(e) in

terms of the polar angles of g and e in the crystal
frame is readily found to be

[29] ¢ 2 (&) = (1/3)C,, 0" — (1/6V2)C,,?(2 + 3¢0s 20 + 3 cos 2B) + (1/24)A4,22(1 + 3 cos 2B)
X (1+3¢c0s20)—44,22sin 2B sin 20 cos (a0 — ¢) + (1/8)A4,22(1 — cos 2BX1 — cos 20) cos [2(a — )]

where the coefficients 4,,2% are linear combinations

of the elastic constants given by
[30] A, =Y C(22L; mm0)C,,*?
L

or by [AS]. Minimization of [29] with respect to o
and P yields three orthogonal directions of polari-
zation foreach § = 0, ¢), viz.,

o = ¢+, Bi=4n  (e)
B1]  a,=¢, tan 2B, = BO)  (ey)
as=0+m, tan2B;=—BO) (e)
where
[32] B(®)= 2(Cys + Cy3)sin 26

Cy3 = Cii +(Cyy + Cy3 = 2C44) cos20

The vector e, lies in the basal plane perpendicular
to ¢ and specifies the truly transverse mode (7).
The other two modes, with displacement vectors
lying in the plane containing ¢ and the z-axis, are
called quasilongitudinal (L) and quasitransverse
(T,). Itis always possible to choose the values of the
arc tangent in [31] so that the L mode corresponds
to e, and the 7, mode to e;.

We note that the result [31] has been established
for a general hexagonal lattice without assuming
the validity of [23]. It shows that the polarization
vectors of the sound waves in an arbitrary hexag-
onal crystal depend on only four of the five elastic
constants and are independent of C,,. Moreover,
C, is involved only in the expression for the fre-
quency of the T; mode and not in those for the other
two modes. The three speeds of sound, v; = w;/¢, in
the direction of § = (8, ¢) are found from [27] and
[29]. Substituting [31] into [29], we obtain the result

[33]  pu,*0) =f + f2cos 20
[34] pv,3%0) =g, + g2(cos 20 + cos 2B, 3)

+ g3 0520 cos 2B, 5 + exp [i{(d — a5 .3)]
X g4 sin 20 sin 2B, 5

where

[35] 4fl=2C44+C11_C12
CAL=20,~C + C,

and

[36] 4g, = Cy3+ € + 204, 4g,=C;—Ch

4g;= C33+ C, = 2C4, 28,=C3+ Cyy
We see that C,, appears only in [33]. If we rewrite
this equation in the form

[37] pu20)=3C,, — C,,)sin?6 + Cyy cos* 6

it becomes apparent that a speed-of-sound mea-
surement of C,, which would allow a test of the
validity of the relation [23], requires a measurement
of the speed of the T, mode propagating at a
sufficiently large inclination to the ¢ axis.

The dispersion relations [33], [34] for elastic
waves in hexagonal crystals have been known fora
long time (18). However, we believe that the
method of derivation proposed here, as well as the
simple analytic form [31] for the polarization direc-
tions, are new. The most important result for our
present purpose is the anisotropy of the long-
wave-length modes described by [31], [33], [34],
which will be applied in the next section to the
calculation of the nonaxiality parameter.

4. Calculation of the Pair Correlation Function and
Nonaxiality Parameter in the Anisotropic
Debye Model

Solid parahydrogen has an hcp structure with
two identical molecules per unit cell. In the Debye
model of theegattice vibrations, the three optic
modes corresponding to each wave vector in the
first Brillouin zone (BZ) are treated as acoustic
modes extrapolated to wave vectors in the second
BZ. In terms of the normal modes of the corre-
sponding harmonic lattice Hamiltonian, the dis-
placement correlation matrix for a pair of
molecules at a separation R,
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[38] Aa[} = (0f(ut5, — ulcx)(”ZB - l’ls)'())
is then given by

[39] Ay = (h/MN) Z (Dj_l(q)ejx(q)ej[}(q)
, x (1 —cos q'R,,)

where MN is the total mass of the crystal.

The main approximation involved in the Debye
model is that the true dispersion relations are re-
placed for all g by the long-wavelength limit,

(40] w(q) = vi(dq
where v;(§) is the speed of sound of polarization j in

- the direction §. In the generalized, or anisotropic,

Debye model adopted here, the velocities of sound
are assumed to be given by [33], [34], and the
polarization vectors by [31]. Substituting [40] into
[39], and replacing the sum over § over the first and
second BZ by an integral over a Debye sphere with
radius g, given by

[41] goRo= (6m2\V/2)13
we obtain
3
[42] A,y = (h/87°p) AZI [o;” (De; Dep(d)]
=
x f(§, R,,) d§
where

qaD
[43] f(ti,Ru)=fo 4(1 — cos g-Ry,) dg

This radial integral can be performed exactly, giv-
ing

[44] (g, Ri2)= qo*ln(y,2) + v + 3]

where

[45] Yi2 = (CIDRlz)‘i'Iélz
~and
[46] #n,(x)= —(cosx + x sinx)/x?

The remaining angular integral in [42] was
evaluated numerically for various sets of elastic
constants parameterizing v;(§) and e;(§) as given by
[31]-[36]. In Table 1 we list the different sets of
elastic constants used in the calculations. These
include the experimental sets of Nielsen (7), Wan-
ner and Meyer (17), and Thomas (19), as well as the
theoretical set calculated by Goldman (20) on the
basis of the self-consistent phonon theory. The re-
sults of calculations of the dimensionless displace-
ment correlation matrix, A,;/R,?, are shown in
Table 2 where the superscripts refer to the local
frames [5] and [6b].

As seen from Table 2, the results for the different
sets of elastic constants are reasonably consistent,
except for the Wanner and Meyer (17) set.
Moreover, the Wanner and Meyer elastic constants
lead to another difficulty. We have also calculated
the matrix A,y for hep deuterium using the elastic
constants and lattice parameters quoted in Nielsen
(7) and Wanner and Meyer (17). Using the Nielsen
data, we find that the resultant matrix for D, is very
nearly proportional to that for H,,

(47] [Aag/Roz]l)z = 0'54[AuB/R02]Hz

As a result, the ratio of 1 for the two solids is the
same for ip and op pairs. This result is very plausi-
ble in view of the similarity of the two solids. On the
other hand, using the Wanner and Meyer (17) elas-
tic constants, a relation similar to [47] is not ob-
tained and the ratio n(D,)/n(H,) we calculate is
quite different for the two pairs. viz., 1.59 forip and
0.54 for op pairs. From this unreasonable result we
conclude that the Wanner and Mevyer set of elastic
constants is not internally consistent.

From Table 2 it may appear that the results form
are not very sensitive to the precise values of the
elastic constants used in the calculation, since there
is a rather wide variation in the elastic constants
shown in Table 1. However, we wish to point out
that n is quite sensitive to the internal consistency
of the elastic constants within a set. This point is
illustrated by the following. Goldman (21) has sepa-
rately calculated the external contribution [9] to the
elasticity tensor in solid H, and D,. As discussed in
Sect. 3, this tensor has only three independent
parameters because of the ‘accidental’ vanishing in
a close-packed lattice of its two second rank com-
ponents. It is convenient to take C5, C3;, and Cy,
as the independent parameters, since in a hexa-
gonal lattice these receive no contribution from the
internal strain and must therefore be equal to the
corresponding parameters of C.,. The remaining
two parameters, C,,** and C,,**, can be obtained
from [19] and are given by

4CHC'“= 3C33 +2C,, + C13
4C = C33 = 2Ca4 + 3C 5

[48)

Taking the values of Cy3, Cs;,and C,, from Table 1,
the Goldman (20)get, we find C,,**'= 4.10kbar and
C,,** = 0.98kbar, which agree with the values
quoted in ref. 21. Comparing these values with the
Goldman set, we see that neglect of the internal
strain contribution to C results in an error of about
10% for C,, and 30% for C,,. On the other hand, we
find that these relatively small changesin Clead toa
dramatic change in the values of , viz.,
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TaBLE 1. Various sets of elastic constants (in kbar) for solid hydrogen and deuterium

Reference C,, C,, Cis Cis Cia V (em?*/mol)
Nielsen (7)° H, 4.2 1.8 5.1 0.5 1.1 22.8
D, 8.2 2.9 10.2 0.9 2.3 19.94
Wanner and  H, 3.62 1.19 4.40 0.41 0.83 22.87
Meyer (17)" D, 6.68 2.32 7.88 1.11 1.64 20.19
Thomas (19)° H, 3.32 .30 4,08 0.56 1.04 23.20
Goldman (20)¢ H, 3.72 1.37 4.51 0.57 .15 22.73

aNeutron scattering in p-Hz at 5.4 K and o-D; at 5 K.

bVelocity of sound measurements on n-H» and 0-D; at 4.2 K.

cBrillouin scattering in p-H, at 13,2 K.
dTheoretical calculations for p-H, at 0 K.

TaBLE 2. Displacement correlation matrix and nonaxiality parameter in the anisotropic Debye
model. Based on various sets of elastic constants designated as in Table 1

(a) In-plane pairs, frame [5]

102Re™2 x

Reference Asx A,y As. A, n (x10%)
Wanner and

Meyer (17)  H, 2.048 2.040 1.921 0 0.08
Nielsen (7) H, 1.955 1.835 1.819 0 1.20
Thomas (19) H, 2.092 1.943 1.957 0 1.49
Goldman (20) H, 1.994 1.877 1.869 0 1.17
Wanner and

Meyer (17) D, 1.185 1.172 1.111 0 0.13
Nielsen (7) D, 1.064 1.013 0.998 0 0.51

(b) Out-of-plane pairs, frame [65]
102Ro™2 X

Reference Agrxr Ayyr Asx Ayrzr n’(x103%)
Wanner and

Meyer (17) H, 2.093 2.025 1.931 0.041 0.68
Nielsen (7) H, 1.975 1.880 1.767 0.070 0.95
Thomas (19) H, 2.107 2.015 1.877 0.074 0.92
Goldman (20) H, 2.012 1.931 1.808 0.063 0.81
Wanner and

Meyer (17) D, 1.207 1.171 1.110 0.022 0.36
Nielsen (7) D, 1.078 1.033 0.974 0.034 0.45

103 n@ip) =-049 (1.17)
10°n'(op) = 0.24  (0.81)

where the correct values obtained with the Goldman
set (20), in which the internal strain contribution is
included, are shown in parentheses.

In connection with the results shown in Table 2,
we make the following remarks. The distribution in
the relative displacements, ¥ = w, — u,, can be
represented by an ellipsoid M, M*® y u, = 1, where

[49]

M*® is the inverse of the correlation matrix A,y
defined by [38]. According to Table 2, the principal
axes of M forfpairs coincide with the axes [5], as
demanded by the crystal symmetry, and M is flat-
tened along the y axis, i.e., along the crystal ¢ axis,
giving a positive 1. For op pairs, the third principal
axis of M makes a small angle of the order of 1° with
the local z’ axis, and the flattening along the y’ axis
isless than for ip pairs, resulting in a smaller but still
positive 11’. These results are as expected for a
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model describing a continuous, uniaxial medium in
which the shape of the correlation ellipsoid for two
points of given separation can depend only on the
angle, 8,,, between the ¢ axis and the line joining
the two points. For 8,, = 0, M must be axially
symmetric, for 8,, = 4n, the asymmetry must be a
maximum, and for a reasonably smooth anisotropy
of the sound propagation, the asymmetry of M can
be expected to vary smoothly between these two
limits. In particular, the sign of n} should be the
same for all 8,,, provided the x axis of the local
frame is always chosen parallel to the basal plane.
These properties are all borne out by the results in
Table 2.

5. Calculation of the Nonaxiality Parameter in a
Perturbed Einstein Model

As explained in Sect. 1, the effect of the im-
mediate crystalline environment on the pair corre-
lation function of a pair of nearest neighbouring
molecules cannot be expected to be given correctly
in the Debye model introduced in Sect. 4, since in
that model the motion of the molecules is assumed
to be equal to that of the corresponding points in a
continuous medium. We investigate this ‘crystai-
line” effect here on the basis of an Einstein model
perturbed by the intermolecular interaction which
provides a coupling between neighbouring Einstein
oscillators, which leads to a nonvanishing 1 de-
pending on the spatial arrangement of the four
common nearest neighbours of the pair.

The Hamiltonian for the lattice is

[50] H=K+V

where K is the kinetic energy of the translational
motion of the molecules and V' the total potential
energy of interaction. In the Einstein model the
Hamiltonian [50] is replaced by

[51]  Ho=K+ Y tmogu? =K + V,

where oy can be obtained by minimizing the ex-
pectation value of H over the ground state, {0), of
H,. We obtain instead a value of @ from the mea-
sured width of the single-particle distribution func-
tion,

(52] u? = 3h/[2moyg)

According to inelastic neutron scattering data (7),
this quantity in solid hydrogen at T= 5.4 K has the
value 0.48 A2, givingwg = 9.8 X 10'2rad/s, or T, =
hoglk =75 K.

In the Einstein model, the pair correlation func-
tion is axially symmetric and n vanishes. We now
introduce
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[53] V,=V-V,

as a perturbation which in second order produces
correlations leading to a nonvanishing value of 1.
The perturbed ground state correct to second order
in V| is given by ) = T|0), where Tis the operator
(22)

[34] T =1~ Z axpa Vi + ; ;’,QIVU-MPN ViruVy

N
B ;’a"’z(l).’vvl PoVi + EpoVipaVy)

The primes indicate exclusion of the ground state,
py is the projection operator onto the degenerate
manifold of states with energy

E/V = Z(N, + 3/2)]1(05

N=YN=012...,

and
oy = (Ey — Ey)™!

We assume for V a quadratic expression in the
displacements u; of the form

[55] V =»},;Zu,~'(1)ij~uj
iJ

where the constants ®;are regarded as the effective
force constants in the model harmonic Hamiltonian
in the spirit of quantum crystal theory. We
parametrize these force constants in terms of a
model of pairwise, nearest neighbour, central ef-
fective interactions.

[56] V=Y WR,)
i<j
giving
[57] O;P = —4R;*R;PY — 26043\]/'

where R; = R; — R;, o and P denote Cartesian
components, and

(58] V' = (dY/d(R?))g,, V"= (dNY/A(R))g,

are the two parameters characterizing the model.
The perturbation [53] is then given by
[59] Vi= Y > O uu, + Y agu,’

L«ﬁg e

LS g3

The last term turns out to give no contribution to n
and may be discarded.
In the perturbed ground state 1 is given by

(60] N = (Yol Qo) /Ry?
where Q is the operator
[61]

Q= (Uzp — 1 5)* — (Uzy — Uy,)?
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(a)

29N

’b)

FIG\. 1. Nearest-neighbour environment of ip pairs («) and op puirs (b) in an hep lattice. For both pairs the vector R, points
out of the page. The four common nearest neighbours of each pair shown by the black dots lie on a circle of radius V3R, in

the plane perpendicular to and bisecting R,,.
which can be written as a sum of a single-particle
and a two-particle operator, Q = Q, + Q,, where
[62] Q= (”l‘r2 - ”lyz) + (“2.1‘2 - ”21/2)
(63] Qy = 2011 yltyy = Uy ply)

In the central-force model, Q, gives no contribution
to [60],

(64] N/(),QlN/n) =0

because for central forces the perturbed single-
particle distribution function remains spherically
symmetric in second order.
Using [54], [57], [59], and [64], we obtain
[65]  (YolQro) = [(01V,p,Q,p,V10)
+ 2 Re (0|Q,p,V1p,V1[0)]/(2ho)?

~The only nonvanishing terms are of the form

(019,11, 1,05)(1, 1,051V, 11,0, 15)(1,0, 1] V,{0)
and

<Ol VltOI 1213><Ol 1213lQZ|110213><110213|V1|0>

where 3 refers to one of the four nearest neighbours
common to molecules 1 and 2. This shows the
nature of the processes contributing to n in this
model. The term u,- ®,,- &, in V| gives rise to an
axially symmetric distortion and does not contri-
bute to 1], and the same remark applies to the purely
quadratic terms in [59]. From [65] we obtain

(661 WolQlo> = — (241" *[m’w*)
X Z (Rlan'.’nx - RlnyRZMy)RIn'RZn

where the sum over n extends over the four

neighbours of the pair 1, 2, c¢f. Fig. 1. The angle
between R,, and R,, is 60° for all four neighbours
and both types of pair, and R, - R,, = £R,?, but the
sum in [66] is different for the two types corre-
sponding to p= ip and p = op, and is given by

[67] Z(RIMXRZH'\- - RIHK\»RZHJ/) = y(/))ROZ

where y(ip) = % and y(op) = 1, and x and y refer to
the pair frames defined in Sect. 2. Combining [60],
[66], and [67]., we get

[68]  n(p)= —v(PI2AR? mPwp "

For the effective potential ¢ we use the Lennard-
Jones potential of Raich and Kanney (23), withg =
1.25 x 10715 erg and o = 3.46 A, which was ob-
tained by fitting the measured k= 0 optical phonon
frequencies in parahydrogen to a harmonic lattice
model. This is clearly the most appropriate poten-
tial to use in an Einstein model. The value of Ry
used in ref. 23 was 3.756 A, giving §" = 2.1 X 106
erg/cm?, and hence

[69] m(ip) = 4nm(op) = —in’(op) = —0.77 X 1073

Thus in the Einstein model the magnitude of n for ip
pairs is smaller than for op pairs, reflecting the fact
that the immediate environment of ip pairs is more
symmetric thaff6r op pairs, cf. Fig. [ and[67]. This
result is in contrast to that for the Debye model
where n(ip) is larger than n’(op). The two results
are not contradictory, however, since the variation
in7 in the Debye model is largely determined by the
angle, 0,,, between the pair axis and the ¢ axis,
whereas in the Einstein model the value of 9, is
irrelevant and the immediate environment plays the
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determining role. We assume the two contributions
to be additive and we regard the Einstein contribu-
tion as a correction of the short-wavelength con-
tribution in the Debye model. This tends to de-
crease n(ip) and to increase n’(op), and hence to
reduce the difference between the two pairs pre-
dicted by the Debye model.

The Einstein model predicts a definite ratio,
n(op)n(ip) = 3. and a definite sign of n, which can
be expected to be realistic. On the other hand, the
magnitude of the Einstein contribution is quite un-
certain, since it depends on{"(R,)* which is doubt-
less not given correctly by the Lennard-Jones
model. At present, the magnitude of the Einstein
contribution is therefore best regarded as an ad-
justable parameter, to be determined if possible
from the experimental data, as discussed in the next
section.

6. Concluding Remarks
Assuming that the contributions calculated in the
Debye and Einstein models are additive, the final
expression for n for the two types of pair, p, are
[70] n(p) = Nnp(p) + Ne(p)

where with respect to the local frames [5] and [6] we
have

nplip) = 1.20 x 1073,

[71]

niop) = —0.95 x 103
and
[72] Ne(ip) = inglop) = A

where according to [68] we have A < 0. The values
[71] correspond to the set of elastic constants from
Nielsen (7) (H,). and A is regarded as an adjustable
parameter. Using [70], [71], [72], we find? from an
analysis of the microwave data given in ref. 2 that
|A] <1074 and that A < 0 in agreement with the pre-
diction [68].

Our results for n are quite different from those
obtained inref. 6, and in this connection we wish to
make the following remarks. In ref. 6, 1 was ob-
tained as a sum of two contributions, viz.,

[73] n(p) = n,(p) + n2(p)

where 1, appears as a parameter in the self-
consistent harmonic phonon wave function calcu-
lated by V. V. Goldman (unpublished) and quoted
inref. 6, with the values

[74] m,(ip)=—0.1% 1074, m,(op)=—0.7x 1074

whereas 1, is calculated numerically with the help

3S. Luryiand J. Van Kranendonk. To be published.
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of a three-particle distribution function in the form
of a product of three Jastrow functions, the result
being

[75]

The latter calculation is essentially equivalent to
our Einstein model, and the values [75] are in rea-
sonable agreement with [69]. However, the nu-
merical values are very uncertain, since the
parameter Y"(R,)? in [69] and a similar parameter
involved in [75] may easily be in error by one or two
orders of magnitude.

The discrepancy between [74] and our corre-
sponding Debye model result is not understood.
Our result appears more reasonable since, as dis-
cussed in Sect. 4, in an elastically uniaxial medium
one expects N(ip) and n(op) to be of the same order
of magnitude, and [n(op)| < [n(ip)|, whereas [74]
predicts the opposite relation and aimost an order
of magnitude difference. On the basis of [73]-[75]
it was assumed in ref. 6 that r(op) = 4n(ip). In our
opinion, this assumption is incorrect and is the
origin of the difficulties remaining in the analysis of
the microwave spectrum carried out in ref. 6, as will
be discussed in a separate paper.

Another conclusion can be drawn from our
generalized Debye model relevant to the interpre-
tation of the microwave results. Consider the *ob-
lateness’ parameter

[76] C = <”Jr2 + ”yz - 2”:2>/R()2

which measures the axially symmetric flattening of
the pair distribution function, or of the ellipsoid M
defined in Sect. 4, along the local z axis, which is
responsible for the reduction of the multipolar cou-
pling constants. As seen from Table 2, { is larger for
op than for ip pairs, and the multipolar reduction
factors, £;.,;. which decrease with increasing {,
must hence be larger for ip than for op pairs. For the
EQQ interaction we find, using the set of elastic
constants of ref. 7 and assuming ¢ fu = (8/3)"2,

[77] Esalip) — Es4(op) = 0.01

Therefore, a nonvanishing empirical value of the
difference [77] of this order of magnitude or smaller
cannot be interpreted as due to a deviation of the
¢la ratio from the close-packed value, as suggested

o o
inref. 2. s

N.(ip) = 4n,(op) = —0.53 x 1073
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Appendix: The Irreducible Components of the
Elasticity Tensor

The explicit expression for the irreducible com-
ponents [13] of the elasticity tensor C with Carte-
sian components C*°¢_ corresponding to the cou-
pling scheme (gq)(ee) is
[A1] Cp'7 = Y CUlLpvm)CL; p'v'n)

L.b’

H

x CUI'L; maM)UM U UM U™, Co

where U", is the matrix of the transformation from
Cartesian to spherical components, which has the
nonvanishing elements

[A2] Ul,=-U"";= vy, =iUu-', = PR
Uo, =1

The transformation [A1] is unitary in the sense that

[A3] Z ’Cnb“lcnbcd = lzl' [ZM( - l)MC‘LM(HI)C‘LM un

. VOL. 57, 1979

In evaluating [A1] it is convenient to use the Voigt
notation in which the six pairs of Cartesian indices
are replaced by single numerical indices according
tothe schemexx=1,yv=2,2z=3,yz=4,xz7= 5,
Xy = 6, e.g., Crxvy = Cuyrr = Clla C#2 = C}Jv etc.

Using [A1] for the independent components for
hexagonal symmetry, we obtain

[A4] Co'? =Y C(UrL: mm0)A,""

mn

where
A¢® = (1/30(C33 + 4Cy + 3C,, — C12)
A0 = —(V2/6)2C;; + 2C4s = 3C, 1 + C1)
[AS] Ay?*= (1/6)(4Cs3 = 8Cys + 3C;; — C12)
A2 ==(C\3+ Cy)
A22=3C,; + C}»)

The final expressions for the irreducible compo-
nents in terms of the elastic constants are

Cpo®®= (1/3)0(Cy5 + 4Cyy + 3C,, — C)3)
502" = —(V2/6)2C;3+ 2Cyu— 3C,, + C13)
[A6] Cyo@2 = (V5/30)(4C;34C,4 + 9C
+5C,, + 12C}5)
Coo®? = —(V14/42)(4C;;—2Cyy — 3C,,
—~7C,, + 6C,3)
Cao®?= (2V70/35)(C33—4C4 + C,, — 2C}5)
The set of irreducible components correspond-
ing to the alternative coupling scheme (ge)(ge) can

be obtained by replacing C**" in [A1] by CaetV’
= C®@'Y In particular, one finds in this way

[A7] 620(20)= _(\/—2_/3)(C33 +Ci3—C—Ca)
Since in an hep lattice with central forces C,,?% =
0, we have that

[A8] B=Cy3+Cs—C,, —Cy;

vanishes in such a lattice. Finally, from [A6] and
[A7]. ordirectly from the definitions, it follows that

[A9] 3@21;&2%= Cy®0 + WCZOQZ)

Hence if B = 0, we also have C20 = —V/7C,,@2,





