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Effect of Internal Optical Loss on Threshold
Characteristics of Semiconductor Lasers With a
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Abstract—We develop a general approach to including the in-
ternal optical loss in the description of semiconductor lasers with
a quantum-confined active region. We assume that the internal
absorption loss coefficient is linear in the free-carrier density in
the optical confinement layer and is characterized by two param-
eters, the constant component and the net cross section for all ab-
sorption loss processes. We show that, in any structure where the
free-carrier density does not pin in the presence of light genera-
tion, the free-carrier-density dependence of internal loss gives rise
to the existence of a second lasing threshold above the conventional
threshold. Above the second threshold, the light–current charac-
teristic is two-valued up to a maximum current at which the lasing
is quenched. We show that the presence of internal loss narrows
considerably the region of tolerable structure parameters in which
the lasing is attainable; for example, the minimum cavity length
is significantly increased. Our approach is quite general but the
numerical examples presented are specific for quantum dot (QD)
lasers. Our calculations suggest that the internal loss is likely to be
a major limiting factor to lasing in short-cavity QD structures.

Index Terms—Quantum dots (QDs), quantum wells (QWs),
quantum wires (QWRs), semiconductor heterojunctions, semi-
conductor lasers.

I. INTRODUCTION

I NTERNAL optical loss is present in all types of semicon-
ductor lasers. It adversely affects their operating character-

istics—increasing the threshold current density and decreasing
the differential efficiency [1]–[3]. Because of the lower value of
the optical confinement factor for thin layers, the effect of in-
ternal loss is stronger for lasers with a reduced-dimensionality
active region than for bulk lasers [1].

In general, several mechanisms can contribute to the internal
loss, such as free-carrier absorption in the optical confinement
layer (OCL) and in the cladding layers (emitters) [4], interva-
lence band absorption (hole photoexcitation into the split-off
subband) [5]–[8], carrier absorption in the quantum-confined
active region itself, and scattering at rough surfaces and imper-
fections of the waveguide. Determination of the absorption co-
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efficient for each of these processes is very important because,
depending on their relative strengths and the structure design
parameters, the net absorption loss coefficient can be as low as
1.4 cm [9] or as high as 20 cm [10], and even higher [11].

Due to the variety of possible mechanisms, one hardly ex-
pects a first-principle evaluation of the net internal loss coeffi-
cient. Formally, however, all different processes can be grouped
into two categories, one dependent on the injection carrier den-
sity (such as free-carrier absorption in the OCL), the other in-
sensitive to this density (such as scattering at rough interfaces).

Leaning upon this fact, we develop here a general phe-
nomenological approach to the inclusion of the effect of
internal loss on threshold characteristics in semiconductor
lasers. We show that the injection-carrier-density dependence
of internal loss coefficient, combined with nonpinning of the
carrier density, gives rise to the existence of a second lasing
threshold above the conventional threshold; above the second
threshold, the light–current characteristic is two-valued. We
also show that the presence of internal loss narrows consider-
ably the region of tolerable structure parameters in which the
lasing is attainable.

The total net internal loss coefficient (which we shall refer to
as the internal loss) is presented as the sum of a constant and a
component linear in the carrier density in the OCL as follows:

(1)

where can be viewed as an effective cross section for all
absorption loss processes.

The assumption of a linear dependence on the free-carrier
density in the waveguide is justified in most situations of
practical interest. For example, intervalence band absorption
increases proportionally to hole density [5]–[7]; free-carrier
absorption also increases linearly with [4].

The carrier densities in the cladding layers, being mainly de-
fined by the doping levels there, remain practically unchanged
and close to their built-in values as the injection current varies.1

For this reason, the free-carrier and the intervalence band
absorption loss due to the optical mode penetration into the
cladding layers are both lumped into the constant component

of the internal loss.

1There may be a slight increase in the carrier density above their built-in
values in the cladding layers due to the carrier leakage from the OCL at high
injection level and high temperature. In the first approximation, this variation
should also linearly follow the carrier density in the OCL n. Hence, the inclu-
sion of this effect will slightly increase the value of � in (1).
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II. LASING THRESHOLD CONDITION

With (1), the lasing threshold condition (balance between the
modal gain and the total loss )
becomes

(2)

where is the maximum (saturation) value of the modal
gain, is the external (mirror) loss, is the
cavity length, and is the mirror reflectivity. In (1) and (2),
is the weighted average of the internal loss across the optical
mode shape [3].

For quantum-well (QW) or quantum-wire (QWR) lasers,
and are occupancies of the electron and hole subband-edge
levels, between which the lasing transitions occur. For a
quantum-dot (QD) laser, and are occupancies of the
discrete electron and hole levels. The maximum value of
the modal gain is obtained at full occupancies
and the minimum at zero occupancies.

For QW or QWR lasers, the right-hand sides of (1) and (2)
should also contain a term for absorption in the active region,
which is linear in the two-dimensional (2-D) or one-dimensional
(1-D) carrier density, respectively. However, at high injection
currents (or high temperatures—see [12] and [13]), this term
will be small compared to absorption in the OCL.

In a QD laser, the process analogous to free-carrier absorption
is carrier photoexcitation from the QD levels to states in the
continuous spectrum [14], [15]. The absorption coefficient for
this process is linear in the confined-carrier level occupancy in a
QD and, generally, it should also be included into the right-hand
sides of (1) and (2). However, this contribution is typically less
than about 0.1 cm [14], [15].

In general, in the right-hand sides of (1) and (2) one should
use separate terms for electrons and holes, since they have dif-
ferent cross sections and . For simplicity, we will use
the lasing threshold condition in the form of (2) having left un-
derstood that refers to the cross section corresponding to
the carrier type dominant in absorption.

We assume equal electron and hole occupancies in a
quantum-confined active region ( ). At relatively
high temperatures and below the lasing threshold, the thermal
equilibrium holds and is given by the Fermi–Dirac distri-
bution function with the quasi-Fermi level determined by the
pumping.2 The carrier density in the waveguide (OCL) is
related to as follows [14]:

(3)

where is a quantity characterizing
the intensity of thermally excited escape of carriers from a re-

2It was shown in [14] that, depending on temperature and carrier localiza-
tion energies, two fundamentally different modes of QD filling with carriers,
nonequilibrium and equilibrium, are possible. At low T (nonequilibrium QD
filling), the threshold current is virtually temperature independent; at high T

(equilibrium filling), the threshold current is controlled by thermal escape from
QDs and grows exponentially with T . Since the carrier density in the OCL is
low at low T , the effect of carrier-density-dependent internal loss is weak in the
nonequilibrium mode.

duced-dimensionality active region to the OCL, with
, is the carrier excitation energy from

an active region, and the temperature is measured in units of
energy.

The threshold condition is then written as follows:

(4)

It is illustrated in Fig. 1(a) where the modal gain
and the internal loss

are shown as functions of the
level occupancy . Though the theoretical approach devel-
oped here is general and applies equally to semiconductor
lasers with a quantum-confined active region of an arbitrary
dimensionality, our numerical examples, including those in
Figs. 1–8, are specific for QD lasers; the simulation parameters
are given in Section V-A.

With (3), the level occupancy in the active region and the
modal gain can be expressed in terms of the carrier density in
the OCL as follows:

(5)

(6)

The threshold condition becomes

(7)

Fig. 1(b), showing the modal gain and the internal loss as func-
tions of the carrier density in the OCL (given by (6) and (1),
respectively), illustrates the threshold condition of the form (7).

In the absence of lasing, the injection current density is
related to the level occupancy in the active region as follows
[14], [16]:

(8)

where is the OCL thickness and is the radiative constant
for the OCL. A relation between the spontaneous recombination
current density in a quantum-confined active region and
the level occupancy is presented in Appendix I.

With the functional relationship (8) between the level occu-
pancy and the injection current density , both the modal gain
and the internal loss can be calculated as functions of [shown
in Fig. 1(c)].

III. SOLUTIONS OF THE THRESHOLD CONDITION: TWO LASING

THRESHOLDS

For , (4) is a quadratic equation in the confined-
carrier level occupancy in the active region ; the roots are (see
Fig. 1 for a graphic illustration to the solutions)

(9)
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Fig. 1. Illustration of the threshold condition (4) and of the two lasing
thresholds. Modal gain g = g (n � n )=(n + n ) = g (2f � 1)
[inclined dotted line in (a) and dotted curves in (b) and (c)], internal loss
� = � + � n = � + � n f =(1 � f ) [dashed curves in (a)
and (c) and inclined dashed line in (b)] and difference of modal gain and
internal loss (solid curve) against (a) confined-carrier level occupancy in the
active region f , (b) free-carrier density in the OCL n, and (c) injection
current density j. The intersections of the solid curve and the horizontal
dash–dotted line for the mirror loss � = (1=L) ln(1=R) are the solutions (9)
of (4) [in (a)], the free-carrier densities in the OCL at the lower and the upper
thresholds [in (b)], and the lower and the upper threshold current densities,
j and j , respectively [in (c)]. The dependences on n in (b) and on j
in (c) are easily converted from those in (a) using (3) and (8). Throughout
the paper, a GaInAsP–InP-based QD-heterostructure lasing near 1.55 �m
[14]–[16] is considered for illustration. We assume 10% QD-size fluctuations
and N = 6:11 � 10 cm ; at these parameters, g = 29:52 cm .
At T = 300 K, n = 5:07 � 10 cm . In Figs. 1 and 2, the mirror loss
� = 7 cm ; otherwise, � = 10 cm . Parameters � and � are plausibly
taken as 3 cm and 2.67�10 cm , respectively.

where

(10)

is the “critical” solution [corresponding to the case when a struc-
ture parameter attains its critical tolerable value—cf. (17) in
Section V], and

(11)

is the level occupancy in the active region at the lasing threshold
in the absence of internal loss ( , ), being
the minimum tolerable cavity length in the absence of internal
loss given as

(12)

For shorter than the minimum tolerable cavity length, the
lasing is unattainable in the structure. We discuss the minimum
cavity length in detail in Section V-B.

In general, the following inequalities hold for and
(Fig. 1):

(13)

The value 1/2 is the level occupancy at the transparency
threshold [when the modal gain is zero: ].

Both solutions (9) are physically meaningful and describe
two distinct lasing thresholds. The first solution is the
conventional threshold, similar to but modified by the in-
ternal loss. The second solution appears purely as a con-
sequence of the carrier-density-dependent component of the in-
ternal loss in the OCL.

As decreases, the first threshold decreases and
the second threshold increases [see Fig. 6(b) below]. At

, the only solution of (4) is

(14)

Clearly when both and are zero.
Thus, when the internal loss depends on carrier density, there

are, in general, two solutions of the threshold condition
and , and hence we have two lasing thresholds.

We shall refer to the injection current densities corresponding
to and , respectively, as the lower threshold current
density and the upper threshold current density . These
threshold current densities are given by (8) wherein one substi-
tutes either or .

The existence of a second lasing threshold stems from the
nonmonotonic dependence of the difference between the modal
gain and the internal loss on the level occupancy in a quantum-
confined active region [the solid curve in Fig. 1(a)], or, equiv-
alently, on the carrier density in the OCL [the solid curve in
Fig. 1(b)], or on the injection current density [the solid curve in
Fig. 1(c)]. The point is that the modal gain
increases linearly with [the dotted line in Fig. 1(a)] and sat-
urates at its maximum value as [which corre-
sponds to and —see (3), (8) and Fig. 1(b),
(c)]. At the same time, is superlinear in [see (1) and
(3) and the dashed curve in Fig. 1(a)] and increases infinitely
as . At a certain [see (23)], i.e., at a certain ,
the rate of increase in with will inevitably equal that
of increase in , and hence the difference will peak.
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Any further increase of the injection current density will de-
crease the difference [the solid curve in Fig. 1(c)]. This
corresponds to the so-called “loss-multiplication” regime, dis-
cussed in [12], [13] for InGaAsP–InP-based strained-layer mul-
tiple-QW lasers and attributed to the pileup of carriers due to
electrostatic band-profile deformation [17], [18]. In the context
of QD lasers, the loss-multiplication regime was discussed in
[19] and [20]. As evident from our analysis, this regime and the
second lasing threshold are inherent to all structures where the
internal loss depends on the carrier density in the OCL.

Due to bimolecular (quadratic in ) spontaneous recombina-
tion in the OCL, the injection current density is superlinear
in [quadratic at high —see (8)] and hence the internal loss
[being linear in —see the dashed curve in Fig. 1(b)] is strongly
sublinear in [increases as at high —see the dashed curve
in Fig. 1(c)]. [Also the modal gain is strongly sublinear in both

and —see (6), (8), and the dotted curves in Fig. 1(b) and
(c)]. In [19], a linear relation between and was however
assumed, which is justified for only monomolecular (linear in

) recombination in the OCL, such as recombination via non-
radiative centers. At high injection levels, bimolecular and then
Auger (cubic in ) recombination dominate and becomes su-
perlinear in and hence sublinear in .

IV. TWO-VALUED CHARACTERISTICS: GAIN–CURRENT AND

LIGHT–CURRENT

Under CW operation, increasing from zero, one reaches the
first lasing threshold . Above this threshold, the difference
between the gain and the internal loss is pinned at the value of
the mirror loss and hence Fig. 1 (which is valid for deter-
mining the positions of both thresholds) no longer applies. What
actually happens above is shown in Fig. 2, derived [21]
by rigorously solving the rate equations in the presence of light
generation. These rate equations are presented in Appendix II.
In a steady state, the rate equation for photons reduces to our
(2), where now the quantities , , and are calculated in the
presence of light generation.

As a consequence of the noninstantaneous carrier capture
from the OCL into the quantum-confined active region, the free-
carrier density in the OCL does not pin and increases above
threshold. A quantitative theoretical study of this effect was
given in [16]. The effect has also been seen experimentally, see
[4] and numerous references cited in [16]. To simplify the con-
sideration, the carrier-density-dependent component of the in-
ternal loss [the last term in the right-hand side of (2)] was ne-
glected in [16]; with that assumption, the confined-carrier level
occupancy in the active region is pinned above threshold at
a value given by (14), as is evident from (2).

As is also evident from (2), the carrier-density-dependent
component of the internal loss in the OCL couples the con-
fined-carrier level occupancy in the active region and the
free-carrier density in the OCL; the equation relating these
quantities is [we assume equal electron and hole occupancies
( )]

(15)

Fig. 2. Two-valued lasing characteristics: (a) gain–current (left axis) and (b)
light–current. The branches corresponding to the first (conventional) and the
second (anomalous) regimes (solid and dashed curves, respectively) merge
together at the point j which defines the maximum operating current. At
j > j , the lasing is quenched. The dotted curve in (a) is the gain-current
dependence for a nonlasing regime. Since g = g (2f � 1), the same
curves in (a) show the confined-carrier level occupancy f in the active region
(right axis): solid and dashed curves—for the first and the second lasing
regimes, respectively, dotted curve—for a nonlasing regime. The intersections
of the solid and dashed curves for the first and the second lasing regimes with
the dotted curve for nonlasing regime determine the first and the second lasing
thresholds (the abscissae determine j and j , the ordinates determine
f and f ). In (b), the assumed stripe width W = 2 �m.

As seen from (15), the carrier-density dependence of the internal
loss in the OCL, together with the absence of carrier-density
pinning in the OCL in the presence of light generation, leads
to nonpinning of the confined-carrier level occupancy in the
active region in the presence of light generation.

Above the second threshold and up to a maximum pump
current , there are two solutions of the rate equations. The
injection-current-density dependence of the confined-carrier
level occupancy corresponding to the the first solution
(conventional lasing regime) and the second solution (anoma-
lous new regime) is shown by the solid and dashed curves,
respectively, in Fig. 2(a) (right axis). The intersections of these
curves with the dotted curve for in the absence of lasing de-
termine the first and the second lasing thresholds (the abscissae
determine and , the ordinates determine and

). Since the light intensity is zero at the threshold points,
the two solutions for of the rate equations in the presence
of light generation go (as they should) into and
determined from (4) and given by (9).

Above the second threshold , both the gain–current de-
pendence [Fig. 2(a), left axis] and the light–current character-
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istic (LCC) [Fig. 2(b)] are two-valued. At , the two
branches merge in both characteristics.

As seen from (2), in the presence of carrier-density-dependent
component of the internal loss the difference between the gain
and the internal loss remains pinned at the value of the mirror
loss , though both the internal loss and the
gain [Fig. 2(a), left axis] change with the in-
jection current. As increases with the current above the con-
ventional threshold in the first (conventional) lasing regime,
the gain strictly follows it so as to maintain the stable genera-
tion condition . An increase of ,
caused by increasing free-carrier density in the OCL, is com-
pensated by an increase in , ensured by
increasing confined-carrier level occupancy above the con-
ventional threshold in the first lasing regime [the solid curve in
Fig. 2(a)]. This continues up to the maximum pump current
at which the lasing is quenched.

At this time, we cannot propose a definite experimental tech-
nique to access the second lasing regime (the upper branch of
the gain–current characteristic [the dashed curve in Fig. 2(a)]
and the lower branch of the LCC [the dashed curve in Fig. 2(b)]).
Analysis of the stability of the second lasing regime will be pub-
lished elsewhere. We would like to stress that the nature of the
anomalous regime in laser operation deserves further study. In
particular, even though this regime is a true steady state, it is
not clear whether or not it can be made stable. In some sense,
one can draw an analogy between the light–current characteris-
tics of a laser and the current–voltage characteristics of various
negative differential resistance devices, such as those based on
tunneling or real-space transfer nonlinearities. For example, the
numerical study of real-space transfer transistors [22] revealed
the existence of multiply connected current–voltage characteris-
tics, with several stable points at a given voltage. In some cases,
the anomalous branch may even be unconditionally stable, but
even if it is not, its very presence should have a pronounced ef-
fect on the large-signal dynamics of laser operation.

Other mechanisms, such as carrier heating and modal gain
compression, can also lead to the second lasing threshold. Thus,
due to the increase in carrier temperature with the injection cur-
rent [23]–[26], [18], the modal gain itself can become nonmono-
tonic with , decreasing at high currents [25]. Such mechanisms
can further enhance the effect of internal loss. The effect of in-
ternal loss in the presence of other mechanisms is a matter of
a separate study. This study will show the relative importance
of different mechanisms involved and how to discriminate them
from each other. Here, it is however worth noting that the in-
ternal loss will remain present in temperature-stabilized devices,
in which the heating effects are strongly suppressed.

V. CRITICAL TOLERABLE PARAMETERS

The lasing in a structure is only possible in a certain region
of values of the structure parameters. This multidimensional re-
gion of tolerable parameters is given by the existence condition
of real positive roots and [see (9)] of (4). This con-
dition is of the form

(16)

Fig. 3. Two-dimensional region of tolerable values of the normalized internal
loss parameters � =g and � n =g given by (16) (the hatched region
below the solid curve); the ratio �=g = 0:34, which corresponds to � =

10 cm and g = 29:52 cm for the structure considered. The tolerable
region for the case � = 0 is the region below the dashed curve. The boundary
(the solid or the dashed curve at �=g = 0:34 or �=g = 0, respectively)
represents the maximum tolerable value of � , � , versus � ; and vice
versa, the maximum tolerable value of � , � , versus � if the functional
relationship between the abscissa and the ordinate is interchanged.

In the absence of internal loss, (16) reduces to the inequality
discussed earlier [14], [27].

The limiting case when the inequality (16) becomes an equa-
tion yields the critical tolerable value for any one of the param-
eters, other parameters being fixed. These critical tolerable pa-
rameters are , (Section V-A) and (and, equiv-
alently, ) (Section V-B). In QD lasers, two more critical
parameters are and [14], [27] (Section V-C).

When the equality in (16) holds, there is only one solution
of the threshold condition. The curve for
is tangent at its maximum to the horizontal line for the mirror
loss (Fig. 1). This happens as or (affecting the constant
component of the total loss), or (affecting the carrier-den-
sity-dependent component of the internal loss), or, in the context
of QD lasers, or [affecting —see (20)] tend to their
critical tolerable values. In this case,

(17)

(see (10) for ).

A. Critical Tolerable Values of and

The loss parameters and are not directly controllable
variables as they are determined by the specific loss processes
involved. Nevertheless, it is instructive to determine the 2-D
region of tolerable values of and where lasing can be
attained (the hatched region in Fig. 3) for given structure param-
eters. This procedure becomes even more appealing in view of
the wide scatter of reported data for , even for similar struc-
tures. For example, cm [28] and cm
[29] was reported in structures with InGaAs QDs based on
GaAs substrates (in the wavelength ranges – m
and 1–1.1 m, respectively). In [29], the internal loss was
unaffected by the number of QD layers, which indicates that
the carrier-density-dependent component of was negli-
gible; hence the measured value of 11 cm can be attributed
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solely to . The estimated value of is 1.3 cm
in [6] while it is in the range of cm
in [10] for GaInAsP–InP double-heterostructure lasing at

m. For GaInAsP–InP double-heterostructure
lasing at m, cm in [6] and

cm in [5], [7].
The solid curve [given by the equality in (16)] in Fig. 3 bounds

the region of tolerable values of and for a given mirror
loss cm ; the dashed curve is the corresponding upper
bound, obtained by assuming an infinitely long cavity ( ).
Each point on the solid (dashed) curve presents the maximum
tolerable value of at a fixed and given (at );
and vice versa, maximum tolerable value of at a fixed .

At and , we have

(18)

(see the intersection of the dashed curve and the vertical axis in
Fig. 3).

At and , the equation for is

(19)

(see the tangent point of the dashed curve and the horizontal axis
in Fig. 3).

All of the above equations apply equally to QD, QWR, and
QW lasers. One specifies the type of laser by substituting the
relevant expression for and relation between and

[see (8) and (A1)–(A3)].
Our general approach is illustrated below by detailed calcu-

lations for QD lasers. The saturation value of the modal gain is
given by [14], [30]

(20)

where and for the Lorentzian and the
Gaussian QD-size distributions, respectively, is the lasing
wavelength, is the dielectric constant of the OCL, is the
mean size of QDs, and is the optical confinement factor in
a QD layer (along the transverse direction in the waveguide).
The inhomogeneous line broadening caused by fluctuations in
QD sizes is , where and
are the quantized energy levels of an electron and a hole in a
mean-sized QD, and is the rms of
relative QD size fluctuations.

For illustration, we consider room-temperature operation
of a GaInAsP–InP heterostructure similar to that assumed in
[14]–[16]. Throughout the paper, we assume the following
structure parameters, unless otherwise specified:
(10% QD-size fluctuations); as-cleaved facet reflectivity at
both ends ( ) and mm, which correspond
to the mirror loss cm ; cm ,
which, in the absence of internal loss, is the optimum
minimizing the threshold current density at the above values of

and [see the dotted curve in Fig. 7(c)]. At these parameters,
cm . At K, cm .

For this structure, (18) and (19) give cm
and cm .

We see from (18) to (20) that and increase indef-
initely with either or . Hence making the QD
ensemble denser or improving the QD-size uniformity is a di-
rect way to alleviate the limitations on lasing imposed by the
internal loss in QD structures.

B. Critical Tolerable Values of and

The minimum cavity length is readily obtained from (11) and
(16) and is given by

(21)

where is the minimum cavity length in the absence of in-
ternal loss [see (12)].

The equation for the critical tolerable parameters [equality in
(16)] can be rewritten as follows:

(22)

where is the maximum toler-
able mirror loss. Equation (22) has an evident meaning. The
right-hand side is simply the peak value of the difference
between the modal gain and the internal loss (Fig. 1); this value
is obtained when the level occupancy in the active region is

(23)

[see also the last equation in (17)]. When the mirror loss ap-
proaches this peak value, the critical condition (22) is met. The
peak value of the difference between the modal gain and the in-
ternal loss can be considerably lower than the saturation value

of the modal gain itself; in addition, in contrast to ,
it is temperature-dependent [through the -dependence of the
quantity characterizing the intensity of the thermal escape of
carriers from an active region, see (3)].

Equations (21)–(23) hold true for QD, QWR, and QW lasers.
For QD lasers, using (20) for and (12), we have [27]

(24)

Fig. 4(a) shows as a function of calculated using
(21) and (24). As evident from the figure, depending on and

, the restriction can be considerably increased com-
pared to its value in the absence of internal loss. This is
consistent with the discussion in [19], [20], concerning the lim-
itation of for the QD-ground-state lasing posed by a steep
increase in with decreasing cavity length (due to loss-mul-
tiplication [12], [13]).

Throughout the paper, we chose cm and
cm (unless otherwise specified), so

that , , and areequal to1.139mm,10cm ,
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Fig. 4. (a) Minimum cavity length L and (b) minimum surface density
of QDs N [solid curve, left axis] and maximum rms of relative QD size
fluctuations � [dashed curve, right axis] against absorption loss cross
section � . L , N , and � are calculated using (21), (26), and (27),
respectively. The same curves can be viewed as representing � versus the
cavity length L, the surface density N of QDs, or the rms � of relative QD
size fluctuations.

6.11 cm and 0.05, respectively. At these plausible
and , the internal loss is within a typical range from several to
above ten cm (the solid curve and the left axis in Fig. 8). The
minimum cavity length is hence increased almost threefold com-
pared to its value in the absence of internal loss m.
Thus, our theory shows that the absence of lasing often observed
in short-cavity QD structures can be attributed to internal loss.
Another possible reason that limits lasing via the ground-state
transition at short (under a millimeter) cavity lengths can be a
small overlap integral of the electron and hole wave functions in
low-symmetry QDs; this was discussed in [31].

When the denominator of the right-hand side in (21) is zero,
then , i.e., the lasing is unattainable at a finite cavity
length. This situation at a high internal loss may be somewhat
alleviated by using high-reflectivity mirrors. Indeed, when

, then [see (24)] and can be kept finite.

C. Critical Tolerable Values of and

The equation for the critical tolerable parameters can be put
in the following form (applicable equally to QD, QWR, and QW
lasers):

(25)

In the absence of internal loss, we obtain the earlier equation
[27]. With internal loss, the role of the mirror loss

is effectively taken on by the right-hand side of (25).

Fig. 5. Minimum surface density of QDs N (left axis) and reciprocal of
maximum rms of relative QD size fluctuations 1=� (right axis) against
mirror loss � [see (26) and (27)]. The dotted line corresponds to the case of no
internal loss [see (28) and (29)]. The same curve can be viewed as representing
� versus the surface density N of QDs or the reciprocal of the rms of
relative QD size fluctuations 1=�.

Using (20) to express of a QD laser in terms of and
, we get the critical tolerable values for and from (25) as

follows:

(26)

(27)

where and are the critical tolerable values in the
absence of internal loss [14], [27], given as follows:

(28)

(29)

Fig. 4(b) shows and against calculated using
(26) and (27), respectively. We see that both and
are strongly affected by the internal loss: is increased and

is decreased.
As ( ), in contrast to the case of no internal

loss (the dotted line in Fig. 5), does not vanish and
is finite (the solid line in Fig. 5); in this case, and
are solely controlled by and being given by (28) and (29)
wherein is replaced by .

VI. THRESHOLD CURRENT DENSITIES AGAINST STRUCTURE

PARAMETERS

The confined carrier level occupancies in the active region
at both the lower and the upper lasing thresholds, and

, calculated using (9) are shown in Fig. 6 (solid and dashed
curves, respectively). The lower and the upper threshold current
densities, and , are shown by the solid and the dashed
curves, respectively, in Fig. 7. To illustrate how strong the effect
of internal loss can be, the level occupancy and the threshold
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Fig. 6. Confined-carrier level occupancy in the active region at the lower (solid
curves) and upper (dashed curves) lasing thresholds, f and f [see
(9)], against (a) � , (b) � , (c) N , (d) �, and (e) L. The dotted curves in
(c)–(e) show the level occupancy f at the lasing threshold in the absence of
internal loss.

current density in the absence of internal loss, and ,
respectively, are also shown in Figs. 6 and 7 (dotted curves).

Fig. 7. Lower and upper threshold current densities (solid and dashed curves,
respectively), j and j , against (a) � , (b) � , (c) N , (d) �, and (e)
L. In (b)–(d), the y axis is shown in the log-scale since j increases rapidly
away from the critical point. The curve for j joins smoothly the vertical
dash–dotted line at the critical point. The dotted curves and the vertical dotted
lines in (c)–(e) show the threshold current density j and its asymptote at the
critical point in the absence of internal loss.

In the absence of internal loss, the level occupancy in a
quantum-confined active region tends to unity ( )
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when any structure parameter approaches its critical tolerable
value [see (11), the dotted curves in Fig. 6(c) and (e) and the
inclined dotted line in Fig. 6(d)]; hence, the threshold current
density in the absence of internal loss increases infinitely
( )—see the dotted curves in Fig. 7(c)–(e).

As the structure parameter equals its critical tolerable value
in the presence of carrier-density-dependent internal loss
( ), the two solutions of the threshold condition (the
solid and the dashed curves in Fig. 6) merge together at a
value given by (17). Hence the lower threshold current density

(the solid curve in Fig. 7) and the upper threshold current
density (the dashed curve in Fig. 7) merge together at
a finite value. The derivatives of , and, hence, of and

, with respect to the structure parameter are infinitely
high at a critical point (Figs. 6–8). This is a consequence of

at this point—see Fig. 1. Immediately
behind the critical point, the lasing is unattainable. Hence, the
curve for joins smoothly the vertical line at the critical
point (Fig. 7). In contrast, when only the constant component
of the internal loss is present ( ), the curve for
approaches only asymptotically the vertical line at the critical
point, much as the curve for does [dotted curves in
Fig. 7(c)–(e)].

It is evident from Fig. 7 that the internal loss can have a strong
effect on the lower threshold current density , especially
near the critical point, when may increase by several times
compared to its value in the absence of internal loss.

The optimum surface density of QD’s, minimizing ,
is 9.39 cm [see the solid curve in Fig. 7(c)],
i.e., it increases by more than 50% compared to its value
6.11 cm in the absence of [see the dotted curve
in Fig. 7(c)].

Fig. 8 shows the free-carrier density in the OCL (right axis)
and the internal loss (solid curves, left axis) at the lower lasing
threshold against (a), (b), and (c). The dotted curves
show the free-carrier density in the OCL in the absence of in-
ternal loss. As seen from the figure, the free-carrier density can
be considerably increased due to the internal loss. A decrease of

with [Fig. 8(a)] is in line with the data extracted by the
fitting procedure in [19, Fig. 2].

VII. CONCLUSION

We have carried out a theoretical analysis of the threshold
behavior of semiconductor lasers with a reduced-dimensionality
active region taking a general account of the internal optical loss.

In any structure where the free-carrier density in the OCL
does not pin in the presence of light generation and the internal
loss depends on this density, we predict the existence of a second
(upper) lasing threshold. Above the second threshold, there exist
two physically distinct steady-state regimes of stimulated emis-
sion. Accordingly, the gain–current characteristic and the LCC
are two-valued up to a maximum current at which the lasing is
quenched.

Due to the internal loss, the region of tolerable values of the
structure parameters is strongly narrowed, and both the free-
carrier density outside the active region and the confined-carrier

Fig. 8. Free-carrier density in the OCL (right axis) and internal loss (left axis)
at the lower lasing threshold against (a) N , (b) �, and (c) L. The dotted curves
show n in the absence of internal loss.

level occupancy in the active region at the lasing threshold are
increased; thus the threshold current density is increased.

Presented analysis, exemplified in the context of QD lasers,
can be used for their further optimizing, especially for lowering
the threshold current density in short-cavity structures.

APPENDIX I
SPONTANEOUS RECOMBINATION CURRENT DENSITY

EXPRESSED IN TERMS OF THE LEVEL OCCUPANCY IN A

QUANTUM-CONFINED ACTIVE REGION

For QD-, QWR-, and QW-active regions, we have, respec-
tively [14], [16]

(A1)
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where is the surface density of QDs and is the sponta-
neous radiative lifetime in a QD

(A2)

where is the linear density of QWRs (in cm ) and is
the radiative constant for a 1-D region (in cm/s); and

(A3)

where is the number of QWs and is the radiative
constant for a 2-D region (in cm s).

The 2-D carrier density in a QW is expressed in terms of
as follows [32]:

(A4)

where .
A functional relationship between the 1-D carrier density in a

QWR and is also readily calculated, although a closed-form
expression may be difficult to derive in the general case.

APPENDIX II
RATE EQUATIONS IN THE PRESENCE OF LIGHT GENERATION

We shall confine ourselves to the case of a QD laser, for which
we have performed all illustrative calculations in this paper. In
this case, the rate equations are of the following forms.

For carriers confined in a QD (assuming ), we have

(A5)

For free carriers in the OCL (assuming ), we have

(A6)
For photons, we have

(A7)

In (A5)–(A7), is the cross section of carrier capture into a
QD, is the carrier thermal velocity, is the light velocity in
vacuum, is the group index of the dispersive OCL material,

is the QD layer area (the cross section of the junction),
is the QD layer width (the lateral size of the device), and

is the number of photons in the lasing mode.
In a steady state, (A7) reduces to (2). We thus see that (2),

which is commonly used to present the lasing threshold condi-
tion, retains the same form above threshold, in the presence of
light generation. It should be noted, however, that the quantities

and must now be computed self-consistently, from the full
set of steady-state rate equations in the presence of light gener-
ation.

For the general case, applicable to semiconductor lasers with
a quantum-confined active region of arbitrary dimensionality,
the rate equations can be found in [16].
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