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ABSTRACT

We present an effective approach to calculating the low-frequency part of the spectrum of uniaxially patterned
periodic structures. In this approach we ignore to zeroth-order the Bragg scattering by crystalline planes but
include local field effects in first order perturbation theory. Bragg reflections are shown to be important only
near points of symmetry-induced spectral degeneracy, where they can be taken into account by the degenerate
perturbation theory. We apply this approach to waveguiding by thin patterned slabs embedded in a homogeneous
medium. This results in an effective medium approximation, similar to the Maxwell Garnet theory but modified
for the local field corrections specific to 2D geometry. Slab spectra are well described by a single frequency-
independent parameter, which we call the guiding power. Simple analytic formulae are presented for both TM
and TE polarizations. Comparing these formulae with similar expressions for homogeneous uniaxial slabs of
same thickness, we derive the principal values of the effective homogeneous permittivity that provides identical
waveguiding. We also discuss the extinction of waves due to the Rayleigh-like scattering on lattice imperfections
in the slab. The TE waves that are normally better confined are scattered out more efficiently, in part because
of the higher scattering cross-section and in part because the better confinement leads to higher exposure of TE
waves to lattice imperfections in the slab.
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1. INTRODUCTION

Waveguiding of light in layered patterned structures, such as slabs of 2D photonic crystals (PC), has attracted
much interest in view of potential photonic applications.1–3 The studied 2D patterns include periodic lattices
of deep etched air pores or ”conjugate” lattices of high permittivity cylinders. Structures where the inclusions
can be considered infinite along the cylinder axis, will be called the 2D photonic crystals (PC) whereas finite-
thickness periodic structures (including arrays of spheres) will be referred to as PC slabs. Patterned slabs (not
necessarily periodic) can be employed as the waveguide core or cladding.

Numerous theoretical computations of the band spectra of 2D PC and PC slabs have been reported, based of
expansions of the electromagnetic field in plane waves3, 4 or cylindrical waves,5, 6 as well as using finite-difference
time-domain methods.7, 8

The low frequency region of the electromagnetic waves in the 2D PC is well understood. The waves have
a linear spectrum that is very close to that obtained in the effective media approximation9, 10 with an effective
permittivity corresponding to the Maxwell Garnett theory.9, 11 Thus, for the wavelength λ exceeding the
structure period a, the optical properties are predominantly dependent only on the filling factor f of the inclusions
(i.e. their fraction of the total volume), and do not rely on their long-range order or their shape variation (Sect.
2). The disorder leads to a weak (for λ � a) Rayleigh-like scattering.

Even though the effective media approach has been found to give excellent results up to very large permittivity
contrast values of the pattern and for arbitrary propagation directions,11 the question of how wide is its region
of applicability and how close it can approach the Brillouin zone boundary has not been conclusively addressed,
to our knowledge. The difficulty is apparently related to the poor convergence of the standard plane wave
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Figure 1. Slab waveguides considered in this work: (a) homogeneous three-layer waveguide with core of thickness h and
permittivity εg embedded in a medium of background permittivity εb; (b) multiple-layer core with ε = ε(z); (c) monolayer
array of spheres of radius R and period a; (d) periodic array of cylinders (rods or pores) of height h, radius R and
separation a. We also consider 2D photonic crystals, corresponding to (d) with h → ∞
.

expansion with the increase of the included number of waves, especially for TM-like waves.6 Cylindrical waves
offer a faster convergence, but still require the diagonilization of a 3 × 3 matrix, even in the quasi-static limit,
in order to get the Maxwell Garnett result.5, 11 This brings into question the accuracy of the effective medium
approximation at frequencies where the linear spectrum can be strongly modified by the Bragg reflection. Here
we shall demonstrate (Sect. 3) that with a proper choice of the zero-order waves the PC spectrum of the lowest
branches can be calculated analytically all the way to the Brillouin zone boundary.

The waveguiding with PC slabs of thickness h relies on the average index guiding as modified by the periodic
structure. We show that in the long wavelength limit the waveguiding remains effective even for structures with
a low filling factor and weak index contrast, including highly inhomogeneous structures, a ≥ h. Moreover, the
waveguiding has a universal form described by a single parameter, which we shall call the ”guiding power”. It
can be calculated by a self-consistent procedure for the polarizability of the dielectric pattern.

In Sect. 4 the guiding power is evaluated for several exemplary slab structures, illustrated in Fig. 1. As an
extreme case, we discuss the waveguiding in highly inhomogeneous structures, such as planar regular arrange-
ments of small (relative to their separation) dielectric spheres, nearly overlapping cylindrical pores or high-index
cylindrical rods with large spacings. For thin slabs, the local field effects are different from those in an infinitely
extended 2D PC, primarily because of the short-range dipolar interaction between the finite-height cylinders or
spheres. Proper inclusion of the local field effects in the low-frequency region enables a perturbative approach
with fast convergence.

The waveguiding with uniaxially patterned layers is strongly affected by their optical anisotropy. For a slab
composed of high-index cylinders, the optical anisotropy can far exceed that of any natural crystal away from
its absorption band. This anisotropy can be used to effect the modal control in practical photonic devices.12

Optical mode polarization is important for semiconductor lasers and amplifiers. It depends on the modal
gain which in turn is controlled by both the gain anisotropy and the so-called modal confinement factor.13, 14

Proc. of SPIE Vol. 6127  612705-2



In a high-contrast three-layer waveguide the TE mode is better confined than the TM mode and therefore for
an isotropic amplifying material the TE mode has a larger gain.15, 16 However, in III-V heterostructures the
index contrast between the core and cladding layers is small. The guiding power in such waveguides is weak,
and patterning creates a modal competition due to the uniaxial anisotropy. As a result, the guiding power for
the TM wave and the associated modal confinement and gain can exceed those for the TE wave. This type of
modal competition was discussed in our earlier work12 and is further discussed in Sect. 4.

Here we shall also discuss (Sect. 5) the effects of wave extinction due to the scattering on imperfections in
a non-ideal slab. The extinction coefficient depends on the guiding power of the core and the polarizability of
the inclusions, both of which are different for the two mode polarizations. When the imperfections are mainly
in the core, one finds a paradoxical situation that the mode which is better confined becomes extinct faster.
Moreover, cylindrical imperfections radiate the TE mode more efficiently. Both of these effects can shift the
modal competition in favor of the TM mode.

2. WAVEGUIDING IN THE LATERALLY UNIFORM WAVEGUIDE
APPROXIMATION

We begin with the well-known case of a laterally uniform three-layer dielectric waveguide (Fig. 1a) and introduce
the concept of guiding power in terms of familiar parameters. Outside the slab the dispersion equation is of the
form

εbk
2
0 = q2 − κ2, (1)

where k0 = ω/c is the frequency parameter, εb is the background (cladding) permittivity and q is the 2D wave
vector in the plane of the waveguide. The parameter κ describing the exponential decay, exp(−κz), of the wave
away from the core, depends on frequency. It is convenient to introduce a frequency-independent parameter g

κ =
1
2
εbk

2
0g, (2)

which we shall call the “guiding power” of the high-index core. Equation (2) with a constant g holds13 for a
three-layer dielectric waveguide of core thickness h, provided κh � 1. In this limit Eqs. (1, 2) define a universal
dispersion relation for the guided modes.

If the guiding layer (core) permittivity is εg, the value of g for the two polarizations is given by

gTE =
εg − εb

εb
h , gTM =

εg − εb

εg
h . (3)

In structures with low index contrast, when (εg − εb) � εb the values of g for the two modes are small and close
to each other. In the opposite limit, (εg/εb) � 1, the guiding power for the TM mode is εb/εg times weaker than
gTE, which can be explained by the reduced z component of the electric field inside the slab.

Confinement of guided waves is described by the dimensionless ”confinement factor” Γ = κh (fraction of
the wave intensity that flows in the high-index core). Quite generally, Γ is proportional to the guiding power.
The condition Γ � 1 describes the weak guiding limit. In this limit Eqs. (1, 2) remain valid for an arbitrary
laterally uniform multilayer waveguide with ε = ε(z), Fig. 1b. The guiding power is then given by the following
expressions (see Appendix):

gTE =
∫ ∞

−∞

(
ε(z)
εb

− 1
)

dz , gTM =
∫ ∞

−∞

(
1 − εb

ε(z)

)
dz . (4)

The guiding power remains the only parameter of the index profile that defines both the confinement properties
and the dispersion of waves in the weak guiding limit.

We now turn to structures with a uniaxially patterned guiding layer, Figs. 1c,d. In the long wavelength
limit (λ � a) such structures, though inhomogeneous, can be viewed in the effective medium approximation.
The structure composed of cylinders, Fig. 1d, is optically uniaxial with the axis C directed perpendicular to the
waveguide plane. We denote by ε‖ and ε⊥ the effective medium permittivities for the two possible electric field
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orientations. For λ � a, these permittivities can be calculated using the Maxwell Garnett approximation, which
neglects the depolarization effects associated with the finite height of the cylinders.

When the electric field E ‖ C, the effective permittivity coincides with that obtained by direct averaging, viz.

ε‖ = εout + (εin − εout)f (5)

Here εin and εout are the material permittivities inside and outside the cylinders, respectively.

When the electric field E ⊥ C, the effective permittivity is given by

ε⊥ = εout
(εin + εout) + (εin − εout)f
(εin + εout) − (εin − εout)f

. (6)
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Figure 2. Average permittivity in a uniaxially pat-
terned Si layer as a function of the filling factor f .
We consider a planar lattice of cylindrical pores or
rods with the axis of symmetry C perpendicular to
the plane of the lattice. Solid lines show ε|| (E || C)
and dashed lines ε⊥ (E ⊥ C), plotted according to
Eqs. (5, 6). For pores εin = 1, εout = 12 and for
rods εin � εout.

The dependence of ε‖ and ε⊥ on the filling factor is de-
picted in Fig. 2 for cylindrical pores in a dielectric medium,
taking εin = 1 and εout = 12. An appreciable anisotropy of
the permittivity is evident. The figure also shows the effec-
tive permittivities for a “conjugate” crystal of cylinder rods in
air, corresponding to the replacement εout � εin. This geom-
etry gives higher optical anisotropy, especially for low filling
factors.

Equations (5, 6) are derived for infinite cylinders and can
be expected to fail when applied to optical properties of thin
layers when the height of the cylinders is comparable to their
diameter. This case is considered in Sect. 4, where we show
that the effective media approach remains valid, but requires a
modification of Eq. (6) allowing for the depolarization factors
of the finite height cylinders.

For a sufficiently thick core layer h � a, the guided-
wave spectra in the low frequency range

√
εk0 ≤ π/a can be

obtained by the usual approach13, 14 developed for homoge-
neous waveguide constituents. We take into account the layer
anisotropy12 by treating the TE mode as an ordinary wave
and the TM mode as an extraordinary wave, propagating in
a uniaxial crystal. The crystalline pattern begins to affect
the waveguiding only when the propagation wave vector ap-
proaches a narrow range near the Bragg reflection planes, q ≈ G/2, where G is one of the vectors of the 2D
reciprocal lattice.17

3. LOW FREQUENCY PART OF PC SPECTRA

Before evaluating the guiding power of a PC slab, we test our approach by calculating the lowest-bands spectra
of a 2D PC infinitely extended in the z direction. This calculation gives an effective index of the guiding layer
regarded as an infinite PC. With its help we can expect to sort out all issues associated with Bragg reflection
near the Brillouin zone boundary, but not the thin-slab depolarization effects to be considered in Sect.4.

TM mode

For the TM mode the electric field is along the cylinder axes and the wave equation

∆E − grad divE = −k2
0ε(r) E, (7)
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is easily transformed into a matrix form by using the Fourier expansions of both the electric field and the dielectric
function, taking into account the PC periodicity. The Fourier components of ε(r) are of the form4

ε(G) =
{

εout + f(εin − εout), G = 0
f(εin − εout)2J1(GR)/(GR), G 	= 0 (8)

We consider the wave propagating in the plane perpendicular to the cylinder axes, k = q, kz = 0. The Fourier
coefficients Eq(G) of the electric field of this wave obey the following system of equations:

[
(q + G)2

ε(0)
− k2

0

]
Eq(G) − k2

0

ε(0)

∑
G′ �=0

ε(G′)Eq(G + G′) = 0 . (9)

We see that in the long wavelength limit, when k2
0 � G2/ε(0) the main contribution to the mode comes from the

term Eq(G) with G = 0, while higher-order corrections (originating from Eq(G) with G 	= 0) are proportional
to an additional factor k2

0/[G2ε(0)] � 1.

Thus, we find that in the long wavelength limit the dispersion relation is of the form k0 = q/
√

ε(0). This
means that the spectrum of electromagnetic waves is well described by the effective medium approximation with
the average effective permittivity ε(0) = εout + f(εin − εout) ≡ ε‖.

The nondegenerate part of the lowest-band spectra can be calculated perturbatively, keeping the contributions
of several nearest reciprocal lattice sites. The perturbation series corrections are given by

k4
0

ε(0)

∑
G′

ε(G′)2

(q + G′)2/ε(0) − k2
0

, (10)

so that in the low frequency region [k2
0 ≤ G2/ε(0)] the series converges rapidly due to the fast decrease of its

terms with increasing G.
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Figure 3. Low frequency spectra (TM polarization)
of a photonic crystal (square lattice of cylindrical
pores) calculated by the degenerate-state perturba-
tion theory (solid lines). Results are compared with a
numerical calculation20 (points). Pore radius is 0.35a
and the material permittivity is εout = 12.

However, this perturbative approach works well only away
from the points of symmetry–induced spectral degeneracy,
such as those at the Brillouin zone boundary. In the vicinity
of these points, the spectrum is partially split and the split-
ting is of the first order in both ε(G) and k2

0 . At multiply
degenerate points the splitting has an additional large nu-
merical factor. Still, the corrections remain relatively small
below the first upper branch of the spectrum at Γ point.

The spectra calculated analytically for infinitely long
cylindrical pores (cf. Fig. 1d) with f = 0.385 and εout = 12
are shown in Fig. 3 and compared with a numerical calcu-
lation. The good agreement is not accidental. It reflects
the rapid convergence of the perturbation series. For ex-
ample, near the X point boundary of the square lattice the
calculated corrections to the the first-order split frequencies,
k0 = G/[2

√
ε‖ ± ε(G)], G = 2π/a, are within ± 3% for a wide

range of the filling factor variation and different permittivity
ratios.

The entire lowest branch of the spectrum can be obtained
by truncating the system of equations. To obtain an accurate
acccount of the splitting of degenerate zero-order waves, we
need to include only the nearest sites of the reciprocal lattice
with equal values of G. For the second branch along ΓX or ΓM line in a square lattice we must consider a
system of seven sites. To have a consistent description along the whole set of ΓX , ΓM and XM lines we have
to include the contributions from 9 sites.
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TE mode

For the TE mode (E ⊥ C) it is more convenient to recast the wave equation as an equation for the polarization
vector of a cylinder.21 We begin with Eq. (7) written in the form

∆E− grad divE = −k2
0D, (11)

where D is the displacement vector, D = E + 4πP, and P the polarization vector of the medium. For the sake
of brevity, we shall proceed with the derivation assuming εb ≡ εout = 1 and in the final expression replace εin by
εin/εout.

Next, we rewrite Eq. (11) in the form of an integral equation

Eα = 4πk2
0

∫
d3rGαβ(r − r′)Pβ(r′). (12)

where α, β = x, y, z, and Gαβ(r − r′) is Green’s function defined by6, 22

Gαβ(r − r′) =
(

δαβ +
1
k2
0

∇α∇β

)
G(r − r′) , (13)

where G(r − r′) is Green’s function of the scalar Helmholtz equation

G(r − r′) =
∫

d3k

(2π)3
exp[ik(r − r′)]

k2 − k2
0

. (14)

We seek the low-frequency wave-like solutions of Eq. (12) in the dipole approximation for the cylinder
response to an external field. The field inside a cylinder in a smooth external field remains homogeneous.23 For
a set of non-overlapping cylinders we have

P(r) =
∑
l

Pl (r) , Pl (r) =
α0

v0
θ(r − l)E(r) , (15)

where l are the lattice translation vectors, α⊥ is the cylinder polarizability

α⊥ =
1
2
hR2 εin − 1

εin + 1
, (16)

v0 = πR2h is the cylinder volume, R its radius, and θ(r) is the form-factor (a step-function that equals unity
inside the cylinder and zero outside). For Bloch waves the spatial variation of polarization must be of the form

P(r) =
α⊥
v0

Eq exp(iqr)
∑
l

θ(r − l) exp(iq(r − l)) (17)

Equation (12) can be used to calculate the electric field in a propagating wave excited by all the cylinders
except one. Let the latter be the cylinder at r = l . We can calculate the dipole moment of this cylinder by
including the electric field at r = l produced by all other cylinders and multiplied by α⊥θ(r − l). In this way we
avoid the problem of evaluating the strongly inhomogeneous field near the cylinder. The resulting equation for
the polarization vector is of the form

Pα,l (r) = −4πk2
0

α

v0
θ(r − l)

∫
dr′Gαβ(r − r′)

∑
l ′ �=l

Pβ,l ′(r) . (18)

Next, we add to both sides of Eq. (18) a term

−4πk2
0

α

v0
θ(r − l)

∫
dr′Gαβ(r − r′)Pβ,l (r) , (19)
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which in fact corresponds to a local field correction. With this term included, the right-hand side of equation
(18) can be evaluated using the Fourier transform of the scalar Green’s function (14). In evaluating the left-hand
side we take into account the δ-functional singularity of Green’s function. As a result we obtain

(1 − 2πk2
0

α⊥
v0

f)Plα(r) = −4π
α⊥
v0

fθ(r − l)
∫

dr′Gα,β(r − r′)
∑
l ′

Pl ′β(r) . (20)

Performing the integral, we transform Eq. (20) into a dispersion equation for the TE waves:

(1 − 2π
α⊥
v0

f)δαβ = 4πk2
0

α⊥
v0

f
∑
G

θ∗(G)θ(G + q)
θ(q)[(q + G)2 − k2

0 ]

[
δαβ − (q + G)α(q + G)β

k2
0

]
. (21)

In the low-frequency region the main contribution to the sum in the right-hand side comes from the term with
G = 0. Neglecting other terms, we find

εbk
2
0 = q2

(
1 − 2πα⊥/v0f

1 + 2πα⊥/v0f

)
, (22)

which is the dispersion relation for TE waves in the Maxwell Garnett approximation. Taking into account terms
with G 	= 0 we can calculate the spectrum of lowest TE waves up to the boundary of the Brillouin zone by using
the degenerate perturbation theory in the same way as we did it above for the TM waves. The corresponding
perturbation series converges rapidly, but near the symmetry points it is again important to include degeneracy
to first order by using correct zeroth-order linear combinations. For example, in a square lattice near the X
point boundary the frequency is close to

k0 =
G

2
√

ε⊥ ± ε⊥(G)
, ε⊥(G) =

2f(εin − εout)
εin + εout + f(εin − εout)

2J1(GR)
GR

, G =
2π

a
. (23)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.05

0.10

0.15

0.20

0.25

0.30

MX ΓΓ

N
or

m
al

iz
ed

 f
re

qu
en

cy
 (

c/
a)

Wave vector

0 1 2 3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

 

 

Figure 4. Low frequency spectra (TE polariza-
tion) of a photonic crystal (square lattice of cylin-
drical rods) calculated by the degenerate-state per-
turbation theory (solid lines). Point correspond
to numerical calculation.4 The filling factor is
f = 0.1 and εin = 11.96; εout = 1. In the interval
XM the spectra are calculated more accurately, us-
ing more symmetry partners than for ΓX and ΓM
intervals, hence the small discontinuities evident in
the spectra at X and M points.

This is again within ± 3% from the exact result for a wide range
of the filling factors and different permittivity ratios, cf. Fig. 4.

For both the TE and TM waves the zero-order in G ap-
proximation (in which Bragg reflections are fully ignored) is not
sensitive to the PC crystal structure and thus it is quantitatively
equivalent to the homogeneous effective medium approximation.
The only difference is that in a truly periodic structure there are
no scattering losses from index fluctuations.

4. INHOMOGENENOUS
SLAB IN THE WEAK GUIDING LIMIT

In this section we consider the weak waveguiding by an arbitrary
thin inhomogeneous slab. We place no restriction on the degree
of the inhomogeneity; what is important is the weak guiding
power, g � λ. We shall consider periodic arrays of period a
(PC slabs) in the instance of a planar arrangement of spherical
particles, cylindrical rods, or cylindrical pores (see Figs. 1c,d).
Periodicity of the arrangement is important even in the long
wavelength limit a � λ (since for an amorphous arrangement
the Rayleigh scattering will be strong, as discussed in the next
section). For periodic structures, our treatment applies all the
way to the Brillouin zone boundary, as demonstrated in Sect.
3.

In all cases, we denote the dielectric permittivity of the guid-
ing material by εg and that of the background by εb. The phase
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velocity of the wave guided by the slab can be obtained by a perturbative approach similar to that employed
in the calculation of PC spectra in Section 3. In this approach we solve the wave equation by ignoring Bragg
reflections in the zeroth approximation. Then we can include them by using perturbation theory with correct
linear combinations of the zeroth-order waves.

In the long wavelength limit, the field inhomogeneity is important only at short distances away from the slab,
since the short-range components of the fields decay exponentially over the distances of the order of a out of the
slab. This allows us to identify TE-like and TM-like polarized waves and consider them separately.

For the TE-wave (electric field in the plane of inclusions) we start from the wave equation for the electric field
E in the form (7). For the wave propagating along x axis we seek the solution in the form E(r) = Eq exp(iqr),
with the propagation vector q||x. The boundary conditions of continuous tangential field imply for this geometry
that in the long wavelength limit qa � 1 the dominant field component Ey is a smoothly varying function of the
coordinates even within the thin slab.

Therefore, the evaluation of the wave phase velocity can be done in a way similar to the well-known solution
of Schrödinger’s equation for weakly confined states.24 This analogy to the quantum mechanical problem of a
particle bound to a one-dimensional potential well of small depth constitutes the central point for our analysis. In
the Appendix we further illustrate its validity by considering an exemplary waveguide composed of homogeneous
multiple layers with an arbitrary index profile.

Outside the slab, the dominant field component Ey satisfies a wave equation of the form

d2

dz2
Ey + (k2

b − q2)Ey = 0 , (24)

where q is a 2D propagation vector and kb is the frequency parameter normalized to the speed of light in the
background material,

k2
b ≡ εbk

2
0 , k0 ≡ ω/c . (25)

In the transverse direction the field varies as Ey = Ey(0) exp−κ|z| with κ =
√

q2 − k2
b . Using Maxwell’s equation

divD = 0, we can put the wave equation within the thin slab into the form

∆Ey + k2
bEy = −4πk2

0

(
Py + ∇y

∑
i

∇iPi

)
. (26)

To obtain an additional relationship between κ and q we integrate Eq. (26) in the xy plane over the unit cell
and in the z direction between points ±z1, such that h � z1 � 1/κ. In the left-hand side the main contribution
to this integral comes from the term ∂2Ey/∂z2 and distances remote from the plane, since the contribution of
the second term is smaller by a factor κz1. Thus, the integral in the left-hand side reduces to 2κEy(0). In
the right-hand side of Eq. (26) the main contribution to the integral comes from the inclusions themselves.
For a highly inhomogeneous structure comprising spheres or cylindrical rods, this integral reduces (see below)
to the y-component of the electric dipole moment of the unit cell, Py = αEy , where α is the polarizability of
the inclusion in the acting field of the wave and other inclusions. For a sphere, the polarizability is isotropic,
α = R3εb(εg − εb)/(εg +2εb), while for cylinders the polarizability is highly anisotropic. For sufficiently elongated
cylinders, h/R ≥ 10, the transverse polarizabily equals α⊥ = (1/2)R2hεb(εg − εb)/(εg + εb).

The difference between the local field Ey and the average Ey field outside the slab can be taken into account
by adding the field contribution of the neighboring inclusions. For a square lattice the relation between the local
and the average field is given by

Ey = Ey + S∗αn3/2
s Ey , (27)

where ns = a−2 and S∗ = 0.5
∑′(n2 + m2)−3/2. The main contribution to the local field comes from nearest

neighbors and is of the order of R3n
3/2
s . In contrast to the 3D case, the 2D lattice sum rapidly converges, giving

S∗ ≈ 4.41. Equation (27) is obtained in the dipole approximation for the field of individual particles, and is
strictly valid for nsR

2 � 1.

Proc. of SPIE Vol. 6127  612705-8



For TE waves propagating along the plane of spheres or cylinders, the integration of the second term in the
right-hand side of (26) can be transformed to an integration over the surface where P = 0, so that the second
term can be neglected. Integration of the first term gives the total polarization vector Pyns per unit area of all
inclusions in the average field Ey. Finally, for a square lattice of inclusions, we obtain

gTE = 4παns

(
1 − S∗αn3/2

s

)−1

. (28)

When the local field corrections are negligible (low density of inclusions or small index contrast), then the
guiding power can be expressed in terms of the average polarizability per unit area:

gTE =
4π

sεb

∫
α(r) ds . (29)

Comparing Eq. (29) for a monolayer of spheres of radius R with a homogeneous slab (Eq. 3) of thickness
2R, we see that the guiding power of spheres is reduced by a factor nsR

2 � 1, which is proportional to the
filling factor of the guiding layer (volume fraction occupied by the spheres). This factor is responsible for the
weak waveguiding. It is important, however, that the guiding remains in effect for arbitrary values of nsR

2 and
index contrast. The guiding power increases monotonically with the increasing filling factor and approaches the
homogeneous layer value for f → 1. Of course, before this limit is reached, local field effects will bring about
special features, especially when the spheres begin to overlap.19

The waveguiding of TM waves is somewhat more complicated, since the localized magnetic field creates an
inhomogeneous electric field across the layer. This makes difficult a direct use of the above procedure. However,
according to Maxwell’s equation, the displacement vector component Dz in a propagating wave is directly
proportional to the magnetic field component Hy. Therefore, for weak confinement both Hy and Dz have a
smooth spatial variation. This enables a modified procedure with the same idea as above (see also Appendix).

First, we rewrite the wave equation in terms of the displacement vector D:

∆D + k2
bD = −4π(∆ − grad div)P. (30)

In the right-hand side of Eq. (30) the second derivatives ∂2Pz/∂z2 cancel, whereas the in-plane derivative
∂2Pz/∂x2 will produce a multiplier q2 when averaged over the unit cell area. We can now seek the solution of
Eq. (30) in the form Dz = Dz(0) exp(−κ|z|) with κ =

√
q2 − k2

b . We have

d2

dz2
Dz + (k2

b − q2)Dz = −4πq2Pz − 4πiq
d

dz
Px . (31)

Integrating Eq. (31) in the z direction between points ±z1, such that h � z1 � 1/κ, and in the xy plane over
the unit cell, we find a relationship similar to Eq. (1) from which we find both the spectrum and the guiding
power for the TM mode. When integrating the right-hand side we note again that the second term does not
contribute. The first term gives rise to a local field correction.

For a monolayer of spheres, the local field correction for the TM mode has the opposite sign and is twice
larger than that for the TE mode. We find

gTM = 4παns(1 + 2S∗αn3/2
s )−1. (32)

Comparing Eq. (32) with Eq. (28) we see that the difference in the weak waveguiding by a plane of spheres
is only due to the difference in the local field effects for different polarizations, since the polarizability of a single
sphere does not depend on the polarization of the external field. When the local field effects are small (nsR

2 � 1)
the difference between polarizations disappears, in contrast to the case of a homogeneous layer.

In both cases the layer guiding power is determined by two factors: the individual polarizability of the
higher-index inclusion, which is proportional to (εg − εb), and the filling factor of the layer, nsR

2.
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The results above are equally valid for waves confined to an array of inclusions other than spheres, e.g.
cylinders. However, one must use the appropriate value for the polarizability. For sufficiently elongated cylinders,
h/R ≥ 10, the parallel polarizability (appropriate for the TM-like mode) equals α‖ = (εg − εb)R2h. For a large
index contrast, the guiding power for the TM mode substantially exceeds that for the TE mode.

For highly anisotropic cylinders, h � R, the guiding power of a slab composed of cylindrical rods varies
strongly with the filling factor. For f � 1 we have h/a � 1 and g is controlled by the polarization of individual
non-interacting cylinders. In this limit, the transverse polarizability is small and so is gTE, whereas the longitudi-
nal polarization of the slab and hence gTM both increase due to the enhanced electric field between the cylinders.
In contrast, for h/a � 1 the guiding power is in the regime of Maxwell-Garnett’s effective permittivity, where
the dipolar interaction between cylinders leads to strong local field effects. For these limiting cases the guiding
powers are given by :

MG cylinders
gTM = hf(εg − εb)/[εb + f(εg − εb)] gTM = hf(εg − εb)/εb

gTE = 2hf(εg − εb)/[εg + εb − f(εg − εb)] gTE = 2hf(εg − εb)/(εg + εb) .
(33)

For εg � εb the effective polarizability of the cylinder array for the TM mode grows at low f with the filling
factor, but at a sufficiently large f it is strongly weakened by the local field effects. Therefore, at fixed h/R the
dependence gTM(f) has a maximum. We find a nearly paradoxical conclusion that a film composed of cylinders
or comprising pores can have a higher gTM than that of a homogeneous high-permittivity film made of the same
material and having the same thickness h.
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Figure 5. Low-frequency spectra of a photonic crys-
tal slab composed of a square lattice of cylindrical
rods calculated in the “guiding power” approximation
Eq. 2 (solid lines: TM-like mode, dash-dotted lines:
TE-like mode). The normalized guiding power values
are: gTM=3.2, gTE=1.1. Results of the fill-scale nu-
merical calculation25 are shown by closed and open
squares for the TM-like and TE-like modes, respec-
tively; dashed line shows the edges of the light cone.
The filling factor is f = 0.125 and the cylinder’s per-
mittivity is εin = 12 with εout = 1.

For the TE mode the variation of gTE with the h/a ratio
is in the opposite direction, since the average transverse po-
larizability in the Maxwell Garnett regime is larger than the
transverse polarizability of an individual cylinder. Thus the
TM mode in a material with cylindrical pores or rods, such
that a > h > R, should as a rule be much better confined
than the TE mode.

Our results for the PC slab are in good agreement with
numerical calculations. As an example, we show in Fig. 5
the spectra analytically calculated for an array of cylindrical
rods (Fig. 1d) without including Bragg reflections. The en-
tire spectra are described by one parameter g for each mode.
The values of g (measured in units a/π) are gTE = 1.1 and
gTM = 3.2. The weak waveguiding condition g � λ is well
fulfilled for both TE-like and TM-like guided waves in the
low-frequency part of the spectrum. In this example the sep-
aration between cylinders (h/a = 2) is relatively small and
the Maxwell Garnett approximation is found to work pretty
well for both TE and TM modes. The calculated MG values
are gTE = 1.5 and gTM = 3.6, while for separate cylinders
one would have gTE = 1.3 and gTM = 8.7.

Results of the full-scale numerical calculation25 are also
shown in Fig. 5 by dots. The agreement is reasonably good,
except near the Brillouin zone boundary.

Finally, we note that Eqs. (28, 32) also describe quali-
tatively the guiding power of an array of metallic inclusions.
Even though the permittivity of a metal at optical frequencies is negative, the predicted guiding power is positive.
This means that waveguiding is in effect in this case too. To obtain a quantitative description, however, we must
modify Eqs. (28, 32) to allow for the skin-effect and the damping of waves in the metallic particles.19
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5. SCATTERING EXTINCTION OF LIGHT PROPAGATING IN A PC SLAB

Recently, a Brown University group26 demonstrated the laser action in a uniaxially patterned silicon-on-insulator
nanostructure. One of the surprising features of this remarkable accomplishment was the predominantly TM
polarization of stimulated emission.27 In our earlier work,12 we carefully analyzed the photonics of this
experiment and concluded that the TE mode was much better confined. Barring some exceptional anisotropy in
the modal gain in the experiment26 or some new and efficient mode-selective feedback mechanism, the TE mode
should be winning in the competition to the lasing threshold.

However, it was recently noted that the structural variations in all state-of-the-art photonic crystal slabs
are at least 2 to 7 % of the lattice spacings.28 For example, the Brown group noticed conic variations of
their nominally cylindrical pore shape.27 We must therefore consider the radiation loss by the slab due to the
scattering by unavoidable imperfections of the structure.

This type of radiation loss can be treated as Rayleigh-like scattering, modified by the local field redistribution
in the patterned layer. For TE modes the radiation losses due to Rayleigh scattering from a PC slab were analyzed
by Benisty et al.29 and Koenderink et al.28 in a strong waveguiding regime. The polarization dependence was
not analyzed. In the weak waveguiding regime, however, this dependence is very important.
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Figure 6. Momentum transfer in Rayleigh scattering of the
guided mode from a patterned slab. Shown are the separations
from the light cone for the two modes. This separation is pro-
portional to squared guiding power of the mode.

The difference arises for several reasons. Firstly,
the boundary conditions on the propagating radia-
tion (continuity of the tangential component of the
electric field and the normal component of the dis-
placement vector) lead to very different radiation
losses for the TM and TE modes, especially for thin
waveguiding structures with a large index contrast
between the slab and the cladding regions.

This difference can be most easily evaluated us-
ing the reciprocity theorem for the emission: the
field component i at a point A outside the slab gen-
erated by a unit dipole source, located at point B in
the slab and oriented along the j axis, equals the j-
th component of the field at point B generated by a
unit dipole source located at point A and oriented
along the i axis. Since the normal component of
the field in the slab is (εout/εin) times weaker than
outside, the same reduction of the field takes place
when the light is emitted from a source inside the
slab.

The tangential component of electric field is not
reduced in a thin-layer waveguide, and so the over-
all ratio of the emission intensity from a dipole source normal to the layer to that from an in-plane dipole is
(εout/εin)2. This ratio can be small in structures with a high contrast index. It can be also quite small for
an asymmetric structure with different claddings. For a patterned Si slab on a SiO2 substrate, the emission
efficiency into air is ε2Si times smaller for dipole sources normal to the plane. For emission into substrate it is
reduced by a factor ε2Si02

/ε2Si, so that the overall reduction is about a factor of 50.

Secondly, the lower confinement factor Γ for the TM mode is itself beneficial against the scattering loss from
imperfections located in the core. Their effect is directly proportional to Γ.

Finally, the Rayleigh scattering mechanism (i.e. elastic scattering of the guided photon by the fluctuations
of permittivity) depends on the spatial scale of the imperfections. When the imperfections are short-range,
corresponding to variations of the size or position of individual inclusions, then the characteristic momentum
transfer is large (of the order of the reciprocal inclusion size). In this situation, the mode separation from the
light cone (see Fig. 6) is smaller for both modes than the typical momentum transfer. Therefore, the better
confinement of the TE mode is not a defense against the radiation loss.
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The above considerations can be expressed quantitatively in terms of the Rayleigh scattering extinction
coefficient η (defined as the inverse photonic mean free path).23 For the case of weak confinement of TE waves
by a guiding layer with cylindrical pores, the extinction coefficient can be written in the form

ηTE =
2

3λ4
Γε2out

(
εin − εout

εin + εout

)2

v0f〈δ2〉 , (34)

where v0 = πR2h is the volume of one cylinder, Γ is the modal confinement factor, and 〈δ2〉 is a reciprocal
fluctuation parameter. For the parameters of the experiment26 this gives ηTE ≈ 5〈δ2〉cm−1. For a random
distribution of cylinders, when the individual scattering processes can be considered independent, one has 〈δ2〉 =
1. For a model, in which the cylinder radius is the fluctuation parameter, one has 〈δ2〉 = 4〈(δr)2〉/〈r〉2.

For the TM waves, expression (34) must be multiplied by the factor (εout/εin)2. Besides this factor, the
resultant ηTM is also reduced by the smaller Γ for TM waves.

6. CONCLUSION

We have considered the polarization-dependent waveguiding of light by thin highly inhomogeneous slabs em-
bedded in a uniform medium. We examined exemplary slab structures comprising a monolayer of periodically
patterned dielectric spheres, cylinders, or cylindrical pores etched in a dielectric medium. We also discussed
2D photonic crystals (PC) corresponding to a periodic arrangement of infinitely long cylinders. Because of the
uniaxial nature of the pattern, the propagation of waves in the direction perpendicular to the axis depends on
the polarization and we considered separately the TE and TM polarized waves.

We have demonstrated an effective approach to calculating the low-frequency part of the spectra of patterned
periodic structures. In this approach we ignore to zeroth-order the Bragg scattering by crystalline planes but
include local field effects in first order perturbation theory. This results in an effective medium approximation,
similar to Maxwell-Garnett’s theory but with modified local field corrections. Perturbation approach converges
rapidly for both 2D photonic crystals and thin periodically patterned slabs. The Bragg reflections are shown to
be important only near points of symmetry-induced spectral degeneracy, where they can be taken into account
by the degenerate perturbation theory, using correct linear combination of a small number of zero-order waves.
The resultant analytically evaluated spectra are compared with available numerical computations. Excellent
agreement is found for the low-frequency spectra all the way to the Brillouin zone boundary.

Apart from the Bragg splittings, the spectra are well described by a single frequency-independent parameter g,
which we call the guiding power. Simple analytic formulae are presented for g for both TM and TE polarizations.
Comparing these formulae with similar expressions for slabs of same thickness h but composed of homogeneous
uniaxial media, we derive the principal values of the effective homogeneous permittivity that provides identical
waveguiding. While it is intuitively ”obvious” that in the long wavelength limit the existence of guided waves
relies on some average index profile, the exact nature of this averaging is elucidated for the first time.

Regularity of the periodic pattern is important for our analysis because it allows us to consider the waveguiding
without taking into account the Rayleigh-like scattering of waves by imperfections. So long as scattering is
negligible, our results for the guiding power are applicable to ”amorphous” arrangements of same density. The
criterion for weak scattering by amorphous arrangements is h � a, where a is the typical distance between
inclusions. However, scattering by imperfections is usually not negligible even when the structures are nominally
designed to be periodic. This leads to an extinction of guided waves via the radiation scattered out of the slab.
For a high index contrast, the extinction coefficient depends strongly on the polarization and favors the TM
wave. The TE waves that are normally better confined are scattered out more efficiently, in part because of the
higher scattering probability and in part because the better confinement leads to higher exposure of TE waves
to lattice imperfections in the slab.
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Appendix. Guiding power of a homogeneous layer with arbitrary index profile

Let the index profile depend only on z and the wave propagation be in x direction. First consider the case of
a TM mode, which has more complicated boundary conditions and electric field distribution. We shall analyze
this case using two equivalent approaches. In the first approach we divide the guiding region where ε(z) 	= εb

into N sublayers and match the solutions with appropriate boundary conditions. This approach will give us an
insight for the approximation implied in the “guiding power” approach.

For the TM mode there is only one non-zero component of the magnetic field, Hy, so that it is convenient to
use the wave equation for Hy = Hy(z) exp(iqx) which is of the form14

d

dz

1
ε(z)

d

dz
Hy(z) − q2

ε(z)
Hy(z) = k2

0Hy . (A.1)

Solutions of Eq. (A.1) in individual layers can be written as

H0 = a0 exp(κz) z ≤ 0
H1 = a1 sin(k1z + φ1) 0 < z ≤ h/N
.. .. .. .. ..
Hi = ai sin(kiz + φi) h/n(i − 1) < z ≤ h/Ni
.. .. .. .. ..

HN = aN exp(−κz) z ≤ 0

(A.2)

At each boundary the logarithmic derivatives d/dz ln[Hy(z)/ε(z)] should be equal, whence we have

κ/εb = k1ctn(φ1)/ε1
k1ctn(k1h/N + φ1)/ε1 = k2ctn(φ2)/ε2

.. .. ..
kictn(kih/N + φi)/εi = ki+1ctn(φi+1)/εi+1

.. .. ..
kNctn(kNh/N + φN )/εN = −κ/εb

(A.3)

Here εi = [ε(h/N)(i − 1) + ε(hi/N)]/2 and ki =
√

k2
0εi − q2. The system (A.3) can be simplified in the weak

waveguiding limit, when κ is small. To be precise, we assume that ctn(φ1) ≈ (κ/k1)(ε1/εb) � 1 and ctn2(φi) � 1
for all i. Then, for N � 1 we can approximate kictn(kih/N + φi) ≈ kictn(φi) + k2

i h/N and add all equations.
In the limit N → ∞ the sum is replaced by an integral, giving

2
κ

εb
=

∫ h

0

(
k2
0 − q2

ε(z)

)
dz, (A.4)

Taking in the zeroth-order approximation q2 = εbk
2
0 , we obtain

κ =
1
2
k2

b

∫ h

0

(
1 − εb

ε(z)

)
dz, (A.5)

The dispersion relation for the guiding wave reads q =
√

εbk2
0 + κ2 which agrees with the well-known result for

the standard three-layer waveguide.13
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This result is used in our paper to study the waveguiding by layers with a periodic arrangement of inclusions
in the propagation plane. For such geometries the equation for magnetic field becomes cumbersome because of
the complicated boundary conditions. However, the normal component of the electric displacement vector Dz

remains a smoothly varying function. Let us demonstrate that integration of the equation for D leads to the
same result for the guiding power as the above system of equations for a set of sublayers with proper boundary
conditions.

The displacement vector D = ε(z)E can be written in the form

D = εbE +
ε(z) − εb

ε(z)
D , (A.6)

whence the wave equation (30) becomes

∆D − grad div
ε(z) − εb

ε(z)
D = −k2

bD, (A.7)

The displacement vector has two non-zero components Dz, Dx. We will write down the equation for Dz, seeking
it in the wave-like form Dz = Dz(z) exp(iqx), viz.

d2

dz2
Dz(z) − (q2 − k2

b )Dz − q2 ε(z) − εb

ε(z)
Dz +

d2

dzdx

(
ε(z) − εb

ε(z)
Dx(z)

)
= 0 . (A.8)

Integrating Eq. (A.8) over z from −z1 to z1, where z1 is the distance at which the permittivity becomes equal to
εb and no longer depends on z, we note that the term with Dx does not contribute. In the same approximation
as above (q2 = εbk

2
0) we get

2κ = q2

∫ ∞

−∞

(
1 − εb

ε(z)

)
dz, (A.9)

which is equivalent to Eq. (A.5).

For the TE mode the electric field has only y component. The wave equation for the electric field Ey =
Ey(z) exp(iqx) is of the form

d2

dz2
Ey(z) = [q2 − k2

0ε(z)]Ey . (A.10)

We now intergrate Eq. (A.10) between −z1 and z1, that is over the region where the permittivity is variable. At
z ≥ z1 the solution of the Eq. (A.10) has the form Ey(z) = E(0) exp(±κz) and we get

−2κEy(0) =
∫ z1

−z1

(q2 − k2
0ε(z))Ey(z)dz . (A.11)

In the limit of weak waveguiding, κz1 � 1 and Ey(z) is a slowly varying function across the entire layer. Therefore
it can be replaced in the integral by a constant value taken, e.g., at z = 0. Outside the guiding layer we have
q2 = εbk

2
0 + κ2 and hence in Eq. (A.11) we can take as the zeroth-order approximation q2 = εbk

2
0 . Thus, we get

κ =
1
2
εbk

2
0

∫ ∞

−∞

(
ε(z)
εb

− 1
)

dz . (A.12)

We have replaced the limits of integration in Eq. (A.12) by ±∞ since the region where ε(z) = εb does not
contribute to the integral. The dispersion of the guiding wave is q =

√
εbk2

0 + κ2.

Equations (A.5) and (A.12) can be rewritten in terms of the guiding power, cf. Eq. (4).
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