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Competitive random sequential adsorption on a line from a binary mix of incident particles is studied using
both an analytic recursive approach and Monte Carlo simulations. We find a strong correlation between the
small and the large particle distributions so that while both partial contributions to the fill factor fluctuate
widely, the variance of the total fill factor remains relatively small. The variances of partial contributions
themselves are quite different between the smaller and the larger particles, with the larger particle distribution
being more correlated. The disparity in fluctuations of partial fill factors increases with the particle size ratio.
The additional variance in the partial contribution of a smaller particle originates from the fluctuations in the
size of gaps between larger particles. We discuss the implications of our results to semiconductor high-energy
gamma detectors where the detector energy resolution is controlled by correlations in the cascade energy
branching process.
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I. INTRODUCTION

One-dimensional irreversible random sequential adsorp-
tion �RSA� has been of interest for several decades. Its nu-
merous extensions include RSA with particles expanding in
the adsorption process �1–3�, two-size particle adsorption
�4–7�, and also RSA with an arbitrary particle-size distribu-
tion function �8�. The interest is due to the relevance of this
process to a number of physical phenomena in different
fields of application, such as information processing �9�, par-
ticle branching in impact ionization, �10� and crack forma-
tions in crystals under external stress �11�. The simplest ex-
ample of RSA is the so-called car parking problem �CPP�. In
the context of CPP, one studies the average number of par-
ticles �“cars”� adsorbed on a long line and the variance of
this number. Equivalently, one is concerned with the distri-
bution function for the size of gaps between the parked cars
�see Refs. �12,13� for the review�.

The problem of competitive RSA from a binary mixture is
of special interest because of the nontrivial correlations in
both the particle and gap-size distributions, developed during
the deposition. These correlations manifest themselves in the
final irreversible state corresponding to the so-called “jam-
ming limit”—when every gap capable of adsorbing a particle
has done so. Numerous studies, reported in the literature for
the binary-mixture RSA in the jamming limit, addressed the
problem of correlations only indirectly, through its manifes-
tation in the fill factor or the gap distribution. Available re-
sults include binary mixtures with pointlike particles �4,5�
and those with a relatively small particle size ratio, b /a�2
�6�. Also available are Monte Carlo studies of the fill factor
and the gap-size distribution for a binary-mixture deposition
with equal abundance of both particles �7�.

The present study is concerned with the correlation be-
tween the fluctuations in the number of adsorbed particles of

each kind from a two-size binary mixture, as well as with
their partial contributions to the fill factor. We present both
analytical results and those obtained by Monte Carlo simu-
lations for a wide range of binary-mixture compositions and
size ratios.

We are interested in the RSA problem primarily because
of its relevance to the propagation of high-energy � particles
through a semiconductor crystal—with particle energy
branching �PEB� due to cascade multiplication of secondary
electrons and holes �10,14–17�. The correlation of energy
distribution between secondary electrons is quite similar to
that of the gap distribution in the RSA process �18�. In both
cases, the ratio of the variance of the final number of par-
ticles to the average particle number in the final �jamming�
state can be much less than unity, which is favorable for the
detector energy resolution. This ratio �which would be unity
if the particle number obeyed a Poisson distribution� is called
the Fano factor, � �19�.

The reported attempts to evaluate � employed oversim-
plified models of the semiconductor band structure. In such
models, all crystal properties are characterized by three pa-
rameters, namely, the band gap, the phonon frequency, and
the ratio of the rate of phonon emission to that of impact
ionization. The price of this oversimplification had been that
correspondence with experiment could be achieved only by
assuming unphysically large rates of phonon losses �about
0.5 eV per created e-h pair�. This does not corroborate with
the known values for the ratio of the impact ionization and
the phonon emission probabilities for high-energy electrons
in semiconductors. The model furthermore obscures the role
of features in the band structure and the ionization process
that are specific to a particular semiconductor.

In our earlier work �3�, we used an extended RSA model
of particles that expand or shrink upon adsorption. The
shrinking model is relevant to the PEB problem in that it
helps to elucidate such factors as the nonconstant density of
states in the semiconductor band and the fact that due to
momentum conservation the ionization threshold is larger*subashiev@ece.sunysb.edu
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than the actual �band gap� energy wasted in impact ioniza-
tion.

The recursive technique employed in Ref. �3� allowed us
to assess the accuracy of approximate approaches to the yield
and variance calculations �such as, e.g., the average-loss ap-
proach of Refs. �15,16��.

In the present work, the RSA model is extended in a dif-
ferent direction—competitive deposition of different-size
particles from a binary mixture—that is suitable to simulate
the role of multiple channels of pair production, owing to the
multivalley nature of semiconductor bands. We arrive at a
number of qualitative conclusions that should be taken into
account in both the interpretation of experimental data and
the choice of the crystal composition and device structure in
gamma detectors optimized for energy resolution.

The paper is organized as follows. Section II presents the
basic equations of the recursive approach and the analytical
results for the fill factor and its variance for the larger par-
ticles. In Sec. III, we analyze the results that demonstrate
high correlation in the particle distribution. Based on the
gained understanding, we formulate in Sec. IV the implica-
tions of our results for the Fano factor in semiconductor �
detectors. Our conclusions are summarized in Sec. V. Certain
analytical results are derived in the Appendix.

II. PARTIAL CONTRIBUTIONS TO THE FILL FACTOR
AND ITS VARIANCE FOR TWO-SIZE

RSA PROBLEM

We consider the problem of competitive deposition from a
binary mixture of particles with sizes a and b, whose relative
contributions to the total flux on the adsorbing line are q and
p=1−q, respectively. We shall use a recursive approach to
first study the mean number of particles na�x� and nb�x�,
adsorbed on a line of length x �in the jamming limit�, and
then the corresponding variances.

Consider a large enough empty length x�a ,b. We as-
sume that the adsorption is sequential, i.e., only one particle
is adsorbed at a time. The first adsorbed particle will be of
size a with the probability of landing at any point

q�x−a� / �x− l̄� or of size b with the landing probability

p�x−b� / �x− l̄�. Here l̄=qa+ pb is the “average” particle size
in the binary flux. After the first particle is adsorbed, it fills a
certain interval �y ,y+a� �or �y ,y+b��, and leaves two inde-
pendent segments, whose combined size is either x−a or
x−b. The average numbers of a particles na�y� and
na�x−y−a� �or na�y� and na�x−y−b�� will be subsequently
adsorbed in these gaps. Thus, the recursion relation is of the
form

na�x� =
q�x − a�

x − l̄
�1 + na�y� + na�x − a − y��

+
p�x − b�

x − l̄
�na�y� + na�x − b − y�� ,

where the first and the second terms �upper and lower lines�
correspond to the cases of the first landed particle being a

particle of sort a or b, respectively. These cases must be
averaged over all possible landing coordinates y of the first
particle in a different way, viz., for a first,

�na�y��a =
1

x − a
�

0

x−a

na�y�dy ,

whereas for b first,

�na�y��b =
1

x − b
�

0

x−b

na�y�dy .

Performing the average and using the symmetry between left
and right segments, we obtain, finally

na�x� =
q�x − a�

x − l̄
+

2q

x − l̄
�

0

x−a

na�y�dy +
2p

x − l̄
�

0

x−b

na�y�dy .

�1�

A similar equation holds for particles of size b:

nb�x� =
p�x − b�

x − l̄
+

2q

x − l̄
�

0

x−a

nb�y�dy +
2p

x − l̄
�

0

x−b

nb�y�dy .

�2�

With the help of Eqs. �1� and �2� one can readily derive an
equation for the average total covered length f�x�, defined as
f�x�=ana�x�+bnb�x�, giving

f�x� =
xl̄ − qa2 − pb2

x − l̄
+

2q

x − l̄
�

0

x−a

f�y�dy +
2p

x − l̄
�

0

x−b

f�y�dy .

�3�

Equation �3� agrees with that of Ref. �8� for the total covered
length in RSA from a multisize mixture. However, the ad-
vantage of Eqs. �1� and �2� is that they permit studying the
partial contributions to the coverage by each of the two sorts
of particles separately.

Note that the symmetry between the a and the b particles
is broken by the initial conditions. To be specific, let b�a.
Then, for b particles the boundary condition at small x is
simply

nb�x� = 0, 0 � x � b , �4�

whereas for a particles we have

na�x� = �0, 0 � x � a

1, a � x � min�2a,b� 	 . �5�

For b�2a, Eq. �5� should be supplemented with

na�x� = 1 +
2

x − a
�

0

x−a

na�y�dy . �6�

Equation �6� accounts for the deposition of smaller particles
in small gaps where the larger particle does not fit. Clearly,
this process is not influenced by the b particles and does not
involve particle competition.

More refined arguments are needed to derive the second
moment of the distribution, i.e., the expected value of the
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square of the number of particles of a given sort, ua�x�
=Ena

2�x�. It may not be a priori evident that one can write
independent expressions for particles of both sorts, because
parameters a and b not only describe the particle size but
also designate the sort of particle. Indeed, we can even have
a=b and distinguish the particles by some other parameter,
like “color.” Our approach should remain valid in this case
too. To be rigorous, we therefore introduce an artificial pa-
rameter, the “mass” of a particle, ma and mb, whose value
may depend on the particle shape and is simply proportional
to the particle length only for a fixed transverse particle size.
Hence one can regard ma and mb as independent parameters.

Consider a total mass M�x�=mana�x�+mbnb�x� of the par-
ticles adsorbed in a line segment x. We first evaluate recur-
sively the mean square of the total mass �M2�x��
= ��mana�x�+mbnb�x�t�2�, and then calculate the second par-
tial derivatives with respect to ma and mb. Using the landing
probabilities of particles to perform the averaging, we obtain

ua�x� = �x − l̄�−1�q�x − a� + 2q�
0

x−a

ua�y�dy + 2p�
0

x−b

ua�y�dy

+ 4q�
0

x−a

na�y�dy + 2q�
0

x−a

na�y�na�x − y − a�dy

+ 2p�
0

x−b

na�y�na�x − y − b�dy� . �7�

Similarly, equation for ub�x� reads

ub�x� = �x − l̄�−1�p�x − b� + 2q�
0

x−a

ub�y�dy + 2p�
0

x−b

ub�y�dy

+ 4p�
0

x−b

nb�y�dy + 2q�
0

x−a

nb�y�nb�x − y − a�dy

+ 2p�
0

x−b

nb�y�nb�x − y − b�dy� . �8�

We could have derived Eqs. �1� and �2� in a similar way by
first evaluating the total average mass M�x�=mana�x�
+mbnb�x� recursively, and then calculating the derivatives.
For a more general case, when the total mass is a linear
functional 
mlnldl of the mass distribution ml, one would
have to use variational derivaties �M�x� / �ml. For the case of
binary mixtures we consider, partial derivatives are suffi-
cient.

Similarly, we derive an equation for the correlation func-
tion uc�x�= �na�x�nb�x�� by calculating a mixed derivative of
�M2�x�� with respect to ma and mb. For particles uniform in
the transverse direction with unit mass density, both the mass
and the length of particles are identical, which gives a way to
check the equations. An appropriate linear combination of
equations for ua, ub, and uc then gives an equation for the
variance of the total filled length or, equivalently, for the
variance of the wasted length, w�x�=x− f�x�. The resulting
equation can also be obtained directly, by applying recursion
arguments to the waste. The identical results obtained can be
viewed as an additional proof of Eqs. �7� and �8�.

Note the asymmetry in the fourth terms of Eqs. �7� and �8�
that are proportional, respectively, to 4q and 4p. These terms
ensure the correct �linear� asymptotic behavior of the vari-
ance at large x.

An important feature of Eqs. �1�, �2�, �7�, and �8� is that in
spite of the competitive character of the deposition of par-
ticles of different sorts, the equations for na, nb, and the
higher moments are independent. This is rooted in the fact
that a single deposition step on an empty length x does not
depend on the already adsorbed particle distribution.

Due to the self-averaging nature of the filling length �and
waste length� in the limit x→� the averaged �hence approxi-
mate� recursion equations yield exact results. The recursive
technique is in this sense equivalent to the alternative “ki-
netic” approach to RSA that is sometimes regarded as a
higher-level theory. In the kinetic approach one considers the
rate equation that describes the sequential deposition of par-
ticles with the particle distribution on a line characterized by
a time-dependent function G�x , t� representing the average
density of gaps whose size is between x and x+dx �2,5�. It
has been ascertained for a number of problems that both
approaches give the same result for the coverage. Still, each
has its own benefits. The kinetic approach allows studying
the temporal variation of a state with specified particle dis-
tribution. The recursive approach, while simulating a simpli-
fied version of the kinetics, allows one to study more com-
plex effects, such as variance of the adsorbed particles of
different size.

Evaluation of na�x� and nb�x� is readily done by repeated
iterations of Eqs. �1� and �2�, going from the small to pro-
gressively larger lengths x. Results of the numerical recur-
sion are shown in Fig. 1 for a particle size ratio b /a=2.4 and
varying q.

The noteworthy features of the functions na�x� and nb�x�
are �i� the steplike features at x=a, x=b �which are replicated
with ever smaller amplitudes at x=na+mb, where n and m
are integers�, �ii� the dip in the number of small particles
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FIG. 1. �Color online� Average number of adsorbed particles na

�solid lines� and nb �dashed lines� as functions of the length x �mea-
sured in units of a� of the adsorption interval, assumed initially
empty. The results are obtained by iterating Eqs. �1� and �2� with
the assumed ratio of the particle size b /a=2.4 and the varying
fraction q of a particles in the flux.
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na�x� at x=b, which increases with p, and �iii� the reduction
of nb with increasing q. We also note that for all q the be-
havior of both na�x� and nb�x� becomes very close to linear
already at x�7.

The asymptotic behavior of na�x� and nb�x� at large x can
be obtained by multiplying Eqs. �1� and �2� by x− l and tak-
ing the derivative with respect to x. The resulting differential
equations are satisfied by linear functions of the form

na = 	a�x + l̄� − q, nb = 	b�x + l̄� − p , �9�

where 	a and 	b are arbitrary constants. When correctly cho-
sen �by matching to the recursive solution� these constants
become the partial filling factors. After the matching is done,
the total filled length in the asymptotic limit is given by

f�x�=
x+ �
−1�l̄, where 
=a	a+b	b is the specific cover-
age. It is worthwhile to stress that the value of the asymptotic
solutions �9� consists precisely in that they are asymptoti-
cally exact. Hence they provide a sanity check on any solu-
tion we could have obtained by a numerical recursion up to
moderate values of x.

Similarly, Eqs. �7� and �9� yield the variances at large x,

ua − na
2 = �a�x + l̄� − qp�1 + �b − a�	a�2, �10a�

ub − nb
2 = �b�x + l̄� − qp�1 − �b − a�	b�2. �10b�

Again, these solutions are asymptotically exact; they satisfy
Eqs. �7� and �8� with arbitrary values of �a and �b, provided
of course that na�x� and nb�x� are in the correct asymptotic
form �9� with properly chosen �i.e., satisfying Eqs. �1� and
�2�� coefficients 	a and 	b. In principle, we could now fol-
low a procedure similar to that above, viz., determine �a and
�b by matching Eqs. �10a� and �10b� against a numerical
recursive solution at some moderate value of x. However, it
would be rather difficult to control the numerical accuracy in
this procedure because of the difference of nonlinear func-
tions that enter Eqs. �10a� and �10b�, even though that dif-
ference itself behaves linearly with x at large x.

Fortunately, our model admits of an exact solution based
on the use of Laplace transformation �details can be found in
�3� and references therein�. Below we present an exact evalu-
ation of variance for particles of larger size, while details of
similar though lengthier calculations for smaller particles are
presented in the Appendix.

First, we need exact solutions of Eqs. �1� and �2�. To
obtain these, we substitute x→x+b in Eq. �2� and multiply it

by x− l̄. Taking the Laplace transformation of the resulting
equation and using the boundary condition �4�, we obtain

�−
d

ds
+ b − l̄ebsNb�s� =

p

s2 +
2

s
�qe�b−a�s + p�Nb�s� .

�11�

Here Nb�s� is the Laplace transform of nb�x�,

Nb�s� = �
0

�

e−sxnb�x�dx , �12�

Rearranging the terms and multiplying by e−bs, we put Eq.
�11� into the form

Nb��s� + � l̄ +
1

s
�qe−as + pe−bs�Nb�s� = −

p

s2e−bs. �13�

For p→�, the solution of Eq. �13� is, asymptotically,

�Nb�s��s→� =
p

s�b − l̄�
e−bs, �14�

as follows from the known variation of nb�x�� p�x−b� /

�b− l̄� at small x−b. Hence we have

Nb�s� =
p exp�− l̄s�

s2��s� �
s

�

e−q�b−a�t��t�dt , �15�

where

��s� = exp�− 2�
0

s �1 − q exp�− at� − p exp�− bt�
t

�dt .

�16�

To find the asymptotic behavior of nb�x� at large x, it is
convenient to use Karamata’s Tauberian theorem for the
asymptotic growth rate of steadily growing functions �see,
e.g., �20�, p. 37�. According to the theorem, the asymptotics
of nb�x� �or na�x� or their variances� can be readily obtained
�by taking the inverse Laplace transformation� from the Lau-
rent power series expansion of the Laplace transforms of
these functions at small s �see �9� for the mathematical de-
tails of this analysis�.

Function Nb�s� is analytic at all s�0 and at s=0 it has a
second-order pole with the following asymptotic:

Nb�s� =
	b,0

s2 +
	b,0l̄ − p

s
+ O�s� , �17�

where

	b,0 = p�
0

�

e−q�b−a�s��s�ds . �18�

To calculate nb�x� at large x, we take the inverse Laplace
transformation of Eq. �17�. This gives

nb�x� = 	b,0�x + l̄� − p , �19�

with an exponentially small error term. This exact result
agrees with the asymptotics �9�.

In the limit p=1, Eq. �18� duly gives the so-called jam-
ming filling factor R for the standard RSA, 	b,0�l=1��R
=0.747 59. . . �also called the Renyi constant �21��. In the
limit a→0, Eq. �18� recovers the results of Refs. �4,5� for the
coverage of a line from a binary mixture of finite size par-
ticles and point defects. Moreover, Eq. �18� gives the large
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particle contribution to the total coverage, obtained in �6,8�
for the range a�b�2a. Here we see that this result remains
valid for arbitrary a�b.

Next, we perform similar manipulations with Eq. �8� and
obtain an equation for the Laplace transform of the variance

Ub�s�= L̂�ub�x��, viz.,

Ub��s� + � l̄ +
2

s
�qe−as + pe−bs�Ub�s� = −

exp�− bs�
s2 Rb�s� ,

�20�

where

Rb�s� = p + 4psNb�s� + 2s2Nb
2�s��qe�b−a�s + p� , �21�

with Nb�s� defined by Eq. �15�. The solution of Eq. �20� can
be written in a form similar to Eq. �15�, namely

Ub�s� =
exp�− sl̄�

s2��s� �
s

�

��t�e−q�b−a�tRb�t�dt . �22�

The integrand in the right-hand side of Eq. �22� is propor-
tional to 1/ t2 causing the integral to diverge as 1/s for
s→0. This is due to the square-law dependence of u�x� at
large x.

To separate the regular part needed for the estimation of
variance, we note that at small t one has Rb�t�	b,0t−2.
Moreover, the series expansion shows that the difference
��t�exp�−q�b−a�t�Rb�t�−2	b,0

2 t−2 is regular at t→0. There-
fore it is convenient to define an entire function �b�t�
=��t�exp�−q�b−a�t�Rb�t�−2	b,0

2 t−2. In terms of this func-
tion, the solution Ub�s� can be expressed as follows:

Ub�s� =
exp�− sl̄�

s2��s� �2	 f ,0
2

s
+ kb,0 − �

0

s

�b�t�dt , �23�

where

kb,0 = �
0

�

�b�t�dt . �24�

To apply Karamata’s Tauberian theorem, we note that the
asymptotic expansion of Ub�s� near its third-order pole is of
the form

Ub�s� =
2	b,0

2

s3 +
kb,0 + 2	b,0

2 l̄

s2 +
kb,0l̄ − �b�0� − qp�b − a�2	b,0

2

s
.

�25�

Taking the inverse Laplace transformation, we find the
asymptotic form of ub�x�:

ub�x� = 	b,0
2 x2 + �kb,0 + 2	b,0

2 l̄�x + kb,0l̄ − �b�0�

− qp�b − a�2	b,0
2 , �26�

with an exponentially small error term. Using Eq. �19� to
subtract nb

2�x�, we find an equation of the form �10a� and
�10b� with �b=kb,0+2p	b,0. The specific variance of the ad-
sorbed number of b particles is given by �at x→��

�b = 	b,0�1 + 2p� + 2�
0

� ���s�sNb�s�el̄s�2pe−bs

+ sNb�s��qe−as + pe−bs�� −
	b,0

2

s2 	ds . �27�

Integrating by parts the last term and rearranging the result,
we finally obtain

�b = 	b,0�1 − 2p� + 4p�
0

� 	b�u�
u

e−bu�1 − qe−au− pe−bu�du

+ 2�
0

� 	b
2�u�

��u�u2e−l̄uK�u�du , �28�

where

K�u� = qe−au�2�1 − qe−au − pe−bu� − �a + l̄�u�

+ pe−bu�2�1 − qe−au − pe−bu� − �b + l̄�u� �29�

and

	b�u� = 	b,0 − p�
0

u

e−q�b−a�y��y�dy . �30�

In the limit of small p→0, the Fano factor �=�b /	b,0→1.
In this limit, large particles are distributed on the line ran-
domly, without correlations. In the opposite limit, p=1, Eq.
�28� reduces to the standard RSA result, first obtained for a
lattice RSA model by Mackenzie �22�. The numerical value
of the Mackenzie constant, �0=0.038 156 4. . ., corresponds
to �=0.051 038 7. . ., see �9�. Expression �28� for the larger
particles has the same structure as the corresponding formula
in the standard RSA model �fixed-size CPP�. Due to the ex-
ponential factors in the integrands of Eq. �28�, the depen-
dence of �b on a for a�b is quite weak. The limiting value
of the specific variance for a /b→0 gives the specific vari-
ance of the fill factor for the case of finite-size particles
�b=1� mixed with point-size particles,

�b,p = 	b,p,0�1 − 2p� + 4p2�
0

� 	b,p�u�
u

e−u�1 − e−u�du

+ 2p�
0

� 	b,p
2 �u�

�p�u�u2 �qe−pu�2 − 2e−u − u�

+ e−�1+p�u�2p�1 − e−u� − �1 + p�u��du , �31�

where 	b,p,0 is the fill factor for this case,

	b,p�u� = p�
u

�

e−qy�p�y�dy, 	b,p,0 = 	b,p�u = 0� �32�

and

�p�u� = exp�− 2p�
0

u �1 − exp�− t�
t

�dt . �33�

It is worth to note that Eqs. �2� and �8� and their solutions
can be readily generalized to the case when particles of the
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smaller size have an arbitrary distribution in the interval
�a1 ,a2� so long as a2�b �23�.

The above analytic results for the variance of larger par-
ticles are essentially exact, as will be confirmed in the next
section by Monte Carlo simulations. For the smaller par-
ticles, the calculations are messier and accurate analytical
results can be obtained only in a certain range of particle size
ratios. Estimations of the variance for small-size particles are
further discussed in the Appendix.

III. DISCUSSION OF THE RESULTS, COMPARISON
WITH MONTE CARLO MODELING

Here we present the results of numerical calculations us-
ing both the analytical expressions obtained in the preceding
section and Monte Carlo simulations. For large-size particles
the Monte Carlo results are very close to analytical expres-
sions both for the fill factor and the variance, so we shall not
dwell on their comparison. For small-size particles, espe-
cially in the range 2�b /a�8, analytical calculations are
rather unwieldy, so Monte Carlo simulations become indis-
pensable. Larger size ratios, b /a�8, lend themselves to an
approximate analytical approach �see Appendix�. In this
case, we use the Monte Carlo method to estimate its accu-
racy for the small particle contribution.

Traditional studies of the generalized RSA via Monte
Carlo simulations follow a temporal sequence of events. For
the case of adsorption on a line of the length x from a binary
mixture, one step of the sequence comprises:

�i� selection of a particle from the mixture according to
the deposition flux ratio �with the probability q of choosing
the small-size �a� particle, and the probability p=1−q of
selecting a particle of larger size b�;

�ii� random choice of a deposition coordinate of particle
center on the line x with formerly deposited particles; and

�iii� rejection of the particle if it overlaps by any part with
formerly deposited particles or with the line borders; other-
wise, the particle deposition proceeds with the formation of
two new disconnected adsorption lengths.

This traditional approach has several drawbacks that
make the modeling very demanding, both in terms of the
computer time and memory allocation.

First, both the filled length in the jamming limit and the
specific fill factor �coverage� depend on the initial length.
Due to the self-averaging property of the coverage it tends to
a unique exact value in the limit x→�. To obtain the accu-
racy of about 0.1%, the common strategy has been to use
large initial length values �105b–107b� and make additional
averaging over a set of about NR=100–1000 different real-
izations.

Second, as time evolves and the jamming limit is ap-
proached, the probability of finding a free gap for particle
deposition becomes greatly reduced, so that the adsorption
time tends to infinity. The process is terminated when varia-
tions of the adsorbed particle number are smaller than those
required by the desired accuracy.

The recursive analysis of the generalized RSA suggests a
revision of the above scheme. Since the deposition is random
and sequential, it does not depend on the temporal history of

the process or the growing number of rejected particles and
their coordinates. Therefore one step of the sequence can be
chosen as follows.

�i� Selection of any free deposition length, l1�a. It is
convenient to choose for l1 the outermost free deposition
length on the left-hand side.

�ii� If l1�b, then particle of size a is deposited, otherwise
the deposited particle is chosen according to the landing
probability, given by q�l1−a� / �l1− l̄� for the a particle and

p�l1−b� / �l1− l̄� for the b particle, where l̄=qa+ pb.
�iii� Random choice of a deposition coordinate �taken as

the coordinate of the particle’s left end� on the line l1 for a
given particle size, i.e., within the interval l1−a for the a size
or within l1−b for the b size particle, with the formation of
two new adsorption lengths from the initial length l1.

It is readily seen that although the sequence of deposition
events is different from the actual temporal sequence of ad-
sorption �the simulated deposition proceeds by sequentially
filling the left-hand lengths�, the statistics of divisions is
identical and therefore so is the final distribution of the gaps,
as well as all statistical properties of the jamming state. Our
sequential scheme excludes deposition of to-be-rejected par-
ticles and therefore is incomparably faster. Besides, it termi-
nates exactly when the jamming limit �with no gaps larger
than unity� is achieved. Direct comparison with the tradi-
tional Monte Carlo results, e.g., �5,7,8�, exhibits total agree-
ment. The difference in the calculation time is especially
evident for small �close to zero� q: in the time scale of “real”
deposition, the jamming limit will be strongly delayed be-
cause of the rarity of events with small particle chosen. In
our modified approach, all gaps smaller than b are “rapidly”
populated by small-size particles, however small the value of
q.

The next step of the revision is to exploit the fact �proven
analytically in the preceding section� that in the jamming
limit the linear dependence on the adsorption length of both
the average filled length and its variance is exponentially
accurate, starting from a reasonably short length, certainly
not exceeding x�10b. Since this linear dependence has only
two parameters �actually only one, as the parameter ratio is
exactly fixed by analytical considerations, Eqs. �9�, �10a�,
and �10b��, both the coverage and the variance can be deter-
mined with Monte Carlo simulations of short samples.

To be sure, in order to achieve the same accuracy as that
obtained for long samples, the results should be averaged
over a sufficient number of realizations NR. This, however,
takes little memory or time. Calculations show similar accu-
racy for different x and NR, so long as their product xNR is
fixed. The results presented below were obtained using a
sample of size x=200a for b /a�10 and x=400a for b /a
=20,40, subsequently averaged over 10 000 realizations,
which appeared to be sufficient to eliminate any spread of
the results in the graphical presentation �producing an accu-
racy of better than 0.1%�.

The use of small samples is very effective in reducing the
calculation time �with an ordinary PC, high-accuracy results
can be obtained in minutes, compared to days in the tradi-
tional scheme �8��.

Figure 2 shows partial contributions to the coverage as
functions of the fraction q of small particles in the binary
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mixture at different ratios of particle size. As q increases, the
coverage with large particles is substituted by that with small
particles, producing some decrease in the total coverage. In
the regions of corresponding parameters, our results repro-
duce those of reported analytical calculations �i.e., for b /a
�2 �5,8� and for a=0 �6� for the large particle contribution�
and those obtained by the Monte Carlo simulations of
�5,7,8�, demonstrating the validity of our revised approach.

It is evident from Fig. 2 that the total coverage increases
at smaller q, as can be explained by sequential deposition of
the two kinds of particles. In the regime of small q, large
particles are adsorbed first and their deposition, unobstructed
by small particles, is tight. Subsequently, the small particles
fill the gaps between large particles and this clearly reduces
the total wasted length.

The effect of increasing the particle size ratio b /a is pro-
nounced only for b /a�10, then it rapidly saturates. There-
fore for large b /a, say b /a=20 the coverage by large par-
ticles is very close to that obtained for a model mixture of
pointlike and finite-size particles �by formally letting a=0 in
Eq. �18��. Such a model, however, has little relevance to any
practical situation because it simply ignores the partial con-
tribution of small particles to the total coverage. The latter
can be described analytically in the limiting case b /a→�,
Eq. �A13�.

The partial contribution of small particles steadily grows
with the increasing size ratio due to the expanding gaps be-
tween the large particles. In the limit q→0, the total cover-
age can be estimated by observing that the specific wasted
length in this case is a simple product of the specific lengths
wasted in initial deposition of large particles and subsequent
deposition of small particles, i.e., 1−
= �1−
a��1−
b�. Since
for q=0 the specific coverage 
b=R and since for large size
ratios �when the gaps between large particles are large� the

specific coverage 
a=R, we have 
=1−R2=0.936, in agree-
ment with the results reported in the literature �5,7�. How-
ever, the sequential nature of the deposition suggests that the
entire q dependence of the total 
 can also be approximated
by a product of the specific wasted lengths in the competitive
deposition of large particles q�1−R� and subsequent deposi-
tion of small particles in the remaining gaps, which gives


 = 1 − �1 − R��1 − qR� = R�1 + q�1 − R�� . �34�

This product-waste approximation is shown in Fig. 2 by the
open circles.

Next, we concentrate on the specific waste variance and
the Fano factor. We shall discuss the b and a particles sepa-
rately, since the effects are rather different in nature and also
since they have been evaluated by different techniques. Re-
sults for large particles are obtained by numerical integration
of Eq. �30� and confirmed by Monte Carlo simulations. Re-
sults for a particles are obtained by Monte Carlo stimulations
and are accompanied by analytical expressions in the limit
b /a�1.

Variance, �̃, of the partial contribution of b particles to
the total coverage is shown in Fig. 3 for different particle
size ratios. Unlike the particle number variance �, the vari-
ance of coverage, �̃=�b, depends only on the size ratio b /a
and does not directly scale with b. It is therefore more in-
dicative of the effect of decreasing size of small particles on
the fluctuations of the number of large particles. At q→0,
when the adsorption of large particles is unconstrained by
small particles, the variance of large particles is minimal and
corresponds to the highly correlated distribution �18� in the
standard CPP problem �one-size RSA�. The variance rapidly
increases with q as the small particle deposition destroys the
CPP correlations. The maximum of this effect is shifted to
larger q values for larger b /a. For q approaching unity, the
variance decreases simply due to the decrease of the average
number of adsorbed b particles.
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FIG. 2. �Color online� Partial contributions of small and large
particles to the total coverage depicted as functions of q, for differ-
ent particle-size ratios b /a in the flow. Open points correspond to
the limit b /a�1, as described by the analytical formula �32� for b
particles and Eq. �A13� for a particles. For the total coverage, the
open circles correspond to the wasted length product approxima-
tion, Eq. �34�.
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Correlation effects are more adequately characterized by
the Fano factor �b, shown in Fig. 4. With the increasing
number of competing small particles in the flux, the Fano
factor grows from the smallest value �=0.051. . ., corre-
sponding to the one-size RSA problem, to unity in the limit
q→1. Small coverage by the large particles in the latter limit
means that they are distributed randomly on the line, so that
Poisson statistics recovers. The most noticeable effect is a
rapid decrease of the Fano factor with 1−q, manifesting a
strong enhancement of the correlation effects in the large
particle distribution. These correlation effects become ex-
hausted only near q�0.1. The correlation effects increase
with b /a but saturate at about b /a=20.

Figure 5 shows the Fano factor for a particles competi-
tively deposited along with large particles. The results are
strikingly different at all q�1 �when �a=�, as expected�.
While the distribution remains correlated ��a�1� for small
ratios b /a�5, at larger b /a one has �a�1, almost for all q,
which means that the number of small particles per unit
length is strongly fluctuating. This is due to the widely fluc-
tuating size of the gaps available for small particle deposition
between large particles. For large values of b /a and in the
entire range of q, the Fano factor �a can be approximated in
terms of the fluctuations of the coverage by the large par-
ticles, viz., �a= �b /a��b,pR2 /
a, where �b,p is given by Eq.
�31� and 
a by Eq. �A13�. This approximation, which ne-
glects fluctuations of the density of adsorbed a particles in
the gaps, is shown in Fig. 5 by open points. This contribution
is proportional to b /a and for b /a�10 it is evidently domi-
nant.

For the particle energy branching process at small
b /a�2, both the variance of the partial numbers of small
and large particles and the total number variance are of im-
portance. We shall illustrate this point in the instance of
b /a=1.2 shown in Fig. 6. We see that at q�0.5 the fill factor

fluctuations are larger for a particles and somewhat smaller
for b particles, but both are pretty large compared to the
variance of the total number of adsorbed particles. This is
due to the strong anticorrelation in their distribution, as evi-
denced by the specific fluctuation correlation function, fcor
=x−1��na�nb�, also plotted in Fig. 6. We note that fcor�0,
which means that any excess in the number of a particles is
accompanied by a downward fluctuation in the number of
adsorbed b particles. Importantly, the variance and the Fano
factor for the total number of adsorbed particles does not
exceed substantially its value for the single-size RSA.

Note the asymmetry of the curves for a and b particles,
e.g., the variance of large particles goes to zero as q→1
whereas that of small particles remains finite even as q→0.
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This is a feature of our model that allows an “infinite”
amount of time for the deposition of small particles in the
gaps left after the deposition of large particles is completed,
but not vice versa. Therefore the deposition of small particles
remains finite even in the limit of q→0 and the same is true
for the a particle number variance.

Another interesting feature of the a-particle number vari-
ance, already evident from Fig. 5, is its nonmonotonic be-
havior as a function of b /a at small q. This variation is
displayed directly in Fig. 7 that shows the dependence of the
Fano factor on b /a for q=0.05, 0.1, and 0.2—where its non-
monotonic nature is most pronounced. The minimum of the
Fano factor is achieved at b /a�2. Note that the nonmono-
tonic dependence of the Fano factor is accompanied by non-
monotonic variations in the dispersion of the gaps between
small particles. In Ref. �7� it was found that for q=0.5 the
dispersion is noticeably reduced at b /a�1.55. These effects
were interpreted as a manifestation of the so-called “snug fit”
events, i.e., particle deposition in gaps that are just barely
above the unit length a. In contrast, the Fano factor for b
particles and that for the total number of particles remain
monotonic everywhere.

IV. SOME CONSEQUENCES FOR THE ENERGY
BRANCHING IN HIGH-ENERGY

PARTICLE DETECTORS

The model of RSA from binary mixtures is relevant to an
important practical problem of particle energy branching
�PEB� where a high-energy particle propagates in an absorb-
ing medium and multiplies producing secondary electron-
hole �e-h� pairs. Multiplication proceeds so long as the par-
ticle energy is above the impact ionization threshold �15�.
The energy distribution of secondary particles is random to a
good approximation.

The affinity between the two problems was fully recog-
nized already in 1965 by van Roosbroek �17� �see also �24��.

The PEB process can be considered in terms of a CPP if one
identifies the initial particle kinetic energy with an available
parking length and the pair creation energy with the car size.
Similarly, the kinetic energies of secondary particles can be
identified with the new gaps created after deposition of a
particle. Full equivalence of PEB to CPP further requires that
only one of the secondary particles takes on a significant
energy, which corresponds to binary cascades �25�. Other-
wise, one has to consider a simultaneous random parking of
two cars in one event.

To estimate the particle initial energy in PEB, one mea-
sures the number N of created electron-hole pairs. Variance
of this number, due to the random character of energy
branching and also due to random energy losses in phonon
emission, limits the accuracy of energy measurements. Both

the yield N̄ and the e-h pair variance var�N�= �N− N̄�2 are
proportional to the initial energy. The ratio of the e-h pair
variance to the yield, i.e., the Fano factor of the PEB process,
is a parameter that quantifies the energy resolution of high-
energy particle detectors.

For semiconductor crystals, the PEB problem has addi-
tional complications due to the energy dependence of phonon
losses and the energy dependence of the electron density of
states and the impact ionization matrix element. Full quanti-
tative analysis of the PEB is possible only with detailed nu-
merical calculations, which goes far beyond the scope of the
present paper.

A common feature of the energy branching process in
semiconductors is the presence of several pair production
channels, associated with the multivalley energy band struc-
ture of the crystal. In Si, Ge, and common A3B5 semicon-
ductors, the e-h pair creation produces electrons in one of the
ellipsoids near the edge of the Brillouin zone, in 100 �X� or
111 �L� directions. Owing to the difference in the final den-
sities of states and the matrix elements, the impact ionization
processes associated with X and L valleys have different but
competitive probabilities. Because of its low density of
states, the � valley is usually not competitive, even when it is
the lowest valley.

Ultimately, electrons will end up in the lowest energy val-
ley but when the final electron valley is itself degenerate, as
in Ge or Si, the resulting electron states may not be fully
equivalent because of the different collection kinetics owing
to the crystal anisotropy. This effect may have important
consequences for the observed variance. For example, in Si
diode detectors electrons are created in six degenerate energy
valleys that represent ellipsoids of revolution elongated
along �100� and equivalent directions in k-space. Suppose the
diode structure is such that the current flows along the �100�
direction, as it is usually the case. Electrons from the two
valleys along the current have a large mass and low mobility.
The measured current is hence dominated by electrons from
the four valleys elongated perpendicular to the current that
have a low mass and high mobility along the current. Since
the choice of equivalent valley in the PEB process is fully
random, the number of high-mobility electrons will fluctuate
more strongly than the total number of generated carriers.
These fluctuations will dominate if the intervalley transition
rate is low compared to the inverse collection time. In the
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opposite limit of high intervalley transition rates, this effect
will average out as the collected current will fluctuate in
time. The current fluctuation mechanism due to the carrier
escape into heavy-mass valleys is a well-known source of
noise in multivalley semiconductors �26��. A more detailed
account for these effects will be presented elsewhere �23�.

Here we shall discuss an opposite situation that is com-
mon to direct-gap semiconductors, such as GaAs or InP. In
these materials, the lowest ��� electron valley has a very low
density of states, compared to that in the satellite �X and L�
valleys. Therefore the probability of electron generation in
the � valley can be neglected in first approximation, so that
the branching competition occurs only between the satellite
valleys of two different kinds. Both the density of states and
the threshold energy are different between X and L valleys
and we can use the results of the present study to interpret
and predict the consequences, at least qualitatively.

The binary-mixture RSA model interprets the higher den-
sity of states as higher deposition rate and the higher thresh-
old as larger particle size. To make our conclusions more
transparent, let us reformulate the required results in terms of
a random parking problem with cars of two sizes. We are
now interested only in the numbers of parked cars and the
fluctuations of these numbers.

Several qualitative conclusions can be drawn from our
results.

�i� The total number of parked cars �in the jamming state�
will decrease with increasing fraction of larger cars in the
flow and with the growth of their size. For b /a=1.4 the
effect is illustrated in Fig. 8 �which can be viewed as an
extension of Fig. 2�. It follows from the fact that adsorption
of a large car excludes larger length for subsequent parking
events and thus causes a decrease of the total fill factor. Note
that the decrease in the total particle number is accompanied
by an increase in the total filled length, as a smaller number
of cars cover a larger area.

The next two conclusions �ii� and �iii�, illustrated in Fig.
6, are interconnected and will be discussed jointly.

�ii� Variance of the total number of parked cars and the
Fano factor will both grow with the increasing fraction of
larger cars in the flow and with the growth of their size.

�iii� Variance of the separate numbers of parked small and
large cars and their Fano factors are considerably larger than
that of the total number of cars. Therefore if for some reason
one type of cars is neglected or undercounted, the registered
variance and the Fano factor can be substantially increased.

These conclusions are connected with the nature of the
car number fluctuations and the strong anticorrelation be-
tween the fluctuations in the number of small and large cars.
Fluctuations in the number of parked cars of one kind are
strongly enhanced by the presence of more or less randomly
distributed cars of the second kind, especially when cars of
the second kind dominate. This leads to conclusion �iii�.
However, the two distributions are anticorrelated �higher
number of parked small cars is accompanied by a smaller
number of large cars and vice versa�. The anticorrelation is
particularly strong for a size ratio that is close to unity.

One can imagine a case when the two kinds of cars differ
only in “color.” In this case, Eqs. �18� and �28� yield 	a,0
=qR, 	b,0= pR, �a=Rqp+q2�0, and �b=Rqp+ p2�0, so that
at large x we have ��na�nb� /x=−�R−�0�qp. Then, the anti-
correlation is almost complete: the fluctuations of the total
number are much smaller than those of a given color, but still
nonzero. Both the individual-color number fluctuations and
the anticorrelation are largest at q�0.5, cf. Fig. 6. The anti-
correlation decreases with increasing size ratio, as reflected
in our conclusion �ii�.

To discuss the above conclusions in terms of the PEB
problem, we note that estimation of the initial particle energy
is equivalent in CPP to a measurement of the unknown
length of a parking lot in terms of the total number of cars
that were able to fit into it by random parking, assuming that
the average fill factor for a given two-size car mixture is
known from earlier measurements. The absolute accuracy of
such a measurement depends on the variance of the fill fac-
tor, and the relative accuracy is determined by the Fano fac-
tor. As shown above for a mixture of cars, the larger disparity
of car sizes leads to the higher fill-factor variance and there-
fore reduces the absolute accuracy.

A particle detector measures the total number of second-
ary particles of all sorts �but not their total creation energy,
that would be equivalent to the filled length�. In any channel,
all secondary particles that have sufficient energy for further
branching will do so. Therefore only those pair creation en-
ergy ratios that leave the channels competitive �i.e., b /a�2�
are relevant to the PEB problem—otherwise additional en-
ergy branching would be possible.

We conclude that the presence of competing channels
with different energies �e.g., impact ionization with excita-
tion in X and L valleys� will decrease the quantum yield �the
number of secondary particles per unit energy of the primary
particle� and enlarge the Fano factor. The attendant loss in
energy resolution is not that bad when the ionization energies
associated with different valleys are not too disparate. For
example, in Ge besides the lowest eight L valleys
�EG=0.66 eV� one has a noncompetitive � valley
�E�=0.8 eV� and six very competitive Si-like valleys
�EX=0.85 eV�. The downgrading of energy resolution
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should be more important for crystals with a larger ��2�
threshold energy ratio. For example, in Si one has besides the
six lowest valleys �EG=1.12 eV� in the X direction, eight
Ge-like L valleys with the gap EL=2.0 eV. Their effect on
the Fano factor in silicon may not be negligible.

Finally, reformulating �iii�, we stress that any significant
disparity in the collection efficiency between different
equivalent valleys will strongly enhance the Fano factor and
downgrade energy resolution. This happens because any col-
lection disparity breaks the symmetry between the equivalent
valleys and destroys the anticorrelation, responsible for
keeping the total Fano factor low even when the partial par-
ticle numbers associated with individual valleys exhibit fully
random fluctuations. One possible origin for the asymmetry
in the collection efficiency in semiconductors has been dis-
cussed above in the case of silicon diodes with the electric
field in the �100� direction. In germanium diodes all different
valleys are equivalent relative to the �100� direction and the
symmetry is not broken. It would be broken, however, if one
were to use Ge diodes oriented in the �111� direction. This
would lead to a situation similar to Si—with a possible deg-
radation in the Fano factor. These effects deserve additional
study, both experimentally and theoretically.

V. CONCLUSIONS

We have studied a generalized one-dimensional competi-
tive random sequential adsorption problem from a binary
mixture of particles with varying size ratio. Using a recursive
approach, we obtained independent equations for the number
of adsorbed particles of a given sort and exact analytical
expressions for the partial filling factors and variances for the
larger particles. For the smaller particles analytical expres-
sions were obtained in a number of limiting cases. The re-
sults have been confirmed by direct Monte Carlo simula-
tions. To do so, we have introduced a modified Monte Carlo
procedure that enabled us to explore a wide range of particle
size ratios and particle fractions in the flux.

A number of qualitative implications have been formu-
lated, relevant to the energy branching problem in high-
energy particle propagation through a semiconductor crystal.
Conclusions made concern the quantum yield and the energy
resolution in semiconductor detectors made of crystals with
several competing channels of impact ionization with differ-
ent final electronic states.

We have found very strong anticorrelation effects which
suppress fluctuations of the total particle number compared
to the fluctuations of partial contributions by particles of a
given sort. This effect is particularly evident when one con-
siders the deposition of similar competing particles, e.g.,
parking of cars that are different only in “color.” It may have
dramatic consequences for semiconductor �-radiation detec-
tors if the symmetry between anticorrelated particles is bro-
ken by a biased collection. This leads to an important con-
clusion that the energy resolution of semiconductor detectors
is very sensitive to the collection efficiency of competing
secondary particles.

We have also found very strong correlation effects that
suppress fluctuations of the larger particle number for all

particle ratios. As a result, the Fano factor for the larger
particles is as a rule considerably smaller than that for the
smaller particles. The variance of the coverage by the smaller
particles strongly increases with the growth of the particle
size ratio b /a. This effect is due to the fluctuations in the size
of gaps between larger particles that serve as receptacles for
small-particle deposition. For b /a�5 the small-particle vari-
ance exceeds that for the Poisson distribution in almost the
entire range of particle fractions in the flux onto the adsorb-
ing line.
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APPENDIX: SMALL PARTICLE CONTRIBUTIONS
TO COVERAGE AND COVERAGE VARIANCE

To calculate the contribution of small particles to the total
coverage at large x, we use Eq. �1� with the initial boundary
conditions �5�. With the substitution x→x+b and using Eq.
�6�, we rewrite Eq. �1� in the form

�x + b − l̄�na�x + b� = q�b − a�na�b� + qx + 2q�
b−a

x+b−a

na�y�dy

+ 2p�
0

x

na�y�dy . �A1�

Equation �A1� is valid for all x�b. Taking the Laplace trans-
formation of na�x� cut at x�b by a step-function factor, we
find that the transform,

Ña�s� = �
b

�

e−sxna�x�dx , �A2�

satisfies the following equation:

�−
d

ds
+ b − l̄�ebsÑa�s�

=
q

s2 �1 + �b − a�na�b�s� + 2
q

s
e�b−a�s�Ña�s� + J1�s��

+ 2
p

s
�Ña�s� + J2�s�� . �A3�

Here

J1�s� = �
b−a

b

e−sxna�x�dx, J2�s� = �
0

b

e−sxna�x�dx .

�A4�

Rearranging the terms, we rewrite it in form
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� d

ds
+ l̄ +

2

s
�qe−as + pe−bs�Ña�s� = −

1

s2e−bsRa�s� ,

�A5�

where

Ra�s� = q�1 + �b − a�na�b�s� + 2s�qe�b−a�sJ1�s� + pJ2�s�� .

�A6�

The form of Eq. �A5� is similar to Eq. �20� in which, how-
ever, Ra should be calculated through J1�s� and J2�s�, using
Eqs. �5� and �6�. For the case b�2a we have na�b�=1 and
J1�s�=J2�s�, while the explicit expression for J1�s� is easily
obtained by substituting na�x�=1 in Eq. �A4�. Solution of Eq.
�A5� then enables one to retrieve the result of Ref. �5�. To
calculate J1�s� and J2�s� for b�2a, it is necessary to use Eq.
�6�, which describes the RSA of small particles onto a short
line x�b. Its analytical solution and therefore the explicit
expressions for J1�s� and J2�s� can be obtained for the case
b /a�5 using direct recursion to find na�x� �for the one-
particle RSA problem�. The result is rather cumbersome but
suitable for numerical integration.

For the case b /a�5 one can exploit the exponentially
rapid approach of the solution of Eq. �6� to its asymptotic
behavior in the limit x�1 �see, e.g., �27� for the numerical
data�. This asymptotic solution,

na�x� =
R

a
�x + a� + 1, �A7�

can be used to calculate J1�s� and then J2�s�. To do this, we
multiply Eq. �6� by exp�−sx� and integrate between 0 and
b−1. We obtain an equation for J2�s� of the form

J2��s� + �a +
2

s
e−as�J2�s�

= −
1

s2 �e−asI�s� + s�b − a�e−bs�na�b� − 1� + 2se−asJ1�s�� ,

�A8�

where

I�s� = �
0

�b−a�s

dyye−y . �A9�

The solution of Eq. �A8�, satisfying the boundary conditions
for na given by Eq. �5�, is of the form

J2�s� =
1

�̃�s�s2
e−as�

0

s

dt�̃�t��na�b��b − a�te−�b−a�t

+ 2tJ1�t� − �1 − e−�b−a�t�� �A10�

with

�̃�t� = exp�− 2�
0

at �1 − ev

v
dv� . �A11�

The contribution of small particles to the fill factor is then
given by

	a = �
0

�

��u�Ra�u�du , �A12�

in which ��u� is given by Eq. �16� and Ra�u� is defined by
Eq. �A6�. The obtained solution, though rather unwieldy, is
suitable for numerical integration and for b /a�5 it gives the
results that agree with Monte Carlo simulations.

In the limiting case b /a�1 it reduces to a more compact
final expression for the contribution to the total coverage
from the small particles


a = R�1 + �
0

�

due−qu�p�u��q�u − 1� − 2pe−u�	 ,

�A13�

with �p�u� defined by Eq. �33�. For q=1, Eq. �A13� properly
gives 
a=R, while for q=0 one has 
a=R�1−R�. The latter
expression corresponds to the coverage by small particles of
the gaps between the large particles left after their initial
deposition. For arbitrary q, the coverage given by Eq. �A13�
is depicted in Fig. 2 by the open squares.

A similar approach can be used to calculate the small
particle coverage variance. However, for b /a�2 the equa-
tion for the Laplace transform of ua�x� given by Eq. �7�,
including all contributions to Na�s�, becomes rather imprac-
tical. In the limiting case b /a�1, when fluctuations of the
large particle gaps dominate the variance of small-particle
coverage, one gets a more compact result shown in Fig. 5.
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