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Abstract

Laser generation begins at a critical injection when the gain and
loss spectra touch each other at a singular frequency. In the frame-
work of the standard theory, the finite linewidth results from the ac-
count of fluctuations associated with the random spontaneous emission
processes. This approach is based on the assumption that in the mean-
field approximation the singular frequency generation persists for in-
jection levels higher than critical. We show that this assumption in the
framework of the Boltzmann kinetic equation for electrons and pho-
tons is invalid and therefore the standard description of semiconductor
laser linewidth lacks theoretical foundation. Experimental support of
the standard theory is also questionable.

PACS: 42.55.Ah, 42.55.Rx, 78.40.Fy

1 Introduction

Laser linewidth theory was pioneered by Schawlow and Townes [1] and fur-
ther developed in [2] and [3]. We discuss the status of the Schawlow-Townes-
Lax-Henry (STLH) theory of laser linewidth in the instance of semiconductor
injection lasers. At injection levels I below threshold I < IC one can intro-
duce two spectra g(ω, I) and σ(ω), describing, respectively, the material gain
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and the loss at cavity mirrors of the electromagnetic field intensity. The gain
g(ω, I) is generally an increasing function of I. At I = IC the two spectra
touch each other, g(ω0, IC) = σ(ω0), and the generation begins. The STLH
theory of laser linewidth is based on the assumption that in the mean-field
approximation (i.e., without fluctuations) the singular in frequency nature
of generation persists above the threshold (i.e., for I > IC). In the frame-
work of this approach, the laser line acquires a finite width Γ entirely due
to fluctuations. In an ideal laser these fluctuations are due to the random
discrete nature of spontaneous emission.

We shall refer to the property of the two spectral curves g(ω, I) and
σ(ω) to touch each other at a singular frequency for I > IC as rigidity.
In principle, however, scenarios other than rigidity are also possible. For
example, the curves may touch each other for I > IC in a finite interval
of frequencies, so that there is a finite linewidth even in the mean-field
approximation. In this case, the account of fluctuations would provide only
a correction. This is not an unusual situation. For example, the conventional
mean-field scenario for multimode laser generation involves oscillations at
several discrete frequencies.

In this paper we examine the validity of the assumption of rigidity. First
we briefly review the standard STLH linewidth theory. Next we derive a
mean-field expression for the linewidth using Boltzmann’s kinetic equation
for electrons and photons. In this approach the linewidth turns out to be
an increasing function of injection, which violates the assumption of rigidity
and is in contradiction with the STLH scenario. Curiously, however, it is
not necessarily in contradiction with experiment.

The simplest model of the laser is a pumped two-level electronic system,
immersed in an electromagnetic wave resonator. It is described (see, e.g. [4])
by rate equations for the electron population difference equation n = n2−n1
and the number of photons N in the resonator:

dn

dt
+

n(t)− n0
τ

= I − γnN (1)

dN

dt
+ σN = γnN

where the differential gain γ, defined by g(ω, I) = γ(ω)n(I), is a coeffi-
cient independent of n and τ is the characteristic time describing all non-
stimulated recombination processes (in high quality material, where non-
radiative recombination is negligible, τ = τ sp, where τ sp is the characteris-
tic time of spontaneous emission). The equilibrium population difference at
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I = 0 is denoted by n0. Laser generation begins when the photon gain γ n
exceeds loss σ. In this case, the stationary solution of Eq. (1) is γ n = σ
and N = (I − IC)/σ, where IC = (σ/γτ)− n0/τ .

In this simplest model, the I dependence of gain g(ω, I) is parameter-
ized by a single number n and the rigidity arises automatically. Above the
threshold, the mean-field equations (1) describe a wide range of phenom-
ena, including relaxation of an arbitrary initial state to the steady state at
a given I.

The standard STLH theory of laser linewidth is developed as follows.
In the limit N >> 1, the electromagnetic field Ẽ(t) = E exp(iω0t) of a
single resonator mode is considered classical, characterized by amplitude
and phase. Here ω0 is the mode frequency, and E is a complex vector
that may be slowly varying in time. In the mean-field approximation, the
phase ϕ of the field is definite, while its amplitude is proportional to

√
N ,

i.e. E ∼ √N exp(iϕ). Beyond the mean-field approximation the quantities
N , n and ϕ fluctuate in time due to the randomness of recombination and
relaxation processes. It is these fluctuations that determine the linewidth
in the conventional STLH approach. In an idealized laser, the fluctuations
arise from randomness of spontaneous emission. All fluctuations of interest,
including spontaneous emission, can be described classically in the sense
that they are generated by δ-correlated Langevin forces (white noise). The
reason for the classical description of fluctuations is that the time scale we
are interested in (of order the inverse linewidth) is long compared to all
kinetic relaxation times.

In the limit N >> 1, where the fluctuations in the number of photons
are small, δN << N , the fluctuations of ϕ are decoupled from those of n
and N . Fluctuations δN and δn give rise to the intensity noise, while only
fluctuations of the phase, δϕ, contribute to the linewidth. These fluctua-
tions correspond to a random walk of the complex variable E of a constant
modulus (see e.g. [3]). Each event of spontaneous emission adds to vector
E a small δE ∼ √~ω0. The angle between the two complex numbers E and
δE is random and both the amplitude and the phase of the sum E+ δE are
varying. The amplitude variation corresponds to δN and, according to Eq.
(1), it relaxes to its steady-state value, while δϕ ≈ δE/E ≈ 1/√N . The
diffusion coefficient describing the angular random walk, Dϕ = (δϕ)2 /τ sp,
determines the laser linewidth, Γ = Dϕ, which thus turns out to be inversely
proportional to the intensity of laser emission,

ΓSTLH =
1

τ spN
. (2)
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Thus, at large N , the linewidth is much smaller than any characteristic
frequency of the system, such as the spectral width of the laser cavity σ(ω),
the rate of electronic collisions 1/τ ee that determine the broadening of the
quantum electronic levels in semiconductors, the spectral width of the gain
g(ω), and the spontaneous emission rate 1/τ sp.

We would like to stress that the STLH approach essentially relies on the
assumption that the mean-field equations have a singular solution with no
width at all. Discussion of this assumption requires a detailed analysis of the
injection-level dependence g(ω, I), which in turn requires a consideration of
energy and frequency dependences of the electron and photon distributions,
nε and Nω, respectively.

We now present such a consideration based on Boltzmann’s kinetic equa-
tion. It turns out that singular solutions are ruled out in the kinetic descrip-
tion which yields a finite laser linewidth already in the absence of fluctua-
tions.

The simplest kinetic equation describing the energy distribution of elec-
trons nε and photons Nω is of the form

dnε
dt

= −γεnεNω + Iε + S {nε} (3a)

dNω

dt
= γεnεNω − σωNω (3b)

where the energy parameters ε and ω are related by ω = ε(k) + EG, with
EG being the bandgap energy and ε(k) ≡ εe(k) + εh(k) the kinetic energy
of carriers at a wavevector k corresponding to the transition. In terms of
the dimensionless nε, the total electron population difference n that enters
Eq. (1) can be expressed as

n =

∞Z
0

nε ν(ε) dε,

where ν(ε) is the density of electronic states. Similarly, I =
R
Iε ν(ε) dε is

the total injection level, where Iε is the differential injection intensity.
The collision integral S has contributions from electron-electron, electron-

phonon interactions, and non-stimulated recombination,

S {nε} = See + Se−ph + Srec. (4)

We consider the simplest situation when the electron-electron scattering
rate 1/τ ee is fastest. This situation is also most relevant for semiconductor
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lasers operating at room temperature. The collision integral See is nullified
by the Fermi distribution function nFε , parameterized by chemical potential
µeff and temperature Teff . These parameters are determined from the
conservation laws for the number of particles and energy, which can be
obtained from (3) by integrating over ε and ω. At room temperature, the
energy relaxation rate is fast and one has Teff = T .

The distribution function nε deviates from the Fermi shape in a narrow
interval of energies of order the linewidth Γ, where Nω 6= 0 and nε ≡ nFε +
δnε. The typical energy exchange involved in electron-electron scattering
events is of the order of T and in the limit Γ << T the relaxation time
approximation for electron-electron scattering is exact,

nεf(ε) ≡ σε/γεΓ (5)

The reason for this is that δnε in region Γ is formed by incoming and
outgoing fluxes from a much larger region of order Teff or µeff (whichever
is larger). According to Eq. (3b), in a stationary state (dNω/dt = 0) the
electron distribution function is pinned in region Γ and is independent of
the injection level I or its energy distribution Iε:

nε = σω/γε (6)

On the other hand, the electronic distribution in the region outside Γ
(where Nω = 0) is not pinned because the escape rate from the outside
region into the active region Γ is finite and characterized by a time constant
of order τ ee. The total electron concentration outside region Γ hence grows
with the injection I. This means that the width of Γ itself increases with I.

To make this argument quantitative, we note that δnε vanishes at the
edges of region Γ. Depending on the shape of the function f(ε) = σω/γε in
the right-hand side, Eq. (6) may have many solutions which correspond to
the existence of multiple lasing modes in the mean-field approximation. Let
us focus on the single-mode case, when f(ε) has a single minimum at ε = ε0
and is approximated by f(ε) = f(ε0) + a (ε− ε0)

2, where f(ε0) ≈ 1, see
Fig. 1. The shape of f(ε) can be characterized by a halfwidth, ∆ ≈ 2p1/a.
In the case when σω is a sharper function than γω, the quantity ∆ is the
resonator linewidth. Within the interval Γ we can write

δnε =
1

4
aΓ2 − a(ε− ε0)

2 (7)

where the constant is chosen so that δnε = 0 for ε− ε0 = ±1
2Γ.
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Figure 1: Schematic representation of the electron energy distribution and
function f(ε) = σω/γε. These functions coincide in region Γ.

Integrating Eq. (3a) over all energies in the stationary case (dnε/dt = 0)
we find

I − IC =

∞Z
0

σ(ω)N(ω) dω (8)

where the threshold injection IC equals

IC = −
∞Z
0

Srec ν(ε) dε (9)

(terms Se−ph and See drop out when integrated over all energies since they
conserve the number of electrons). We note that the integrand in (8) is
nonvanishing only in the small region Γ that is much narrower than either
the effective temperature Teff or the Fermi level µeff . Therefore, if we
integrate Eq. (3a) over Γ, we find

I − IC = −
Z
Γ

δnε
τ ee

ν(ε) dε. (10)

Substituting Eq. (7) into Eq. (10) we obtain an estimate of the laser
linewidth:

Γ3 =
6

a ν(ε0)
(I − IC) τ ee
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or, equivalently,

Γ = ∆

µ
3

2 ν(ε0)∆

¶ 1/3
[(I − IC) τ ee]

1/3 . (11)

We see that the linewidth in the mean-field approximation increases with
pumping. This is in drastic contradiction with the conventional STLH result
(2) that predicts a linewidth decreasing with I.

The fundamental reason for this discrepancy is the assumption by STLH
of a singular, δ(ω − ω0) like, frequency dependence of the field E(ω) in the
absence of fluctuations. In contrast, the solutions of kinetic equations are
smooth functions of ε and ω and do not exhibit any singularity. Conse-
quently, an account of fluctuations would make only a small correction to
our result.

It should be cautioned that validity of kinetic equations (3) requires that
the uncertainty in electronic energies due to collisions be smaller than the
interval of electronic energies that we are interested in (1/τ ee << Γ). Ac-
cording to Eq. (11), this condition is satisfied at sufficiently high injection
intensities. However, semiconductor lasers at room temperature are typi-
cally in the opposite regime 1/τ ee >> Γ. In this regime we are concerned
with the details of the electron distribution function resolved on a much
finer scale than that on which the single electronic states themselves are
well defined. We are not aware of any example in kinetic theory where a
quantitative description of such a situation has been developed.

Available experiments lend conclusive support neither to our result nor
STLH. At low intensities above threshold one observes a decreasing linewidth
but at higher intensities the linewidth often saturates and then re-broadens,
so that Γ(I) exhibits a minimum (see, e.g., Fig. 6.15 in [5], Fig. 9.11 in
[6], or the more recent data [7]). One of the possible scenarios that would
reconcile the two pictures is that at low injection, the mean-field linewidth
given by the kinetic equation approach happens to be much smaller than the
STLH linewidth given by (2), i.e. Γ(I) < ΓSTLH(I) at least near threshold.
In this case, the initial decrease of the linewidth with I could be attributed
to a STLH-like mechanism, whereas for larger I the increasing mean-field
linewidth takes over and one has re-broadening.

In the opposite limit, which we find more realistic, there is no range for
STLH to hold and we would have to conclude that the decreasing linewidth
lacks theoretical explanation. Development of a satisfactory linewidth the-
ory would then require inclusion of additional phenomena that go beyond
the kinetic description.
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We see that the standard theory of laser linewidth is unsatisfactory.
The theory attributes the spectral width of laser oscillation to fluctuations
brought about by random spontaneous emission events and is essentially
based on the assumption that in the absence of fluctuation laser radiation
is monochromatic. We have shown that this assumption is inconsistent and
that already in the mean field model the laser oscillations have a finite
spectral linewidth that furthermore increases with pumping.

Our consideration was restricted to semiconductor lasers but our conclu-
sion is likely to be more general, applicable to other lasers as well, such as
solid-state lasers and gas lasers. The question of why the laser linewidth can
be much narrower than either the gain spectrum or the resonator linewidth
is begging a theoretical explanation.

We are grateful to R.F. Kazarinov for useful discussions.
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