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Abstract—1In this paper, we analyze the optical power transmis-
sion in structures that include a low-index intermediate layer and
sources with a wide angular distribution. Special attention is paid
to the angular average of the transmission coefficient, which can
be cast in a universal form for two practically relevant classes of
source layers. Due to the so-called frustrated total internal reflec-
tion, the structure transparency is highly sensitive to the interme-
diate layer thickness and index contrast. We show that the trans-
mission coefficient for isotropic radiation may remain low even for
optically thin low-index intermediate layers, so that the usual com-
parison between the optical thickness and the wavelength is no
longer a reliable criterion. Calculations are presented for exem-
plary structures, such as a semiconductor scintillator bonded to
a photodiode. The angular dependence of the transmission coeffi-
cient is shown to satisfy a simple and universal sum rule.

Index Terms—Emission efficiency, light emitting diodes, lumi-
nescence, semiconductor scintillators.

I. INTRODUCTION

number of semiconductor optoelectronic devices include

light-emitting sources that produce monochromatic radi-
ation isotropically distributed in a wide range of emission an-
gles. In the design of such structures, one is often concerned
with the average optical power transmission across the bound-
aries of the source layer. For example, the external emission
efficiency of semiconductor LEDs is limited to 2%—4% unless
special precautions are taken. The low external efficiency arises
from the high refractive index of the source material, resulting
in a narrow escape angle against total internal reflection (TIR)
[1]. To prevent the TIR, various techniques have been used, in-
cluding random surface texturing, pyramidal-shaped structures,
as well as devices exploiting “wave optics” effects and opti-
mizing interference in the resonant cavity (see [2] for the re-
view). The most effective remedy for the TIR effects in LEDs
is to use an optically tight lens, resulting in external emission
efficiencies approaching unity [3], [4]. Another example of in-
terest to us is semiconductor scintillator, integrated with a pho-
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todiode to register the scintillating radiation [5]. Ionizing inter-
action with a high-energy particle gives rise to an isotropic emis-
sion source within the scintillator slab, and the quantification of
the generated luminescent signal strongly depends on its trans-
mission across the slab boundary.

In both cases, the optical components can be attached by
using optical adhesives or optical glues in the form of a thin
interlayer. The refractive index of the interlayer is typically
considerably lower than that of both semiconductors. It is
usually expected that films with optical thickness smaller than
the wavelength should not disturb the radiation transmission or
waveguiding properties [6]. This is indeed true for interlayers
of higher refractive index. However, for low-index interayers
and an isotropic source of radiation, the angles of incidence are
widely spread, and a considerable part of incident radiation is
in the TIR region for the semiconductor—interlayer interface.
Transmission of this part of radiation across a thin interlayer is
provided by evanescent optical waves and decays exponentially
with the interlayer thickness. The residual transparency is
known as the frustrated TIR or FTIR.!

Due to the TIR phenomenon, the average transmission of
isotropic radiation may remain low even for optically thin low-
index interlayers, and the usual comparison between the optical
thickness and the wavelength is no longer a reliable guide. To
be sure, the comparison remains a valid criterion for normal in-
cidence. Moreover, for a monochromatic source and any fixed
angle of incidence, the transparency can be generally enhanced
by choosing the thickness of the low-index layer, so as to sup-
press the reflected wave using wave interference and make the
interlayer an “absentee” layer. But this does not work for widely
distributed angles of incidence spread over the FTIR region. The
average transparency remains dependent on the layer index pro-
file, but the requirements on the intermediate layer thickness be-
come much more restrictive.

This paper begins with an analysis of the average power trans-
mission of isotropic radiation resulted from an emission source
distributed in a high-index layer and transmitted through a thin
lower index film. It turns out that the transmitted optical power
can be described by an angle-averaged transmission coefficient,
but the very definition of the averaging procedure depends on
whether the source layer is transparent or absorbing. We show
that in both limits, the average transmission coefficients can be
unambiguously defined and proceed to calculate these coeffi-
cients for exemplary structures. Finally, we discuss the stringent
requirements on the interlayer thickness to ensure high average
transmission.

1A review of the history and applications of FTIR can be found in [7].
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II. ANGULAR AVERAGE OF POWER TRANSMISSION

In a general structure with low-index interlayer, the trans-
mitted radiation may strongly depend on the details of geom-
etry, especially when the linear dimensions of the emitting re-
gion are comparable to the wavelength or the absorption length.
In this situation, one may need detailed modeling, taking into ac-
count the boundary effects that are nonuniform laterally. How-
ever, when the lateral size of the structure is much larger than ei-
ther the absorption length or the linear dimensions of the source,
the lateral nonuniformity of boundary conditions becomes neg-
ligible. Fortunately, this is the case most relevant for applica-
tions to semiconductor optoelectronic devices in the visible and
near-IR range.

Consider first a nonmagnetic transparent isotropic layer of
thickness A with a point-like isotropic source of power P lo-
cated at a distance z from the layer surface. The normal com-
ponent of the incident flux through an infinitesimal circular an-
nulus of radius p = z/tan ¢, and area ds = 2wpdpis dl.—o =
P/(47r?) cos prds = P/(47m)dS). Here, ¢; is the incidence
angle, r = z/ cos ¢1, and dS) = 27 sin ¢y d¢h; is the solid angle
of illumination of area ds. We shall consider the wave propa-
gation in the source layer within the limits of geometrical op-
tics, A < A, which allows us to neglect interference effects in
emission. Then, for an interface with a transmission coefficient
T(¢1), the total transmitted power can be written as

Py = S(T)P ey

where the average transmission coefficient is defined by

1

/2
@) =5 [ L)+ elsnidn @

with T (¢1) and T}, (1) being the transmission coefficients for
two polarizations of the incident radiation.2

Note that P; does not depend on the source location z. There-
fore, one can use the same equations to describe the power trans-
mitted through a small surface patch of unit area from a dis-
tributed unpolarized3 source of large lateral extent. If the volume
density of emitted power in the distributed source is p, then re-
placing P — pA on the right-hand side of (1) gives the average
transmitted power per unit area.

Definition (2) corresponds to the simple averaging of the
transmission coefficient over the solid angle of incident radia-
tion. It can be used to estimate the external efficiency of LED
and scintillators when the source layer is transparent, i.e., its
thickness A is thinner than the absorption length, A < a~1,
where « is the source layer absorption coefficient.*

2We use the subscript s for s-polarized waves (electric field perpendicular to
the plane of incidence) and p for p-polarized waves.

3For a source layer composed of quantum wells, the emission may strongly
differ for s- and p-polarized waves. This case becomes sensitive to the polariza-
tion distribution and requires special analysis.

4Equations (1) and (2) do not apply directly to the situation when the source
layer is equipped with a back mirror, even within the approximation of geomet-
rical optics. Reflection from the back surface would enhance the power trans-
mission and alter its angular dependence by offering reflected photons another
chance.
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In the opposite case of radiation escaping from a source em-
bedded in an absorbing layer, the incidence angle distribution
is not universal. Indeed, for a point-like source at a distance z
from the surface, we have

dl,—g = e~ cos Pp1ds

r2

47
_ D mazscosii g
=3¢ sin ¢p1dey (3)
so that for a source at z > 1/« the angular distribution is nar-
rowed. The narrowing increases with z. For nonmonochromatic
sources in dispersive media, « = a(w), the angular dependence
becomes even more complicated.

A simplified angular distribution emerges in the limiting
case of a homogeneously distributed source, whose linear di-
mensions (including the thickness) much exceed the absorption
length. In this case, every small part of the surface is illumi-
nated by an isotropic flux coming from distances within the
absorption length. The common example of such a source is the
quasi-equilibrium interband luminescence of an optically (or
electrically) excited semiconductor layer when the excitation
region is much larger than the absorption length.

Consider the total power emitted from an absorbing layer with
the density of emitters p. Integrating (3) over z, for the differ-
ential flux per unit area, we find

dl,—g = % [1 — exp <— >] coS ¢ sin p1dey -

coS ¢1

“

For a thick source layer, «A >> 1, the exponential term in (4) be-
comes negligible. This leads to a universal angular distribution
of the flux at the surface. The appropriate average transmission
coefficient in this case is of the form

/2
(T)eq = /0 [Ts(p1) + Tp(h1)] cos pysinprdpy  (5)

so that the transmitted power per unit area is

p

P=—
' 4

(T)eq- (6)
Definition (5) is commonly used in the discussion of equilibrium
blackbody radiation (see, e.g., [8] and Appendix I).

Note that both averages (2) and (5) are normalized so that
for a nonreflecting boundary, one has (T')eq = (I') = 1. This
requires an additional factor of 2 in (5).

For nonequilibrium sources, the averaging procedure (5) has
been applied to the situation when photon recycling dominates
the source properties [9]. In this case, due to multiple photon
absorption/reemission processes, the radiation may be widely
distributed over the source layer. In general, however, the sit-
uation that takes place in common photoluminescence experi-
ments may conform either to (2) or (5), depending on the re-
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lation between the minority carrier diffusion length L and the
absorption length a~! for outgoing light.5

It should be stressed that the two averaging procedures lead
to tangible differences in power transmission only when the ra-
diation goes through a large solid angle. When the transmission
is restricted by the TIR to small angles (as is the case for emis-
sion from a semiconductor to low-index media, such as air or
vacuum), the difference is minor. Indeed, one can compare (1)
and (6) for similarly (homogeneously) distributed sources. For
small-angle restricted transmission, one has (T)eq = 2(T), so
that (6) reads P, = p/(2a)(T). Thus, the transmitted power is
proportional to half of the power emitted in a layer with thick-
ness A = 1/, in agreement with (1). The difference in the
average power transmission using either (T')¢q or (I') becomes
negligible.6 For emission into vacuum from a semiconductor
with n & 4, the transmitted fraction of optical power can be es-
timated as 1/2n? for both averaging procedures. However, for
transmission not restricted to small angles (e.g., for low-index
contrast), the difference becomes substantial. Thus, for a non-
reflective surface, P, = p/(4«), which is half that predicted by
(1).

For the average transmission coefficient (T')e, (but not for
(T')), a universal reciprocity relation can be proven viz.

(T )eqli—s = n3(T)eqls—1- ©)
This relation follows from a general thermodynamic equilib-
rium argument (see Appendix I), and it takes the form of a uni-
versal sum rule satisfied by the transmission coefficient for any
index and arbitrary thickness of the interlayer, as well as for each
polarization mode individually?

n? / T13(¢) cos(¢p) dQ = n / T31(¢) cos(p) dQ.  (8)

In particular, for low-index interlayers, the integration in (8) in-
cludes the FTIR range of angles. To be sure, (8) does not apply to
transparent source layers with reflecting back surface (cf., foot-
note 4).

Finally, we remark that in most cases, one can expect that
(T') < (T')eq due to the typical roll off in the transmission co-
efficients at large incidence angles, and the different normaliza-
tion factors in (2) and (5).

SThe depth of the photoexcited source of luminescence is mostly determined
by the diffusion length L of minority carriers. When photon recycling is negli-
gible, the absorption length is usually longer, L < 1, and one is in the trans-
parent limit (1). Strong photon recycling is often accompanied by enhanced ef-
fective (“photon assisted””) minority-carrier diffusivity, and the opposite limit,
alL > 1, may prevail, so that the appropriate angular average would be (5). In
the latter case, the outgoing power does not come from the entire photoexcited
region, but only from its sublayer on the order of the absorption length in depth,
as in (6). When neither of the two limits prevails, then the angular distribution
is no longer of a universal form.

SMoreover, for transmission restricted to small angles, either averaging pro-
cedure should be also applicable to more complicated situations, characterized
by “nonuniversal” angular distributions.

TValidity of (7) does not imply any prejudice as to whether (5) or (2) is the
appropriate averaging procedure for a given structure. This point is made more
clear when the equation is cast in the “sum rule” form (8).
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Fig. 1. Reflection and transmission of a wave incident on a homogeneous low-
index layer.

III. TRANSPARENCY OF INTERLAYERS WITH FTIR

In this section, we discuss the specific features due to FTIR,
and focus on the angular dependences needed for calculations
of the average transparencies. We consider the radiation transfer
from layer 1 of permittivity e; = n? into layer 3 (e3 = n3)
through an intermediate layer 2, as shown in Fig. 1. We assume
radiation of wavelength X incident on the interlayer of thickness
d at a fixed angle of incidence ¢, .

Permittivity of the intermediate layer, e; = n3 is assumed
real (no absorption) and lower than that of surrounding media,
€2 < €1, and €2 < €3 with no special relation between €; and e3.
Exemplarily, we consider semiconductor plates, optically cou-
pled with an optical glue [3] or a bonding oxide [6].

The reflection coefficient R for small angles of incidence,
¢1 < ¢y, is given by [10], [11]

)
(r12 + 793)% — 47r197938in° §

N (14 7r12793)2 — 4719793 5in? & ©)
where ¢ is the phase shift of the wave inside the film, which

is given by
2md
DY
and 712 and 723 are the Fresnel reflection coefficients at the in-

terfaces 1-2 and 2-3, respectively. The reflection coefficients de-
pend on the light polarization and are given by

) (10)

€9 — €71 SiIl2 ¢1

1 COS P; — Nj COS P
n; oS ¢; + njcos ¢;
1 COS ¢; — n; COS P

iip = 11
"idp N COS P; + n;j COS P (in

Tij,s

where ¢ and j are the interface indexes: {ij = 12} for the 1-2
interface and {ij = 23} for the 2-3 interface. Since the inter-
layer is assumed nonabsorbing, the transmission coefficient 7'
is readily obtained from (9) as T' =1 — R.
Equation (9) can be simplified using Fresnel’s equations and
Snell’s refraction law, i.e., n1 sin ¢p; = mo sin o = g sin ¢pg3.
After some algebra, T" can be written in the form

T3

T=——"" 12
1 —|— (],T13 sin2 (5 ( )
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Fig. 2. (a) Interface transmission coefficients 73, s and (b) T3, as functions of nz; = ng/n, for several values of the incidence angle and two polarizations of

the incident wave. 1: cos ¢ = 0; 2: cos¢; = 0.5; and 3: cos p; = 0.7.

where T3 is the transmission coefficient of a hypothetical in-
terface 1-3. Away from the normal incidence, both 773 and the
coefficient a are different for the two polarizations.

For s-polarization, we have

(ni; —1) (n3, — 1)

as =
4n2, cos ¢y (1 — n2,sin® 1) /nd; — sin® ¢y
(13)
and
4cos y/n3, — sin® ¢y
T13,s = 2 (14)
(1/71%1 — sin® ¢; + cos ¢>1>
Here and later, we use the notation n;; = n; / n;j.
For p-polarization, we have
aS .
ap = —— [(nfy + 1) sin® ¢y — 1]
n31
X [(n§2 + 1) sin? ¢y — ngl] (15)
and
4n3, cos ¢ y/n3, — sin® ¢y
Thzp = (16)

5
/ 2 .2 2
< n3; — sin® ¢ +n3lcos¢1>

A critical reflection angle ¢, is defined by nj sin¢; = ns.
For thick interlayers, ¢; is the critical angle of TIR. For thinner
layers, ¢; specifies the range of incident angles ¢; > ¢;, where
the transmission occurs due to FTIR.

Using some caution, one can apply (12) for all incident an-
gles, including the FTIR range, ¢1 > ¢;. In this range, the phase
gain § becomes imaginary, i.e., 6 = i6’, where

2md /
6/ = 71')\”2 n12 sin2 ¢1 -1 (17)
while the reflection amplitudes become unimodular,
rij = exp(id;;). The reflection phases 6;; can be readily

calculated using Fresnel’s equations, and one obtains the trans-
mission coefficient in the form (see [12] for a discussion)

T3

7T=—"+— 18
1 — aTy3sinh? &’ (18)

where both 713 and a are given by (13)—(16), but a, and a,
become negative.

Note the peculiar nature of transmission in the FTIR region,
where the reflection coefficient from the single front interface
equals unity. The single-surface total reflection is affected by
the interference with light reflected by the second surface. For
¢1 > ¢y, the field between the two surfaces is evanescent with
a penetration length that decreases with increasing ¢1.

According to (12) and (18), for a sufficiently thin film (6 < 1
and &’ < 1), the transmission coefficients approach T13,s and
T13,p. These values, in turn, depend on n3; and ¢1, as shown
in Fig. 2. For all incident angles, the total transparency, 113 s =
Tis,, = 1,1s reached only when ng; = 1. Away from the exact
index matching, the decrease of T3 s and 173, is seen to be
much steeper on the side n3; < 1. Since the exact matching of
indexes of the layers 1 and 3 is rarely possible, the structures
with n3; > 1 are preferable.

Variation of the transmission coefficients with the interlayer
thickness is analyzed in Appendix II. At the critical angle, ¢1 =
¢+, both T and T}, are still finite and decrease at large d as
1/ d?. For s polarization, the transmission coefficient decreases
steadily as a function of ¢, but reflection remains small up to
¢1 = ¢ (unless the index contrast 113 is high).

The reflection is generally stronger for s polarization than for
p polarization, where it is partially suppressed due to Brew-
ster’s effect: for incidence, ¢; at the Brewster angle, ¢pp =
arctan(ns; ), one has a, = 0 [from (15)] and the transmission
T, = Ti3, (which equals unity for €3 = €;).

For nonmatching layers (e3 # €1), there is a second Brew-
ster angle, ¢ » = arctan(ngs), corresponding to the wave in
layer 2, propagating at the angle ¢>. One has a, = 0 when
¢2 = ¢B,2, and the transmission increases to 173, again. In
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Fig. 3. Angular dependence of the transmission coefficients T, and T}, for a thin layer of index n, = 2.6; the incident radiation from layer 1 with n; = 3.5 is
transmitted into layer 3 with n3 = 4.5. Different curves correspond to dlfferent film thicknesses described by a dimensionless parameter d = d / A, viz., 1:d = 0;
2:d = 0.02;3:d = 0.05;4:d = 0.2,and 5: d = 1/(2n.). The dependence on the angle of incidence is displayed in the range 0 < ¢; < 90° for two
polarizations of incident light: s polarization (b) and p polarization. The TIR angle ¢; = 48°, and Brewster’s angles are ¢z = 36.6° for the 1-2 interface and

s = 40° for the 2-3 interface.

terms of the incident wave angle ¢4, this corresponds to ¢’z =
arcsin(nsi/y/n3, + 1). In the range of incidence angles ¢p <
P < ¢z (forng1 > 1) or ¢z < 1 < ¢ (for ng; < 1), one
has a, < 0 and T}, > T13,. When n3; < 1, the transmission
coefficient 1" vanishes (and so does T43) for sin ¢p; > ng3; due
to the TIR from layer 3.

Finally, the transmission T also decreases linearly with d for
a thin interlayer with a finite absorption coefficient a. However,
for a)?/(mn2)? < d, this is a negligible effect [13].

A. Examples: Higher Index Overlayer

For quantitative estimates, we consider the transparency of
an interlayer in a mid-IR LED optopair comprising a LED and a
lens attached to the diode by a layer of optcal glue [3]. The semi-
conductor structure of interest consists of two semiconductor
layers (InAs and CdSb) having n; = 3.5 and n3 = 4.5, opti-
cally separated by a layer of a chalcogenide glass with ny = 2.6.

Calculated angular dependences of the transmission coeffi-
cient for two polarizations and several values of the layer thick-
ness d are shown in Fig. 3 in the range 0 < ¢; < 90°. In this
example, Brewster’s angles are ¢ = 36.6° for surface 1-2 and

’B = 40° for surface 2-3, so that the reflection of p-polarized
light is strongly suppressed even in the region close to the TIR
angle of the 1-2 interface, ¢, = 48°.

For ¢p1 — 90°, the reflection increases to unity. A thin inter-
layer approximation 7" = 773 works reasonably well for very
thin interlayers (compare curves d = 0 and d = 0.02 in Fig. 3),
but not for thicker films [see curves d = 0.1 and d = 1/(2n5)].
The latter case corresponds to a half-wave plate, which is seen
to improve the transparency only in a range of incident angles
below the TIR from the 1-2 interface.

Fig. 4 shows the average transmission coefficients (7T') and
(T")eq calculated for this structure. Maximum values of the av-
erage transmission coefficients at d = 0 are (T)max = 0.836
and (T)eq,max = 0.94. In the range 0 < d < 0.15, the decrease
of the average transmission coefficients with d is almost linear.

. 028
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o § 0271 1
-~ e§0.26r
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QD 8§ 025
O B
& o7 Foa o)
8 § 02 N ~———~——
= 0.6 S
= O 022-.‘......
S 05 06 07 08 09 10 L1 12
2 05 Layer thickness, d/\
S
=
= 04 1
N
=
0.3

T T
0 0.1 0.2 03 04 0.5

Layer thickness, d/\

Fig. 4. Average transmission coefficients (I') (denoted as 1) and (T").q (de-
noted as 2) of a film as functions of the film thickness in units of wavelength
A for the structure specified in Fig. 3. (Inset) Dependences (T') and (T)eq/2
(denoted as 2') at larger thickness values.

The range of quadratic decrease that could be anticipated (see
Appendix II) from (12) and (18) is extremely narrow. Mathe-
matically, this follows from the fact that the function 1/(1 +
asin® §) decreases with d almost linearly starting with § ~ 0.2
for all values of a (i.e., all incidence angles), and this decrease
retains its linear form after angular averaging. Thus, for both
polarizations, we have a linear rather than quadratic decrease of
(T') with d.

For d/A > m/ns, the dependence on d becomes quite weak
[see Fig. 4 (inset)] and the difference (T')eq/2 — (T') becomes
small. In this region, the TIR strongly restricts the angular range
of interlayer transparency. Therefore, the average transmission
does not vary with thickness except for a weak interference
modulation. The value of the average transmission coefficient
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Fig. 5. Angular dependence of the transmission coefficients: (a) T and (b) T, of a thin interlayer with refractive index n, = 1.8 (oxide) for the radiation incident
from the first layer with n; = 3.6 (GaAs) and transmitted into_the third layer with ns = 3.4 (InP). Different curves correspond to different (dimensionless)
interlayer thicknesses d = d/X viz., 1: d = 0;2: d = 0.02;3:d = 0.05;4: d = 0.1;and 5: d = 1/(2n>). The TIR angle ¢, = 30°, and the Brewster angles

are op = 26.6° and ¢’z = 26.2°.

can be estimated by taking sin®§ &~ 1 /2 in (12) and restricting
the range of angular integration to 0 < ¢ < ¢;. This gives
(T) = 0.27 and (T")eq = 0.45.

Due to the TIR phenomenon, it is very difficult to obtain high
power transmission across a low-index interlayer. The frustra-
tion of TIR helps, but not very much, unless the interlayer is
exceedingly thin. For example, to obtain an average interlayer
transmission (1') > 60%, one needs to take d/\ < 0.05. For
the mid-IR region (A = 3 pm), this gives d < 0.15 pm, which
is quite challenging technologically.

Another important area of the interlayer application is optical
integration of different semiconductors via an interfacial oxide
layer. In light of our results, even the best (thinnest) reported
oxide layers, used for optical wafer bonding, may not be suf-
ficiently thin for some of the intended applications. Consider
the case of an InP photodiode (ny = 3.4) structure bonded
with SiO» bonding layer of index no, = 1.46 to a Si wafer
(ns = 3.45). Even for the recently reported [6] record-thin
60 nm oxide bonding layer, one has d ~ 0.1, resulting in a
strong reflection for a wide range of angles. To ensure reason-
able power transmission across the bonding layer, one would
have to lower its thickness d well under \/(27n2) ~ A\/12,
which is again quite challenging.

Besides pursuing still thinner interlayers, one can circumvent
the limitations presented by TIR by making the source layer
a resonant cavity with highly anisotropic emission. The cavity
case goes beyond the scope or our analysis.

B. Examples: Lower Index Overlayer

Another practical example is a bonded photodetector on top
of a semiconductor scintillator slab with an optical glue in be-
tween. We consider a semiconductor structure consisting of a
scintillator layer 1 (GaAs, emission A = 860 nm, index n; =
3.6) and a photodiode layer 3 (InP, n3 = 3.4). For the near-IR
region, the refractive index of the available optical glues does
not exceed n ~ 2. Here, we assume that the layers are optically
separated by an interlayer with a typical index ny = 1.8. Fig. 5

0.9
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Fig. 6. Average transmission coefficients (T") (denoted as 1) and (T ) (de-
noted as 2) of a film as functions of the film thickness in units of wavelength
X for the structures specified in Fig. 5. (Inset) Dependences (T') and (T")eq /2
(denoted as 2) for thicker layers.

shows the transmission coefficients 173 , and 173 p, calculated
as functions of the incidence angle for different interlayer thick-
nesses. Due to the high-index contrast, the TIR angle from the
interlayer is only 30°. The smaller index of layer 3 (n3; = 0.94)
results in an additional TIR and reduces the overall transparency
region to ¢; < 70.8°. Due to the tight matching of n; and ng
indices, the reflection losses could be small for sufficiently thin
interlayers. However, requirements to their thickness are quite
stringent, especially in the near-IR region. Even at small an-
gles of incidence, one should use films with d/A < 0.05 in
order to reduce reflection losses below 10%. For the chosen
A = 860 nm, this corresponds to d < 50 nm, which is extremely
challenging.

Fig. 6 shows the average transmission coefficients (7") and
(T")eq calculated for the structures specified in Fig. 5. The max-
imum achievable average transmission coefficient is only (1) =
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(T13) = 65%, and the drop compared with the LED case con-
sidered earlier resulting from the lesser overlayer index. Again,
the decrease of the average transmission coefficients with d at
d/\ < 0.15 is not proportional to d?, but almost linear. Due to
the smaller angle ¢;, the averaging over ¢ smears the interfer-
ence picture in the transmission to a lesser extent. The values
of transmission coefficient at d/\ > 0.15, estimated using the
same approximation as in the case of high-index interlayer, are
(T') = 0.096 and (T")eq = 0.18.

The low value of (T'), which results from the high n15 con-
trast, makes the range d/\ > 0.15 practically unsuitable for the
scintillator—photodiode pair application. Pursuing much thinner
intermediate layers may be very difficult. In our view, the more
promising approach to combine a GaAs scintillator with an InP
photodiode in one integrated detector would be to use the wafer
fusion technique [14], [15]—which dispenses with an interme-
diate bonding layer altogether.

IV. DIscUsSION AND CONCLUSION

We have analyzed the transparency of low-index interme-
diate layers between two higher index semiconductor layers in
the situation when the angular spread of incident radiation is
important. We paid special attention to the angular average of
the optical power transmission, and showed that for two prac-
tically relevant classes of source layers, it can be cast in a uni-
versal form. These classes include both highly transparent layers
and absorbing layers with homogeneously distributed emission
sources over the thickness exceeding the absorption length. Our
results are also relevant to the interpretation of common lumi-
nescence experiments.

Transmission of isotropic radiation through low-index inter-
layers (ns in the range 1.5-2.5) is found to decrease almost lin-
early in the interval 0 < d < 0.1\ from its value at d = 0 to
a practically constant value at d = 0.2\. This result is valid for
all practical three-layer semiconductor structures, as has been
checked numerically for the exemplary structures with the in-
dexes of refraction n; and ng in the range n = 3—4.

For the typical thicknesses (d = 1 um) of the optical glue
interlayers, d = 0.2, the reflection losses are high even in the
mid-IR region, and grow from ~70% to >90% with increasing
index contrast between the source layer and the interlayer. This
happens because the average transparency is now mostly gov-
erned by the narrowing escape angle ¢, from TIR. Therefore,
the transmission does not depend on the layer thickness d, and
can be estimated using the simplified approach that neglects the
interference effects and the FTIR.

For thinner interlayers d < 0.1\ with low refractive index,
the transmission depends on the frustrated total internal reflec-
tion due to the constructive interference of evanescent waves
reflected by the two surfaces of the interlayer. The main con-
tribution to the average optical power transmission comes from
fairly large angles of incidence, implying a less significant re-
flection loss. Quantitative analysis of the optical power trans-
mission across low-index intermediate layers therefore requires
both careful angular averaging and accurate evaluation of the
transmission coefficients in the FTIR range.
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Finally, we have found a simple and universal sum rule that
must be satisfied by the angular dependence of an optical power
transmission coefficient between two media. The sum rule has
the form of a reciprocal relation (8) and holds for any three-layer
structures with a nonabsorbing interlayer of arbitrary thickness
and refractive index. The only limitation on the validity of sum
rule (8) arises from the requirement that reflections from the
back surfaces of both the source and the receiving layers be ab-
sent, for example, when the thicknesses of these layers exceed
their absorption lengths. The sum rule explicitly demonstrates
that the average transmission coefficient of the three-layer struc-
ture is sensitive to the overlayer refractive index relative to that
of the source layer, and that structures with larger overlayer
index are preferable.

APPENDIX 1
EQUILIBRIUM RADIATION AND TRANSMITTED LUMINESCENCE

Here, we consider the effects of the surface transparency on
the thermal emission by a homogeneous and optically isotropic
material. The rate of radiation emission obeys the detailed bal-
ance between the emission and absorption processes embodied
in the van Roosbroeck—Shockley relation [16], and is propor-
tional to the absorption coefficient a(w). At a temperature T,
the photon density in the unit frequency interval at w emitted in
unit volume per unit time is given by [1]

niw?a(w)

e = n2c2lexp(hw/kT) — 1]

(Al.1)

On its way out, the radiation may be absorbed and re-emitted
many times, but this does not change the equilibrium photon
density. The number of photons reaching the surface unit at dis-
tance r from the emitting source in volume dv equals

dI(r) exp(—ar)N,dv. (A1.2)

42
Therefore, the total photon flux 7|.,—¢ to the unit surface (at
z = 0) from the region z > 0 in a unit solid angle about a
fixed incidence angle ¢; can be obtained by integration over 7,
which takes the form

aP, [~ az @
4m ./o P ( Cos ¢y ) cos(¢1) :
where P, = N, /(acy) is the equilibrium photon density of
thermal radiation and ¢; = ¢/n; is the speed of light in the emit-
ting material. Since the integral on the right-hand side of (A1.3)
equals unity, (A1.3) shows that the equilibrium flux to the sur-
face is identical to blackbody radiation, and depends neither on
the incidence angle nor on the particular shape of a(w) (weak
emission rate in frequency regions of small absorption is com-
pensated by the high material transparency at these frequencies).
The energy transmitted to material 3 is given by the integral
over the normal component of the incident flux, multiplied by
the transmission coefficient T3, i.e.,

I|.=0 = (A1.3)

Q31 = /T13 COS(blIz:()dQ (Al4)
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where we have suppressed the frequency index w since (A1.4)
is valid for each frequency individually. For 713 = 1, it gives a
well-known result Q31 = ¢1 P,,/4. For T13 # 1, we have

P,
Q31 = (T13)eqC1 — (A1.5)

4
where the averaging of the transmission coefficient from 1 to
3 is defined by (5). It is readily seen that (6) and (Al.5) are
equivalent.
Consider the case of a thermal equilibrium between material
layers 1 and 3 with any intermediate layer 2. For the equilibrium
to hold, one should have Q13 = @31. This requires that

13 (T13)eq = n3(Ts1)eq (A1.6)

and therefore, (8) must hold. Suppose nq > ngs. Part of the equi-
librium radiation incident on the interface gets reflected due to
the TIR phenomenon. However, this is exactly compensated by
the higher density of photon states in the higher index material.
This compensation is “moderated” by the slower velocity of the
energy flux in the second material, so that the resultant compen-
sating effect is of the second, and not the third, power in 713.
The sum rule expressed by (A1.6) and (8) remains valid in a
nonequilibrium situation when there is no radiation compensa-
tion. It also holds in the case of arbitrary small absorption co-
efficients in layers 1 and 3—so long as there are no back mir-
rors that would make the problem of transmission of a single
incident wave irrelevant. It holds for any planar interface, in-
cluding any intermediate layer of index ns, so long as there is
no absorption in the intermediate layer. This can be verified by
direct inspection of the integrals using explicit expressions (12)
for both polarizations. To do this, we note that the transmission
coefficients 73 and 131 can be written as functions of both the
incidence angle and the refraction angle, subject to Snell’s law
n1 sin ¢1 = ng sin ¢3, which holds for both directions of trans-
mission. As an example, we can write 773 , in the form

4n1ns coS ¢1 COS P3

Tiss =
13 (ng cos ¢3 + nq cos ¢1)?

(A1.7)

which makes symmetry between transmission coefficients 1 —
3 and 3 — 1 evident. Similarly, a5 can be written as as =
b12b32, where

nZ —n2
bi; = (n; ) (A1.8)
2n; COS ¢ 4 /n? — n?sin? ¢;
and the phase shift as
2
5 md/A (A1.9)

(n2 — n2sin® ¢)1/4(n3 — n2sin” ¢3)1/4"

Then, one can replace integration on the left-hand side of (8)
over ¢ = ¢ by integration over ¢3, so that ny cos p1dpy =
ng cos ¢3deps or, with Snell’s law,

n? cos ¢y sin p1dpy = n3 cos ¢ sin p3des. (A1.10)

Finally, changing the integration interval, we arrive at a direct
proof of the sum rule (8) for each polarization.
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Fig. 7. Dependence of the transmission coefficients T and T}, of a film on
the dimensionless layer thickness d = d/X. The structure parameters are the
same as in Fig. 5 (¢, = 30°). Different curves correspond to different values
of the angle of incidence and different polarizations of the incident light viz.,
1: 01 =0;2: ¢y =20°s;3: ¢p; = 20°p; 4: ¢; = 36°s; and 5: ¢; = 36°p.

APPENDIX 11
TRANSMISSION COEFFICIENT AT SELECTED
ANGLES OF INCIDENCE

The calculated dependence of the transmission coefficients on
the interlayer thickness in the structure with lower index over-
layer (n3; < 1) is shown in Fig. 7 for two polarizations and
several angles of incidence, including the normal incidence and
representative angles below and above ¢;.

For ¢1 < ¢, we see maxima in the transmission coeffi-
cient for both polarizations. These maxima are due to construc-
tive interference between the waves in the middle layer and
occur at & = wm, where m is an integer (m = 1,2,...). The
interference structure depends on the angle of incidence (for
normal incidence, the maxima correspond to d = m\/2ns).
The antireflection effect arises for half-wave plates—rather than
quarter-wave plates, which would be the case in structures with
either n; < no < mg or ny > ns > ng. The almost total trans-
parency of the film at the interference maxima is due to the phase
shift in the reflection from the two film surfaces, which results
in 712 & —ro3, and makes the interlayer “an absentee layer”
(the transmission coefficients become 773 ; and 173 p, given by
(14) and (16), respectively).

In the FTIR range, ¢1 > ¢, the transmission coefficients
roll off rapidly with the thickness d, and this roll-off becoming
exponential for d > A\/ns.

To further clarify the dependences displayed in Fig. 7, we dis-
cuss next some detail of our calculations for ¢p; < ¢;. These re-
sults follow from the general formulas of Section III. For normal
incidence, one has T3 ; = T3, = 113, where

4%31
Tig= —F"—
BT (14 ng)?
1— 2
Ri3 = M (A2.1)

(L4 ng)?
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The ratio ns; is close to unity for typical semiconductor pairs,
e.g., taking both indexes in the range of 3.5—4, we find that the
reflection losses at normal incidence do not exceed 0.5%.

For an optically thin film, §y < 1, and from (12), one has

T|p,=0 = Ths — 4T, (A2.2)
where d = d /A, and the reflection and transmission coefficients
for the 1-2 and 2-3 interfaces are defined similar to R;3, 713 in
(A2.1). We see that the deviation T' — T3 d2. For b1 > b,
we reach the same conclusion by expanding in powers of d the
expression (18).

Physically, the decrease of T" is quadratic because it is propor-
tional both to the layer thickness and the fraction of the wave-
length that is localized in it. Similar effect is well known in
quantum mechanics [17], [18], where the particle transmission
coefficient through a thin quantum well is of the form quite sim-
ilar to (12) with ng; = 1

1

= A23
1+ asin?§ ( )

where 6 = kd is the wavefunction phase shift in the well and
a is a constant proportional to the square of the well depth. For
transmission through a barrier, § = ¢’ and a changes its sign
so that (A2.3) becomes similar to (18). In both cases, 1" deviates
from unity by an amount proportional to the square of a product
of potential perturbation and its thickness.

For ¢1 — ¢y, the Fresnel reflection coefficients tend to unity
with different signs viz., 712 s = 712, — land ez ¢ = 123, —
—1. At the same time, one has 6 — 0. Therefore, to calculate
the transparency in the vicinity of ¢y = ¢;, one needs a more
accurate evaluation of the limit ¢; — ¢; in (9) and (12). It is
convenient to give expressions for the reciprocal transparencies
in terms of layer permittivities viz.

1 (Ver — €2 + es — 62)?
T, Va—aves-o
+nd* Ve —evVes — e
(e3v/er — €2 + e1v/e3 — €2)°
deregy/e1 — ea\/e3 — €2
+m2d* Ve — ev/e3 — €2

For matching layers, €3 = €1, and s-polarized waves, we have
1

P1=¢r —

(A2.4)

br=¢¢ —

€
TP
(A2.5)

Tslpy =0, = - . (A2.6)
1= 1+ 72d2%(e; — €2)
Similarly, for matching layers and p-waves, we have
1
Bolpi=¢. = (A2.7)

1+ 7T2J2(61 — 62)(62/61)2.

Thus, at ¢; = ¢, the transmission coefficient remains finite
and steadily, but not exponentially, decreases with increasing
thickness of the intermediate layer.
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