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Correlation effects in the fluctuation of the number of particles in the process of energy branching by
sequential impact ionizations are studied using an exactly soluble model of random parking on a line. The Fano
factor F calculated in an uncorrelated final-state “shot-glass” model does not give an accurate answer even with
the exact gap-distribution statistics. Allowing for the nearest-neighbor correlation effects gives a correction to
F that brings F very close to its exact value. We discuss the implications of our results for energy resolution of
semiconductor gamma detectors, where the value of F is of the essence. We argue that F is controlled by
correlations in the cascade energy branching process and hence the widely used final-state model estimates are
not reliable—especially in the practically relevant cases when the energy branching is terminated by compe-
tition between impact ionization and phonon emission.
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I. INTRODUCTION

Energy resolution of semiconductor gamma detectors re-
lies on the ability to accurately estimate the energy deposited
by the gamma photon. The measured quantity is the number
of electron-hole �e-h� pairs produced in subsequent ioniza-
tion processes. This number is estimated either from the
charge of electrons and holes separated by the external elec-
tric field in diode detectors or from the number of lower-
energy photons generated in recombination of the e-h pairs
in scintillators.

The number N of e-h pairs generated by a gamma particle
is proportional to its energy, N=E /�, where � is the average
pair excitation energy. The impact ionization cascade leading
to multiplication of the pair number is referred to as the
sequential energy branching �SEB�.

Gamma-ray spectroscopy requires an accurate measure-
ment of N. The spread in this measurement is the ultimate
origin of the imperfect detector energy resolution. If the ef-
ficiency of the detector is very low, Y �1 �i.e., when most of
the deposited energy is lost before the creation of all e-h
pairs�, the number of created pairs is a random variable that
can be regarded as a sum of independent contributions cor-
responding to the small-probability events of pair produc-
tion. The Poisson statistics should apply in this case so that
the average number of pairs �N� and the variance of the pair
number are related by ��N2�= �N�. In the opposite limit of
very high efficiency, Y �1, the number of created pairs will
not fluctuate being strictly fixed by the energy conservation
law, E=�N. In this case, the residual loss is essentially con-
stant for all events.

For experimentally relevant efficiencies, the ratio of pair-
number variance to that expected for Poisson’s statistics is
called the Fano factor,

F =
��N2�
�N�

. �1�

Experimentally, F can be substantially less than unity. The
suppression of fluctuations in the number of ionization pro-
cesses was first noticed by Ugo Fano in 1947 �1�. He pointed
out that the main source of the suppression is correlation in
the energy distribution between the resulting particles due to
the fixed initial energy.

There have been many attempts to evaluate the Fano fac-
tor theoretically. The most popular approaches are based on
simplified models that estimate the energy spread in the final
energy distribution of secondary e-h pairs �2–5�. We shall
generally refer to these approaches as the “final-state mod-
els.” These models assume that �i� the energies of secondary
particles are statistically independent variables described by
a single-particle distribution function; and �ii� this distribu-
tion function is determined by a microscopic model of en-
ergy sampling �e.g., the impact ionization model specified by
the density of states and the scattering matrix elements�—so
that it can be calculated independently �2� or even postulated
for a particular branching mechanism �3–5�.

The values of F calculated in final-state models are often
quite close to the experimentally observed values. However,
since this calculations were based on widely different under-
lying physical models, one would be justified to suspect the
agreement to be somewhat fortuitous. Thus, for the case of
Ge, similar results were obtained by either assuming the
dominant role of phonon losses �4� or by neglecting these
losses altogether �3�. In fact, the more accurate attempts to fit
experiment often involve either unrealistic hypotheses on the
phonon losses or the necessity to adjust upward the band gap
of the material �which is one of the better known values
experimentally and should not be used as an adjustable pa-
rameter�. Detailed discussion of the published results can be
found in a recent review �6�.

Recently, an attempt was made to justify the final-state
model approach theoretically. Assuming uncorrelated energy
sampling in every impact ionization event and using the cen-
tral limit theorem, the authors of �7� arrived at a formula for
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F that requires for its evaluation the knowledge of only the
one-particle distribution function. Although evaluation of
this function was beyond the scope of �7�, one could presume
that the use of the true �exact� one-particle distribution func-
tion would give an accurate value of F.

This paper inquires into the validity of this presumption
on the basis of an exactly soluble model. It had been pointed
out earlier �8,9� that the energy distribution of the secondary
particles produced by energy branching may be highly cor-
related by the very nature of branching itself. However, the
relative importance of these correlations in the estimation of
F has not been clarified. As a result, their physics has re-
mained rather obscure.

Here we examine the correlation effects in the fluctuation
of the number of particles produced by an impact ionization
cascade for an exactly soluble energy branching model,
called the random parking problem �RPP�. As discussed ear-
lier �10�, the RPP on a line is an accurate model of the
energy branching by impact ionization in a semiconductor
with narrow valence band and constant conduction-band
density of states. In such a hypothetical semiconductor, the
impact ionization process produces holes with vanishing ki-
netic energy and hence the initial energy is shared between
two secondary electrons only. This is exactly similar to the
way parking of a car in the RPP divides the initial gap into
two parts. The assumption of a constant density of states
ensures the same probability of all final states, which is simi-
lar to the equal a priori probability in random parking.

The advantage of using the RPP is threefold. First, the
exact solution for the Fano factor is known analytically
�11–13�. The numerical value of F in RPP can be calculated
precisely �cf. Eq. �44�� and is given by

Fexact = 0.051 038 7 . . . . �2�

Second, the gap distribution function is also known ana-
lytically �the gaps between cars in RPP are analogous to the
kinetic energies of particles in SEB�. This enables us to test
the final-state model hypothesis with exact one-particle dis-
tribution function. We demonstrate that the uncorrelated
final-state model gives only a lower-bound estimate to F.

Third, the RPP model has an analytical solution for the
nearest-neighbor two-particle distribution function �14�. This
enables evaluation of the exact correction to the final-state
model due to nearest-neighbor correlations. Inclusion of this
correction gives a close upper-bound estimate of the Fano
factor.

II. STATISTICAL APPROACH

Statistical evaluation of the Fano factor is based on the
analysis of the full many-particle distribution function in the
final state. Let a particle of initial energy E produce N e-h
pairs of energies Ei by SEB. The energy balance in the final
state is described by

E = �
i=1

N

Ei. �3�

It is convenient to include the band gap Eg as part of the
electron energy—both in the final and the initial states; even

the initial energy E is assumed to exceed the kinetic energy
by Eg �cf. Appendix A�.

The SEB process is terminated when all Ei�Eth, where
Eth is the impact ionization threshold energy, i.e., the mini-
mal energy required to initiate next impact ionization. This is
the final state of SEB and in the RPP model it corresponds to
the so-called “jamming limit” when all remaining gaps are
smaller than the car size.

We assume that N�1. This allows us to average Eq. �3�
over the statistics of SEB. This means the averaging over a
particle set in one realization, which can be taken into ac-
count by replacing Ei→�. Next, we average over multiple
realizations of the SEB process, obtaining

E = �N�� . �4�

The authors of �7� demonstrated the relation between the
secondary particle energy spread in the final state and the
Fano factor by using an illustrative model called the shot-
glass model. In this model, the SEB process is analogous to
filling a number of small-volume shot glasses from a bathtub
until the latter is emptied. The individual glass fillings Ei
vary randomly with some distribution, characterized by a
mean �Ei�=� and a variance ���2�= �Ei

2�−�2.
Consider first the situation when E is not fixed but N is.

After N dippings into the bathtub the amount of water taken
from the tub, EN=�1

NEi, is a random variable that—
according to the central limit theorem—has a Gaussian dis-
tribution,

P�EN� = CN exp	−
�EN − N��2

2N���2� 
 , �5�

where CN is a normalization constant.
For the case when the total volume �E� is fixed, we can

reinterpret Eq. �5� to give the distribution for the number of
N of filled glasses. Using Eq. �4� and neglecting in the de-
nominator of Eq. �5� the difference between N and �N�,
which is a higher-order correction, we find

P�N� = C exp	−
�2�N − �N��2

2�N����2� 
 , �6�

where C is another normalization constant. Equation �6�
yields the Fano factor in the following form:

Func =
���2�

�2 . �7�

In the SEB case, Eq. �7� represents the Fano factor for un-
correlated particle energy distribution, where the quantity
���2� is the one-particle energy variance in the final state.

Let us now rederive an expression for F—including the
correlation effects. To calculate the deviation of N from its
average for a chosen realization of the SEB process, we re-
write Eq. �4� in the form

E − N� = ���N� − N� = �
i=1

N

�Ei − �� . �8�

Since the total energy is fixed by the initial particle energy,
the spread �N=N− �N� of the final secondary particle number
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results from fluctuations of the secondary particle energies in
the final state. From Eq. �8� we have

��N�2�2 = 	�
i=1

N

�Ei − ��
2

, �9�

which is to be averaged over the statistics in one realization.
The result can be written in the form

���N�2��2 = �
i=1

N

��Ei
2� − �2� + 2�

i=1

N−1

��EiEi+1� − �2�

+ 2�
i=1

N−2

��EiEi+2� − �2� + ¯ + 2�
i=1

N−n

��EiEi+n� − �2�

+ ¯ . �10�

Equation �10� takes into account all possible correlations be-
tween the energies of different electronic pairs. The right-
hand side of Eq. �10� includes all N2 terms of the squared
sum of the particle energies and is exact.

In the averaging over multiple realizations for large N the
sum �1

N�Ei
2� is self-averaging, viz.,

�
i=1

N

�Ei
2� = �N��Ei

2� , �11�

and we find

���N�2��2 = �N���Ei
2� − �2� + 2��N� − 1���EiEi+1� − �2�

+ 2��N� − 2���EiEi+2� − �2� + ¯

+ 2��N� − n���EiEi+n� − �2� + ¯ . �12�

Detailed analysis presented in Secs. III and IV below shows
that the correlations are rapidly decaying with n so that for
large �N��n the Fano factor is given by

F =
���2�

�2 +
2��EiEi+1� − �2�

�2 + ¯ +
2��EiEi+n� − �2�

�2 + ¯ .

�13�

Neglect of all correlations corresponds to retaining only the
first term in the right-hand side of Eq. �13�. This reduces Eq.
�13� into Eq. �7�.

Note that the use of Eq. �13� requires the knowledge of
not only one-particle energy distribution function in the final
state but also the joint energy distributions for the nearest-
neighbor pairs �corresponding primarily to states created by
one impact ionization�, the second neighbors, and so on. All
of these distributions essentially define the nature of the final
state that is controlled by the approach to jamming limit.

It is important to emphasize that the above considerations
can be also applied to the intermediate states of the impact
ionization cascade, provided there are enough secondaries
for statistics to be applicable and provided the state evolution
is not too fast �the change in the particle number is smaller
than the fluctuations�. This is important because in the real
energy branching in � detectors the stationary final state may
not be achieved because of the competing processes of pho-
non emission �as well as other particle loss processes, such

as recombination and migration to crystal boundaries�. To
account for such processes, one must deal with the interme-
diate stages of the SEB cascade and, therefore, one needs to
know the time dependence of energy distribution functions.

III. KINETIC APPROACH

A. Uncorrelated distribution

The RPP model allows an exact evaluation of the distri-
bution of distances �gaps� between the cars. This can be done
by considering the kinetic �rate� equation that describes the
sequential parking process �15,16�. The gap-size distribution
function G�x , t� representing the average density of voids of
length between x and x+dx at a time t obeys the following
equation �17�:

�G�x,t�
�t

= − k�x�G�x,t� + 2�
x+1

�

dyG�y,t� , �14�

where

k�x� = �x − 1���x − 1� , �15�

and ��x� is the Heaviside step function. The chosen time
scale corresponds to the flux of cars with 1 arrival per unit
parking length per unit time.

Equation �14� describing the SEB process is a standard
kinetic equation for the energy distribution function of a ho-
mogeneous free electronic gas �18� where only the impact
collision term is kept. Therefore, Eq. �14� can be easily fur-
ther specified to include realistic band structure, phonon scat-
tering, as well as details of the impact ionization process
�19�. The first term in the right-hand side of Eq. �14� repre-
sents particle loss at energy x due to impact ionization and
has a threshold dependence at x=1, the ionization threshold.
The second term corresponds to particle gain due to impact
ionization processes; the factor of two reflects the fact that
either of the two secondaries can have the final energy x.

For an infinite parking lot, Eq. �14� can be solved exactly
�20� by first seeking the solution at x	1 in the form of a
decaying exponent G�x , t�= f�t�exp�−xt�. This yields

G�x,t� = t2 exp�− �x − 1�t − 2
�t��, x 	 1, �16�

where


�v� = �
0

v

du
1 − e−u

u
. �17�

Solution for x	1 is then extended to small x�1 by using
Eq. �14�, viz.,

G�x,t� = 2�
0

t

dvv exp�− xv − 2
�v��, x � 1. �18�

Figure 1 shows the evolution of a normalized distribution
�−1G�x , t�. One observes that the initial distribution, smooth
over a wide range of x, evolves into a narrow distribution
within 0�x�1 interval. The t→� distribution is dominated
by a peak at small x so that the average gap size is �0.33.
Temporal evolutions of both the fill factor and the Fano fac-
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tor presented in the inset show very slow variation from t
=10 to the jamming state �note the log scale on the abscissa�.
Hence the states of main interest are those immediately pre-
ceding the jamming state.

After reaching the jamming limit �t→��, the gap distri-
bution function becomes

G��x� = G�x,t��t→� = 2�
0

�

dvv exp�− xv − 2
�v��, x � 1.

�19�

Note a logarithmic divergence of Eq. �19� at small gap val-
ues

G��x → 0� = 2e−2� ln1

x
� , �20�

where �=0.5772. . . is Euler’s constant. The average density
of cars �and of gaps between them� at the time t is given by

��t� = �
0

t

dt�e−2
�t��. �21�

It can also be written in terms of a rapidly converging inte-
gral, convenient for numerical evaluation

��t� = − te−2
�t� + 2�
0

t

dt�e−2
�t��e−t�. �22�

The growth of ��t� saturates in the jamming limit when all
gaps do not exceed the unit car size. The jamming state fill
factor,

�� = �
0

�

dt�e−2
�t�� = 0.747 598 7 . . . , �23�

is known as the Renyi number.
Next, we use G�x , t� to calculate the uncorrelated Fano

factor �Eq. �7��. In terms of the average gap size �x� the
average density of cars ��t�= �1+ �x��−1 and

Func�t� = ��t�2�x2� − �1 − ��t��2. �24�

Integrating over the gap distribution in Eq. �24� and using
Eq. �22� gives

Func�t� = 2��t��1 − ��t�� − 1 + 2�1 + t�
��t�

t
e−2
�t� + 4��t�I
�t� ,

�25�

where

I
�t� = �
0

t

due−2
�u�	1 − �1 + u�exp�− u�
u2 
 . �26�

Numerical evaluation of the integrals in the jamming state at
t→� gives Func�Func���=0.043 976 6. . ., which is smaller
than the exact value �Eq. �2��. The difference is not that large
�about 14%� but still important so long as the contributions
to the Fano factor from the correlation terms in the right-
hand side of Eq. �13� are not estimated. In the next section
we consider the contribution of these terms and show that in
the jamming limit the nearest-neighbor correlation correc-
tions are dominant.

Results obtained in this section are strictly valid for park-
ing on the infinite line. However, we are obviously interested
in finite parking lot lengths, corresponding to SEB of finite
initial energy. The gap distribution function GL�x , t� suitable
for the formulation of sequential parking on a line of finite
length L is discussed in Appendix A. In the limit L→�, due
to the self-averaging property, the function GL�x , t�
→G�x , t�. Numerical experiments show that the two func-
tions are identical within 1% already for L�6. Therefore,
the results obtained with Eq. �14� can be readily used for
finite initial energies.

B. Evaluation of correlation effects

In the random parking model, evaluation of the correla-
tion contributions to the Fano factor �Eq. �13�� requires the
knowledge of the pair distribution functions for the nearest-
neighbor gaps, the gaps separated by two cars, three cars,
and so on. These are many-particle distribution functions and
their evaluation is not an easy task.

To calculate the first correlation term, one needs the
nearest-neighbor gap distribution function G��x ,x��. Fortu-
nately, this function is known �14�. It can be obtained as the
long-time limit of the time-dependent function G�x ,x� , t� for
which the kinetic equation is of the form

�G�x,x�,t�
�t

= − �k�x� + k�x���G�x,x�,t� + �
x+1

�

dyG�y,x�,t�

+ �
x�+1

�

dy�G�x,y�,t� + G�x + x� + 1,t� . �27�

The source of correlation in Eq. �27� is seen to be contained
in the last term on the right-hand side, which describes the
appearance of two gaps x and x� upon parking of a car in a
gap of initial length x+x�+1. We use the solution of Eq. �27�
obtained in �14� to write down the gap pair distribution func-
tion in the final state,
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FIG. 1. �Color online� Evolution with time of the averaged �over

realizations� gap distribution function in the standard random park-
ing problem; the inset show time variations of both the fill factor
�Eq. �21�� and the Fano factor �Eq. �B4��.
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G��x,x�� = lim�t→�G�x,x�,t� , �28�

which is the nearest-neighbor distribution function in the
jamming limit,

G��x,x�� = �
0

�

dtt2e−2
�t�e−�x+x��t

+
1

2
�

0

�

dt1e−
�t1�e−xt1�
0

t1

dt2e−
�t2�e−x�t2J�t2�

+
1

2
�

0

�

dt1e−
�t1�e−x�t1�
0

t1

dt2e−
�t2�e−xt2J�t2� ,

�29�

where

J�t� = 1 − e−2t + 2te−t. �30�

Similarly to G��x� in Eq. �19�, the distribution function
G��x ,x�� in Eq. �29� gives the number of pairs per unit
length—but not the pair probability—and it must be properly
normalized. By the definition of G��x ,x��, the integration
over x and x� gives

G��x� = �
0

�

dx�G��x,x�� ,

�� = �
0

�

dx�
0

�

dx�G��x,x�� . �31�

Hence, the normalizing factor is ����−1.
The average two-gap product calculated with the distribu-

tion function G��x ,x�� can be written in the form

�
0

�

dx�
0

�

dx�xx�G��x,x�� = K1 + K2 + K3, �32�

where

K1 = �
0

�

dtt2e−2
�t�I�t�2, �33�

K2 =
1

2�0

�

dt1e−
�t1�I�t1��2

, �34�

and

K3 = �
0

�

dt1e−
�t1�I�t1��
0

t1

dt2e−
�t2�I�t2�e−t2�2t2 − e−t2� .

�35�

Here

I�t� = �
0

1

dxxe−tx � −
d

dt
1 − e−t

t
� . �36�

Note that both K1 and K2 are positive quantities. Numerical
evaluations of the integrals gives

K1 = 0.027 982,

K2 = 0.072 887,

K3 = − 0.010 512, �37�

whence we find that the additional contribution to F due to
nearest-neighbor pair correlation is given by

�Fnnp = 2����K1 + K2 + K3� − �1 − ���2� = 0.007 685.

�38�

We see that the corrected value of the Fano factor including
nearest-neighbor correlations only, Fnnp=Func+�Fnnp
=0.052 08, is above the exact value by only 0.001. One can
anticipate that in a large parking lot gaps separated by two or
more cars should be only slightly correlated. Indeed, due to
the random nature of parking, only two nearest-neighbor
gaps can be created in a single branching event, while gaps
separated by two cars are created in two random events,
which suggests that their sizes are not correlated. If that were
the case for RPP, then expansion �13� could be restricted to
the nearest-neighbor correlation correction only so that the
approximation F=Fnnp would be exact.

Temporal variation in the Fano factor including nearest-
neighbor correlations only can be found similarly—with the
help of G�x ,x� , t�—but the calculations become rather te-
dious. As an example, the values of �Fnnp�t� for t=8 and t
=100 are, respectively, �Fnnp�8�=0.005 264 900 4 and
�Fnnp�100�=0.007 431 648 3. The calculated results are pre-
sented and discussed below, see Fig. 4.

In fact, all additional terms due to correlations in the po-
sitions of the second, third, etc., neighbors are small but still
nonvanishing since every division of the parking length im-
poses restrictions on the further gap distribution. The next
correction �F2 due to the second neighbors only is given by
an equation similar to Eqs. �32� and �38�, viz.,

�F2 = 2���
0

1 �
0

1

dxdx�xx�G2�x,x�� − 2�1 − ���2. �39�

Equation �39� is exact but the pair distribution function
G2�x ,x�� is exceedingly difficult to calculate because one
needs to average an exact three-particle distribution function
over the third particle position. Similar calculation for more
distant pairs would require exact multiparticle joint distribu-
tion functions and averaging over all intermediate particle
positions.

One can still make some progress by taking the factoriza-
tion ansatz for the multiparticle distributions, expressing
them in terms of nearest-neighbor pair distributions. For the
second-neighbor pair distribution function, this results in the
following approximation:

G2�x,x�� = �
0

1

G��x,x��
G��x�,x��

G��x��
dx�, �40�

where G��x��−1G��x� ,x���Gc�x� ,x�� is the conditional
probability of finding the second gap equal to x� for the case
when the intermediate gap equals x�.

With the help of Eqs. �31� and �40�, it is convenient to
rewrite Eq. �39� in the form
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�F2 = 2�1 − ����
0

1 �
0

1

dxdx�x�G��x,x���r�x� − 1� , �41�

where r�x� is defined in terms of the ratio of the distributions

r�x� = ��

�
0

1

dx�x�Gc�x,x��

�
0

1

dx�x�G��x��
. �42�

Function r�x� reflects the conditional probability averaged
with weight x� and it approaches unity when correlations are
negligible �for r=1 all correlation corrections vanish�.

With the factorization ansatz, the correlation corrections
for more distant pairs can be similarly expressed through
integrals of r�x� over conditional probabilities. Let us see
how far we can get with this ansatz.

The second-neighbor pair correlations described by Eqs.
�40�–�42� are illustrated in Fig. 2, which shows the function
r�x� and also compares the functions G��x� and

Ḡc�x� = ��

�
0

1

dx�x�G��x,x��

�
0

1

dx�x�G��x��
�43�

needed for direct calculation of the first term in the right-

hand side of Eq. �41�. We see that both G��x� and Ḡc�x� have
a logarithmic singularity at x→0. Ratio r�x� is on average
close to unity and deviates from unity most noticeably at
small x where it approaches the value 0.504. Numerical cal-
culations give for �F2=0.0011 indicating that the ansatz se-
ries converges. However, it does not converge to the exact
value of F. Indeed, the positive sign of �F2 excludes the
possibility of reaching the exact value based on an accurate
inclusion of only nearest-neighbor pair correlations. Evi-
dently, rare multiparticle correlated configurations become
important at this level of accuracy. The nature of these con-
figurations is discussed in the next section.

IV. DISCUSSION

Analytical expressions for the Fano factor in the jamming
state of the RPP model have been obtained by several au-
thors �11–13�. Since these authors used different techniques
�a lattice model was used in �11�, a recursive approach was
used in �13�, and a kinetic approach was used in �12�,
whereby F was obtained as a zero-wave-vector component
of the structure factor�, their final results were written in
widely different forms, so much so that the equivalence of
these results could be open to question. As shown in Appen-
dix B, the results of �11–13� are indeed equivalent and can be
cast in the following rather compact form:

F = 2�� − 1 −
2

��
�

0

�

�̃2�t�e2
�t�A�t�dt , �44�

where �̃�t�=��−��t� and

A�t� = e−t e−t + t − 1

t2 � . �45�

Equation �44� yields the numerical value of the Fano factor,
F=0.051 038 7. . ., that can be calculated with any required
precision.

Numerical evaluation of the Fano factor with account of
only the nearest-neighbor correlation somewhat differs �by
0.0021 or about 4%� from the exact value. This indicates
that, contrary to the first intuition, distant gap correlations
also give a contribution to F. This conclusion is supported by
a more refined analysis of the correlations. The situation can
be clarified by calculating the variance of N recursively in
parking lots of progressively increasing length. The proce-
dure is described in �8,10� and here we present �Fig. 3� only
the results of calculations of the Fano factor as a function of
the parking lot length L �avoiding spurious edge effects, as
described in Appendix A�. One can clearly see very large
variations of the Fano factor for short parking lot lengths, in
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FIG. 2. �Color online� Distribution ratio r�x� and the conditional
probability functions calculated under the factorization ansatz �40�.
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FIG. 3. �Color online� The Fano factor for the random parking
model calculated as a function of the parking lot length for small
lots. Inset illustrates parking on a lot of length L=3. Even though
the spacing between cars is chosen randomly, there are no fluctua-
tions of the number of cars.
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the range of up to five cars. Such small gaps appear at an
intermediate stage of the parking. These special correlations
are completely smeared out only at L	5.

Consider a special case of random parking on a lot whose
length is triple the size of a single car, as shown in the inset
of Fig. 3. One can readily see that two cars will always park
in this lot, with no fluctuation of this number �the unique
case of three tightly parked cars with no gaps has zero prob-
ability�. Clearly, the intermediate states of this type were not
included in the preceding consideration and their contribu-
tion should reduce the resulting value of F bringing it to the
exact value.

Note that in the jamming state �where the fill factor is
close to 3/4� three cars occupy an average length of L�4.
The typical space left for two cars equals three and the above
configuration appears quite common. However, due to the
nature of random parking, these configurations have different
prehistories and most of them result not from divisions of
L�3 lots. The overall contribution to F of two-car lots re-
mains positive. The negative contribution results mainly
from the those configurations that have L�3 lots in their
history. In terms of sequential energy branching these con-
figurations correspond to an intermediate state comprising a
particle of energy �3Eth. If such a particle is created in the
course of SEB, the next energy branching will produce ex-
actly two particles with no fluctuation, irrespective of the
fluctuating kinetic energies of these particles. Inclusion of
this effect is the main residual correction contained in the
distant pair correlation terms. For large initial energies, the
overall contribution of these rare configurations at the jam-
ming state should be �F3�−0.0021.

It would be extremely interesting to realize a situation
when configurations comprising a particle of energy �3Eth
are not rare. For such configurations, the final state will be
dominated by two-particle contributions. Correlations of this
type will suppress the fluctuations of the final number of
particles in all cases when one of the secondaries produced at
an intermediate stage regularly has a small energy. One pos-
sibility would be to look for these effects in the dependence
of noise in semiconductor x-ray detectors on the frequency 
of incident x-ray flux of constant intensity. For h producing
an initial electron of energy near 3Eth one can expect sup-
pression of the noise component associated with the branch-
ing of energy of the photoabsorbed quanta.

There is also a tantalizing possibility to employ these cor-
relations in practical � detectors, where the energy is, of
course, much larger than 3Eth. This possibility relies on the
established fact that in semiconductors the dominant energy
loss mechanism at high electron energies is plasmon emis-
sion rather than impact ionization �21,22�. Plasmon emission
can establish the dominant intermediate configuration—
immediately preceding the final stage of SEB via impact
ionization—that is populated with particles of energy close
to the plasmon energy, which is �16 eV in all common
semiconductors. In the RPP language, the long parking lot,
corresponding to the initial energy, would be divided at the
intermediate stage into small 16 eV lots, where—as we have
seen—the small-lot correlations can be very important.

As was noted in Sec. II, the kinetic approach allows to
calculate both the filling factor and the Fano factor at any

intermediate state—by using time-dependent distribution
functions. Figure 4 compares the computed values of F for
the shot-glass model, where Func�t� is given by Eq. �25�, with
exact results �Eq. �B4�� for the RPP model, both as functions
of time and the line filling. The figure also shows the results
obtained including the nearest-neighbor correlations. Allow-
ance for these correlations gives a very close upper estimate
for F for all stages of the random parking.

Inclusion of the correlation corrections obviously requires
a computational effort. We believe it should be quite man-
ageable because the only important correlations are those
preceding the final state. Nevertheless, the shot-glass model
remains attractive for its simplicity—as a zeroth-order
approximation—even though its use requires assumptions
about the single-particle distribution that go beyond the
model itself. In this vein, however, there is another statistical
model that is, perhaps, even more attractive.

This model corresponds to a car distribution along the
parking lot in which the probabilities of all allowable states
are the same �as if all cars parked randomly at the same
moment�. This distribution is statistically equivalent to the
model of a one-dimensional hard-rod �1D HR� gas, i.e., it
can be viewed as an equilibrium spatial distribution of hard
rods of unit length along a segment of a large total length
with a given rod density �. For the 1D HR gas model one can
calculate all multiparticle distribution functions exactly �23�.
It was found that the gaps in the 1D HR model are distrib-
uted in accordance with Poisson statistics and that F can be
exactly expressed in terms of the filling factor ��t�, viz., F
= �1−��2, see Appendix C. In the 1D HR model, there is no
jamming limit and the filling factor can take any value up to
�=1. The choice of �, therefore, requires an assumption that
goes beyond the model itself. The 1D HR model gives a
simple way to estimate F—whenever the filling factor is
known. In a practical application of this model, it is natural
to take the filling factor equal to the branching yield, �=Y,
and estimate the latter consistently with the average pair ex-

0.66 0.68 0.70 0.72 0.74 0.76
0.04

0.05

0.06

0.07

1D HR

Fa
no

fa
ct

or

Filling factor

10 100

0.04

0.06

0.08

NNC

t > 4

uncorrelated

exact

Fa
no

fa
ct

or

Time

FIG. 4. �Color online� Fano factor as a function of time for the
RPP problem. The exact result is compared with the shot-glass
model approximation �dashed line� with the exact variance ���2�
plugged in. Open circles show the results obtained by allowing only
the nearest neighbor correlations. The inset shows the Fano factor
as a function of the line filling factor in the region approaching the
jamming state. It also shows the predictions of the 1D hard-rod gas
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citation energy �. The 1D HR model gives an upper bound
estimate that is fairly crude compared to the uncorrelated
�shot-glass� model, where the exact variance ���2� is plugged
in.

Both the shot glass and the 1D HR model require assump-
tions external to the model itself: the 1D HR model needs the
filling factor �, while the shot-glass model needs the variance
���2� �derived here from the exact single-particle distribu-
tion�.

At small values of � all models give F�1−2��t�. For
intermediate coverage, ��0.7 and near the jamming state,
the uncorrelated model gives a lower bound, while the 1D
HR model an upper bound to the exact F�t�. We had already
noted �at the end of Sec. II� that in a real particle detector, the
true jamming state is hardly achievable because the SEB
slows down and is preempted by phonon emission and other
energy loss mechanisms. Owing to the termination of the
branching process at intermediate values of the filling time,
the uncorrelated approximation becomes substantially less
reliable.

A subtle conceptual problem with the uncorrelated ap-
proximation can be illustrated by a mock shot-glass model.
Imagine that the man with the shot-glass watches what he is
doing and compensates for an underfilled shot by following
it with a shot with more than average filling so that two
successive glasses together scoop similar amount of water.
Evidently, the fluctuations should be strongly reduced in this
case, compared to predictions of Eq. �7�. Moreover, it is
precisely these types of correlations that are typical for the
energy branching process. This is easiest seen in the parking
model, where the division of any initial gap naturally pairs a
small gap with a large neighbor gap. We shall refer to this
effect as the “division correlations.” One could expect that
the uncorrelated model—which ignores the division
correlations—would give an overestimate of the Fano fac-
tor… but an inspection of Fig. 4 reveals that the opposite is
true and the correlation correction to F is positive. What is
wrong with the above argument?

The answer lies in the fact that division correlations are
not the only and not necessarily dominant correlation correc-
tions. Consider the structure of the terms �33�–�35�. Their
physical meaning is revealed by the corresponding contribu-
tions to G��x ,x�� of Eq. �29�. From the exponential depen-
dences on x and x� one can see that the term K1 �originating
from the 1st term in G��x ,x��� depends on the sum x+x� and
thus is manifestly insensitive to division correlations. Term
K2 results from a combination of the second and the third
terms in Eq. �29� with only unity retained from the J of Eq.
�30�. This combination can be factorized and hence so can be
K2= �x�p

2, where the subscript p indicates the “pair averaging”
as in Eq. �34�. The factorizable term does not represent divi-
sion correlations either. The effect of division correlations
resides apparently in the term K3, which results from the
remaining parts of G��x ,x��. It is indeed negative but its
value is relatively small. As seen from Eq. �37�, the term K2
is dominant. Due to the nearest-neighbor correlations, the
pair averaging gives a larger mean value than the single-
particle averaging, �x�p	 �x�. This is undoubtedly related to
the shape of the single-particle distribution function that
peaks at low x.

V. CONCLUSIONS

We have studied correlation effects in the fluctuation of
the number of particles produced in semiconductor radiation
detectors by impact ionization cascade that leads to sequen-
tial energy branching. Our analysis is based on an exactly
soluble random parking model. First, we show that, in con-
trast to the so-called “final-state” models, the accurate ex-
pression for Fano factor includes additional terms arising
from the correlation between energies of the secondary par-
ticles created in the SEB process. Final state models, such as
the “shot-glass” model, are widely used for estimation of the
Fano factor in semiconductors, but they entirely neglect
these correlations. We have considered the best �using an
exact gap distribution function� predictions of the shot-glass
model for the random parking model. We have found that the
uncorrelated model—even with the exact distribution
function—is not quite accurate and gives a lower bound to F.

Next, we considered the corrections arising from correla-
tions between nearest-neighbor gaps, next-nearest gaps, and
so on. Based on the exactly calculated pair distribution func-
tion, we found that nearest-neighbor pair correlations pro-
vide the dominant corrections and their inclusion brings F
very close to the exact value. The residual difference cannot
be accounted for by a factorization ansatz that expresses
distant-neighbor pair distribution functions in terms of the
nearest-neighbor distributions. Instead, one needs to take into
account genuine multiparticle correlations.

The most important example of the correlated configura-
tion that cannot be factorized into nearest-neighbor correla-
tions is the intermediate state with the kinetic energy equal
3Eth that will always branch into two particles, with no fluc-
tuation of that number—irrespective of the fluctuating ener-
gies of these particles. We have discussed the possibility that
this effect may produce an additional reduction in the Fano
factor in semiconductors where the dominant energy-loss
mechanism at high energies is plasmon emission.

More realistic models of energy branching in semiconduc-
tor gamma detectors comprise additional factors �such as
nonrandom branching at the intermediate stages, energy-loss
mechanisms, and finite width of the valence band� that make
the correlation effects different from those calculated in the
random parking model. However, their importance can be
evaluated by the approach developed in this work.

A relatively crude upper estimate for the Fano factor can
be obtained in the equilibrium statistical model of a one-
dimensional hard-rod gas. The correlations in the 1D HR gas
model are somewhat different from those of sequential en-
ergy branching and the model produces an upper bound to
the exact result provided the filling factor � is known cor-
rectly. In this model, the Fano factor has a simple close-form
expression in terms of �, but the latter is not limited by
jamming and must be determined by considerations external
to the model.
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APPENDIX A: KINETICS FOR A FINITE-SIZE PARKING
LOT

Equation �14� for RPP and its extensions have been dis-
cussed in a number of papers �see �20� for the review� but
only for the case of parking on an infinite line. The reason
for this restriction has been that only on the infinite line the
number of voids equals that of the cars and parking of a new
car does not change this property. In a parking lot of finite
length the number of voids exceeds the number of cars by
unity, which seemingly makes the distribution function of
voids not suitable for describing the current number of cars.
However, one can consider an initial finite parking lot of
length L+1 with one car fixed at the end. Then one can
easily see that the numbers of cars and voids remain equal.
The initial condition to the Eq. �14�, corresponding to an
empty lot, in this case takes the form

GL�x,t� =
1

L + 1
��x − L�, t = 0. �A1�

One can easily check that Eq. �A1� satisfies the total length
conservation condition,

�
0

�

dxGL�x,t� + �
0

�

dxGL�x,t�x = 1. �A2�

The time-dependent filling factor ��t� can either be calcu-
lated as the average number of cars per unit length,

�L�t� = �
0

�

dxGL�x,t� , �A3�

or, using Eq. �A2�, it can be expressed through the average
size of the gaps.

In the limit L→�, due to the self-averaging property, the
function GL�x , t�→G�x , t�.

APPENDIX B: COMPARISON OF EXPRESSIONS
FOR THE FANO FACTOR

An exact expression for the Fano factor in the RPP model
was first derived by Mackenzie �11�. In the form due to Coff-
man et al. �13�, this result can be written as follows:

FC =
4

��
�

0

�

�̃�t�e−t1 − e−t

t
�dt

−
4

��
�

0

�

�̃2�t�e2
�t�e−tA�t�dt − 1, �B1�

where A�t� is given by Eq. �45�. The formula of Bonnier et
al. �12� in the same notations is given by

FB = 2�� − 1 −
4

��
�

0

�

dte−2
�t��
0

t

dt�e−2
�t��

� �
0

t�
dt�e2
�t��A�t�� . �B2�

To prove their identity, one can use in Eq. �B2� the substitu-
tion �cf. Eq. �21��

d�̃�t�
dt

= − e−2
�t� �B3�

and then perform integrations by parts. This brings the inte-
gral of Eq. �B2� into the form of the second integral in the
right-hand side of Eq. �44�. Similar simplification is achieved
in the second term of the right-hand side of Eq. �B1� by
writing exp�−t�=exp�−t�−1+1 and then simplifying the
term proportional to 2 exp�2
�t���exp�−t�−1� / t
=d�exp�2
�t��� /dt by integration by parts. The final result of
the algebra is again of the form of Eq. �44�. Therefore, both
Eqs. �B1� and �B2� give identical results.

Evaluation of the Fano factor in the kinetic approach can
be extended �12� to include the temporal evolution of F. The
exact F�t� for the RPP model can be written in the form
�simplified in the same way as Eq. �B2��:

FB�t� = 2��t� − 1 + 2e−2
�t� −
2

��t��0

t

dt1�̃�t,t1�2e2
�t1�A�t1� ,

�B4�

where �̃�t , t1�=��t�−��t1�. The temporal evolution of FB�t� is
presented in the inset to Fig. 1.

APPENDIX C: FANO FACTOR FOR A ONE-DIMENSIONAL
GAS OF HARD RODS

In this ideal-gas model, the distances between neighbor-
ing particles are distributed according to the Poisson statis-
tics �24�, i.e.,

G�x�dx = x̄−1e−x/x̄dx . �C1�

Moreover, in this model there is no correlation between the
gaps separating different particles �23� and the pairwise gap
distribution functions can be factored into products of single-
particle functions �C1�. Therefore, only the first term sur-
vives in Eq. �13�. The distribution �Eq. �C1�� gives x̄2− �x̄�2

= �x̄�2 and for a given line filling � one has x̄= �1−�� /� so
that in the notations of Eq. �13� ���2�= �1−��2 /�2 and �2

= �1+ x̄�2=�−2, resulting in

Fhr = �1 − ��2. �C2�

This result was previously obtained by a much more compli-
cated calculation. It involves finding the exact pair distribu-
tion function for the rods �23� and then calculating its Fou-
rier transform �the structure factor�, see, e.g., �25�. The Fano
factor is then given by the zero-momentum component of the
structure factor. We were able to avoid these complexities by
employing Eq. �13� and using the pair distribution function
for gaps separating different particles rather than for particles
themselves.
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An alternative way of deriving the Fano factor in the
hard-rod gas model is to use a general expression for the
fluctuation of the number of particles in a given volume �26�,
valid for any thermodynamic system in equilibrium:

���N�2� = −
TN2

V2  �V

�P
�

T,N
. �C3�

For the hard-rod gas, the equation of state is known exactly
�see, e.g., �25��, viz.,

P�V − V0� = NT , �C4�

giving

 �V

�P
�

T,N
= −

�V − V0�2

NT
. �C5�

Substituting Eq. �C5� into Eq. �C3� and taking �=V0 /V, we
again recover Eq. �C2�.
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