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Theory of Hot-Electron  Injection in 
CHINT/NERFET Devices 

ANATOLY A. GRINBERG, ALEXANDER  KASTALSKY, AND SERGE  LURYI, SENIOR MEMBER, IEEE 

Abstract-We have  considered  theoretically  the  basic  physical  pro- 
cesses  underlying  the  operation of the  charge  injection  transistor 
(CHINT) and  the  negative  resistance field-effect transistor (NERFET). 
Our  treatment is based on the  electron  temperature (T,) approximation 
for the  energy  distribution of hot  electrons  in  the  two-dimensional elec- 
tron  gas (2DEG) channel.  The T, is determined  from  an  energy-balance 
equation  which  includes  the  following  processes: 1) electron  heating by 
the  source-drain  electric field (assumed  uniform), 2) energy losses due 
to  the  interaction  with  phonons, 3) energy  losses  due  to  the  emission of 
hot  electrons  from  the  channel  into  the  second  conducting  layer (col- 
lector)  and  the  attendant  nonconservation of the  channel  current. Our 
theory  gives  a  semi-quantitative  analytical  description of the  current- 
voltage  characteristics of CHINTlNERFET devices.  Most-but not  all- 
of the  important  experimental  features of the device  operation  are  ad- 
equately  described.  Further  improvement of the  theory  should  include 
a  realistic  description of the field nonuniformity  along  the  channel. 

T 
I. INTRODUCTION 

HE  EFFECT of real-space transfer (RST) of hot elec- 
trons in multilayer semiconductor structures was first 

suggested by Hess et al. 111. Recently, a novel class of 
three-terminal devices was  proposed [2] that employs  the 
RST between  semiconducting  layers, separated by a po- 
tential barrier and contacted individually. These  devices, 
the charge injection transistor (CHINT), the negative re- 
sistance transistor (NERFET), as well as their logic  and 
memory circuits, were subsequently implemented by  MBE 
in GaAdAlGaAs heterostructures and extensively studied 
(see [3], 141 and references therein). More recently, a sig- 
nificant improvement  was  achieved in OMCVD grown 
structures [SI, 161. A current gain in CHINT was dem- 
onstrated at frequencies up  to 32 GHz, with a transcon- 
ductance  of  more than 1000 mS/mm,  and the negative dif- 
ferential resistance (NDR) in NERFET had a peak-to- 
valley ratio of 160 at  room temperature. The typical con- 
figuration of these  devices,  and their basic characteristics 
are shown in Fig. 1 .  The operation of CHINT is based on 
the control of charge injection of hot electrons from  a 
source-drain (SD)  channel  into  a  second  conducting  layer 
by applying a heating voltage VsD, whereas  the  NERFET 
is  based  on  a  pronounced negative differential resistance 
in the SD circuit, controlled by voltage on the second  con- 
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Fig. 1 .  (a) Schematic illustration and energy-band diagram of the CHINTl 
NERFET  device  structure. A conducting channel QD-EG) appears at the 
undoped heterointerface when the collector voltage exceeds a threshold 
value, Y,  > V,. (b) Typical experimental [5 ]  current-voltage charac- 
teristics, Ic-VsD and ID-VsD at room temperature and different collector 
voltages Vc-VT. The measured value of the threshold voltage was VT - 
5 V. With increasing heating voltage Vso, one clearly sees  a rapid rise 
and subsequent saturation of the  collector current I,, accompanied by an 
increase and subsequent sharp drop in the drain current lo. 
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ducting layer (the latter will be referred to as the hot-elec- 
tron collecting gate or “collector”).’ 

So far, much of the understanding of the operation of 
CHINT and NERFET has remained on a qualitative level 
[3]. Quantitative description of these devices is su xtan- 
tially more complicated than that of an ordinary hztero- 
junction FET, despite an apparent similarity in the  device 
structures. Unlike the FET  case, where hot-electron phe- 
nomena appear “merely” through their effect on thc: car- 
rier transport in the  channel, these phenomena dominate 
the  CHINT/NERFET  operation through RST. Moreover, 
the RST leads to a nonconservation of the channel cutrent 
I(x), which may have  a  strong influence on the field ‘dis- 
tribution within the channel. Another fundamental (‘om- 
plication is associated with the energy flux carried away 
by hot electrons leaving the channel. 

The purpose of this work is to present a quantitative 
description of CHINT/NERFET  characteristics.  A satis- 
factory theory should describe  the following experimental 
facts evident from Fig. l(b): 

1) The NDR in  the  SD circuit accompanying the in- 
crease in the  collector  current. 

2) Saturation in both the drain current ID and the col- 
lecting-gate current IC with increasing heating vcdt- 

3) Initial growth and subsequent decay in the values of 
the saturated current IDsat with increasing VC (a neg- 
ative  transconductance). 

%e VSD- 

The semi-analytical theory presented in this paper docs 
not aim  at  a  complete description of all  aspects of the dl:- 
vice  characteristics.  Fitting of the experimental data Is 
complicated by the fact that  the  device technology has not 
yet reached a sufficient maturity-the characteristics are 
not well reproducible from one wafer to another, bein‘q: 
influenced by a number of inessential (in principle) ef- 
fects, such as imperfect contacts,  etc. 

11. PHYSICAL MODEL 
The  sheet  carrier concentration n(x) in the NERFET 

channel is essentially governed by the process of hot elec- 
trons leaving the channel. This means that n(x) must be 
determined from the  current continuity equation. Capac- 
itive coupling enters only as a boundary condition at the 
source end of the channel 

en(0) = - (Vc - VT) 
E 

4nd 

where d is the thickness of the  collector  barrier  (see  Fig. 
l(a))  and VT is a threshold voltage for  the appearance of 
a two-dimensional electron gas (2-DEG) in the channel 

‘In  first implementations  the second conducting  layer  was realized as a 
heavily doped  n-GaAs  substrate  and  hence designated by SUB. Electri- 
cally, the SUB electrode in  CHINT  plays  the role analogous to the collector 
of a bipolar  transistor,  whereas in NERFET it is more  like the gate of an 
FET.  Physically, in both  devices it plays the dual role of a sink for hot 
electrons and a field source  inducing the carrier concentration in the hot- 
electron  channel. 

induced by VC.  In what follows we shall be counting Vc 
from the threshold level and set VT = 0. 

In modeling the properties of 2-DEG, we shall take into 
consideration only the  two  lowest subbands. Positions of 
the bottom edges, El and E,, of these subbands will be 
assumed given in terms of the local carrier concentration 
in the channel [7] 

El = Pln2’3(x) 

where 6, and Pz are numerical coefficients 

= 7.24 * lo-’’ eV  cm4’3 

,& = 11.37 10-l‘eV ~ m ~ ’ ~ .  (3) 

(These values follow from the numerical calculations of 
Stem and Das Sarma [8], which give El = 45.6 meV and 
Ez = 71.6 meV for n = 5 * 10”  cm-2.) Exchange-cor- 
relation corrections to the subband energies (0: n4‘9 [8], 
[9]) will be neglected for the sake of simplicity. 

We shall  assume that the nonequilibrium properties of 
the hot-electron ensemble can be described by a pseudo- 
Maxwellian distribution characterized by an electron tem- 
perature T,, which in turn will be determined from an 
energy-balance equation. In the electron-temperature ap- 
proximation, the local sheet carrier concentration n(x) in 
the 2-DEG is lelated to  the quasi-Fermi level EF(x) ,  
counted from the classical edge of conduction band, as 
follows [lo]: 

n = D In ([I + exp (EF - E, ) ]  [I + exp (EF - Ez)])  
(4) 

where D = mkTe/afiz is the areal density of states in the 
energy interval IT,, and and E,  are  the corresponding 
energies in units of kT,. Below, we shall be using the tilde 
notation always to describe  energies in units kT, and volt- 
ages in units kTJe. 

The  main simplifying approximation made in  this work 
is the assumption of a uniform lateral  electric field in the 
channel, F S D  = VsD/L. As will be discussed in Section 
111, this approximation is not entirely satisfactory and its 
use will cost us an inability to  give  a  complete quantita- 
tive account of the device behavior, especially in the range 
of current saturation.  Another approximation made is that 
we shall neglect electron scattering into  the subsidiary 
minima (L  and X )  of the conduction band. We feel this 
approximation hay  be justified by the fact that for x = 
0.4, the  satellite valleys are nearly continuous at the 
AI,Gal -,As/GaAs interface,  cf.  the discussion at the end 
of Section 11-B. 

A.  Charge Injection Current 
Hot electrons are injected into the collector either by a 

thermionic emission over  the barrier or by a “thermally 
assisted” tunneling under  the  top of the  barrier. As will 
be seen below, the tunneling component cannot be ne- 
glected in the calculation of device  characteristics. 
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I) Thermionic  Emission: Although,  for kT, 5 (E2 - 
E l ) ,  most of the  channel electrons are two-dimensional 
(i.e., located within the  lowest  subband), those electrons 
which participate  in  the  charge  injection  over  the  barrier 
(of height @ = 0 . 3  eV equal to the conduction-band dis- 
continuity between AlXGal -,As and GaAs at x = 0 .4 )  are 
located in the high-energy tail of the hot-electron distri- 
bution function and,  therefore, must be treated as  three- 
dimensional. Their flux over  the  barrier @ is hence given 
by a Richardson-like equation 

J = A*Tz exp ( E F  - 6) (5 )  

where J is  the  current density of hot-electron injection, 
and A* is the effective Richardson constant containing the 
electron effective mass in  the channel [l 11 (because the 
effective electron mass in  the channel is lower than that 
in  the AlGaAs barrier).  We  have assumed in (5)  that the 
shape of the  barrier is such that the  reverse flux  of elec- 
trons from the  collector  into  the  channel can be neglected 
(because the collector temperature is low) even when VsD 

2) Thermally Assisted Tunneling: Inclusion of tunnel- 
ing gives rise to an additional factory  in the  current equa- 
tion (5 )  (see,  for  instance, [12 ] ) .  Although the  shape of 
the potential barrier is trapezoidal, we can regard it as 
approximately triangular  near  the  top of the barrier- 
where most of the tunneling occurs. The usual quasi-clas- 
sical theory for tunneling under  a  barrier gives in this  case 
(see,  for  instance, [ 131) 

3 vc. 

where 

and F(0) is  the  electric field near the  top of the barrier. 
We shall assume that this field is given by the Gauss law 
F(0) = 4nen/e. The total current density across the  barrier 
is of the form 

J = yA*T: exp ( E F  - 6). (8) 

Fig. 2 shows the  dependence of the injection current den- 
sity J on the electron temperature for different values of 
the  carrier  concentration, n = lo", 5 - lo", and,10" 
cm-*. For  comparison,  the values of J calculated from 
( 3 ,  i.e., without the tunneling effect, also  are shown (by 
the dashed lines). When tunneling is not included, then 
the concentration dependence (at a given T,) arises solely 
due to the variation of the  Fermi  level. As expected,  the 
importance of tunneling diminishes with increasing T,. 
Tunneling also becomes less important at  lower concen- 
trations,  since those correspond t̂ o lower  electric fields 
F(0) and hence less  transparent  barriers. We see that  in  a 
wide range of T, and n the tunneling component cannot 
be  neglected. As will be  shown  below, taking account of 
tunneling also improves our description of  the experimen- 
tal data. 
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Fig. 2. Calculated injection current density J as  a function of the electron 
temperature T, for different electron densities n in  the  channel. Note that 
the tunneling component becomes quite important at  higher n (corre- 
sponding to higher  electric fields and,  therefore, more transparent bar- 
riers). 

B. Energy  Balance  Equation 
The energy balance  equation  for  the electron gas in the 

channel besides the usual terms corresponding to the en- 
ergy gain in  the external field ( I  * F )  and the energy loss 
to the  lattice, must contain two additional terms, associ- 
ated with the electron emission over  the  barrier. On the 
one  hand, electrons leaving the channel carry away their 
energy, and on the  other  hand, the nonconservation of 
channel current results in a peculiar energy transport along 
the channel. These effects, proportional to the injection 
current density J ,  are entirely novel and specific to the 
CHINT/NERFET  device. As will be shown below, at 
high electron temperatures,  the energy carried away by 
hot electrons injected across the barrier becomes domi- 
nant in the balance equation.  It gives rise to a feedback 
mechanism which stabilizes the T, and thps limits  the  in- 
jection  current. 

The problem of electron-gas heating and determination 
of the distribution function of hot electrons is quite in- 
volved in general. (In the 2-D case it is further compli- 
cated by the subband structure, which requires the con- 
sideration of not only intra- but also inter-subband tran- 
sitions, as discussed in  the  extensive literature on the sub- 
ject; cf.  the review [7]).  In  a phenomenological treatment 
of the  device  characteristics attempted here,  it  is unrea- 
sonable to include  all  the  details of the electron heating 
problem-which would be appropriate in  a study of the 
,heating effect itself.  We  shall  be using instead the sim- 
plest and most common approximation in which the non- 
equilibrium distribution will be assumed to differ from the 
equilibrium case only by the  temperature T,, and the  latter 
will be evaluated from the energy balance equation. As is 
well known,  the establishment of such a quasi-equilib- 
rium distribution can be ensured by a sufficiently strong 
electron-electron interaction, which in turn is realized at 
high enough electron  concentrations.  Although,  the elec- 
tron concentration will  be shown to  decrease substantially 
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along the channel due  to the injection effect, nevertheless 
the main portion of the collector current-and it is for  the 
determination of this current that we need to determine Te 
anyway-flows from the channel region where the con- 
centration is still high enough (2 10" cm-*). We can ex- 
pect,  therefore,  that  the electron temperature approxima- 
tion will  be satisfactory for  our purposes. 

Consider  the  basic components of the energy balance 
equation which governs the  temperature of channel elec- 
trons heated by an applied electric field. 

1) lhe Energy  Transport  Along the Channel: Under 
stationary conditions the net number of electrons arriving 
at a point in the channel from the adjacent regions must 
equal their number leaving  the channel at that point. The 
electron flux per unit area of the channel is given by Jle. 
Denote  the mean electron energy of a channel electron by 
( E ) .  (Both J and ( E ) are position dependent, in gen- 
eral..) Then the rate of energy change  per channel electron 
at a given point is of the form 

The physical meaning of (9) is  as  follows.  In  the absence 
"of electron transfer across  the  barrier, when the number 
of electrons entering an elementary channel volume equals 
their number leaving that  volume,  the divergence of the 
electron energy-density flux must equal the gradient of the 
average energy density (cf.  the Appendix). . Neglecting 
processes of thermal conductivity,  the total variation of 
the energy of a given elementary volume would be owing 
only to  the difference in the  average energy of electrons 
entering at point x and leaving at point x + 6x. If we 
neglect that difference (the Thomson heat), then the total 
variation of energy along 6x vanishes. In  the  presence of 
a real-space transfer,  however,  the incoming flux  of elec- 
trons entering an elementary volume exceeds their  out- 
going flux after  the distance 6x by the amount (Jle) 6x and 
the taken-away energy equals ( E ) (J /e )  ax, which leads 
to (9) per unit length of-the channel. 

The  value of ( E ) can be expressed in terms of the local 
quasi-Fermi level EF as follows: 

E k  d2k 
( E )  = (2d2n 2kTe s 1 + exp (Ek - EF + E, )  

where 

A2k2 

and 

2) Energy  Losses in the Emission of Channel Electrons 
into the Collector: Electrons leaving the channel by going 
over the  barrier of height @ take away the energy (per 
channel electron) at  the  rate 

w, = - ' f (Ek)  Eu,d3kD*(E,)  (12) 
(2T)3n 

where u, = Ak, lm is  the component of electron velocity 
normal to  the  interface, f ( E )  the electron Fermi distribu- 
tion function corresponding to the temperature Te, and 
D*(EI)  is a  factor describing the  barrier transparency, 
which we shall  take  equal  to unity when the transverse 
kinetic energy component exceeds the barrier height, EL 
> (i.e. ,.we shall neglect the probability of a quantum- 
mechanical above-barrier reflection). Counting all ener- 
gies from the classical bottom of the conduction band in 
the channel (the bottom of the quantum well for  2DEG), 
we can express the energy near the  top of the  barrier in 
the form 

where kll and k ,  are,  respectively,  the  parallel and the 
perpendicular (to the  plane of the channel) components of 
an electron wave vector. At low energies this dispersion 
law goes over  into Ek = El + (A2ki/2m), so that the ac- 
tual kinetic energy carried away by an electron equals 

Therefore, (12) assumes the form 

w2 = - 
(2+ s f(Ek) (Ek - E l )  u.lD*(E1)d3k 

where,  for  a triangular barrier 

X(,?,) = ~(6 - E,)/E0013'2. 
In the integration over E,  we can extend the  lower limit 
to zero and obtain 

where 

A = exp ( E F  - 8,) = exp (nlD) - 1. (1 1) (15) 

For  the  sake of simplicity, in the  above equations and be- The first three  terms in the square brackets in (14) corre- 
low we restrict our consideration to  one 2-D subband (El ) .  spond to  the  loss of energy in the purely thermionic emis- 
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Fig. 3 .  Energy loss rate w2 per  one  electron  as  a  function of the  electron 
temperature T, at different  channel  concentrations n. These losses  cor- 
respond to the  energy  carried  away  from  the  channel by hot  electrons 
emitted over the  barrier. 

sion process,  while  the  other  terms describe the contri- 
butions due  to tunneling. 

The  dependence of w2 on  the electron temperature is 
displayed in Fig. 3 for three different values of the con- 
centration. Dashed lines show  the  same curves evaluated 
without  the inclusion of tunneling. We see that the tun- 
neling corrections, although important, do not give rise 
to any qualitative  change  in  the  temperature  dependence 

3) Energy Losses Due to  Interaction  with  Polar  Optic 
Phonons: In  order to describe the energy losses associ- 
ated with  the  phonon  emission by hot electrons,  one has 
to assume a specific form of the envelope  wave function 
of 2-D electrons. Considering  only the lowest  subband 
electrons, we shall assume that their  motion transverse to 
the channel  is described by a  wave function of the form 

of w2. 

w = - z exp (- 7) (y3 /2  

1Jz 
where the parameter a is determined variationally [ lOJ,  
[14] ,  and in terms of the bottom  energy of the  lowest sub- 
band E, it is given by 

If2 a,=(%) . 

At high temperatures (T, 2 300 K) the  dominant  mech- 
anism of energy losses in phonon  emission is known to 
be  the interaction with polar optic  phonons  (see,  for ex- 
ample, [ 151, [ 161). The  energy  loss  fate in these processes 
was calculated by Price 1171 for electronic wave functions 
corresponding to a rectangular quantum  well.  Our calcu- 
lation below  is similar to [17] except for  the  assumed form 
(16) of the wave functions. 

To calculate the average rate of electron energy losses 
due to their interaction with  polar  optic  phonons,  we shall 

use the master equation describing the fate of change  of 
the number N :  of phonons of wave vector q (per unit area 
of the 2-DEG) 

x {(Nq $- l ) f (Ek+q$[ l  -f(Ek)l 

- Nqf(Ekj l1 - f(Ek tq(()lJ (18) 

where k is the 2-D electron wave  vector, Ek = A2k2/2rn, 
Amo is  the optical phonon energy, So the normalizing  area, 
qll and qL are, respectiveIy , the  components of the  phonon 
wave vector that are parallel and perpendicular to the plane 
of the 2-DEG, Nq is  the  Planck function for  phonons, 
which  we shall  assume  to  correspond to an equilibrium at 
the lattice temperature T,  i.e., 

N~ = [exp ( tno , /k~)  - I]-' 

and W(qu, qL)  is the square of the matrix element  for elec- 
tron-phonon interaction, given by [18] 

where V, is a normalizing  voiume 

eo and E ,  are, respectively, the static and the high-fre- 
quency permittivities of the sample,  and 

The totaI rate of change of the  phonon  energy  per urfit 
area of the 2-DEG is given by 

* &(Ek+q,, - E k  - hU0) &L d2q,, d2k (22) 

where  we  have  taken  into  account that the electron distri- 
bution functionf(Ek) is assumed to differ from the equi- 
librium distribution only by the electron temperature pa- 
rameter T,. 

Integration over qL and the directions of 411 and k brings 
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(22) in the form 
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where 

Introducing dimensionless variables = qlI/a and q’! = 
Ek, we  have 

where 

(25a) 

exp [q2 + E * ( n  + ~ 2 ~ ~ 1  
= ( [exp (nlD) - l] - 

(25c) 
Note that  we used relation (1  1) in (25b) and (2%).  Also, 
at high electron temperatures when the degenelacy is 
lifted,  one can replace  the  Fermi functions by the corre- 
sponding Boltzmann factors and (24) reduces to 

Fig.  4 shows the effective energy relaxation time T~ de- 
fined  by ‘. 

and calculated from (24) as  a function of the electron tem- 
perature at a fixed lattice temperature T = 300 K. Three 
curves shown correspond to the electron concentrations n 
= IO”, 5 lo”, and 10” cm-2. The relaxation time de- 
creases with increasing concentration for  the following 
reason: 

Higher concentrations correspond to stronger trans- 
verse electric fields and hence entail higher values of the 
parameter (x describing the compression of the 2DEG 
wave function (16). As evident from (21), this leads  to  an 
increase in  the magnitude of the form factor I 11. Physi- 
cally,  the more compressed the  wave function is the 
shorter  is the wavelength of phonons which can efficiently 
interact with the  2DEG. At sufficiently high concentra- 
tions,  however, T~ ceases  to  decrease with increasing n- 
because all phonons with ttq 5 (2~2kT,)”~ (i.e., those 
which can interact with electrons conserving both energy 
and momentum) are already fully involved in the  inter- 
action. At lower T, this  saturation of the ~ ~ ( n )  dependence 
occurs earlier, e.g., for T, - 300 K this dependence is 
practically saturated already at n 5 10” cm-2. (In this 
discussion we have ignored the Fermi  degeneracy, which 
is permissible to do  since in most cases we have n i D. 
In the opposite limit (n >> 0) the situation is more com- 
plicated, since  for kT, > AwO only those electrons whose 
energies lie within a band of order kT, from the Fermi 
surface can both absorb and emit phonons. Electrons be- 
low this band do not participate in  the scattering pro- 
cesses .) 

Our numerical calculations were carried out on the ba- 
sis of (24), which is applicable for arbitrary degrees of 
degeneracy. In order  to  facilitate  the  comparison,  the  loss 
rate per electron 

1 
w3=-- n at 

(exp [h (i - L)] - 1 ) [ e ‘ n / ~ ~  - 11 due to the interaction with optical phonons, is presented 

M1 + n 3  (26) to the energy flux carried away by hot electrons emitted 

k T T, in Fig.  5 along with the rates wI and w2. The figure clearly 
shows that for n = 10” cm-* and T, 2 500 K the dom- 
inant contribution in the  energy balance equation is due 
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Fig. 4. Energy relaxation time T~ (due to the interaction with polar optical 
phonons) defined by (27) and calculated as  a function of the electron 
temperature T, for different channel concentrations n. 
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Fig. 5. Summary of the energy loss rates  per one channel electron  for dif- 
ferent processes discussed in this work. Solid lines correspond to n = 
lo'* em-' and dashed lines to n = 10" cm-'. 

over the barrier  into  the  collector. At higher concentra- 
tions this contribution becomes dominant even at lower 
T e  . 

It should be noted that in the  absence of real-space 
transfer (say, if the  barrier had "infinite" height, so that 
both w 1  and w2 terms would vanish) the optical-phonon 
term wj alone can compensate  the input power Z * F only 
for fields F 5 4  kV/cm. At higher fields our approxima- 
tion in this situation would lead  to a runaway breakdown 
process.  Clearly,  the reason for such a behavior is asso- 
ciated with the  fact  that we had neglected the  transfer into 
heavy-mass valleys, which would reduce the  rate at which 
the Z F term increases with the field. We believe, how- 
ever, that in a GaAs/A1,Gal-,As CHINT/NERFET 
structure under  consideration  the neglect of momentum- 
space  transfer  processes may be justified  for  the following 
reason.  In  this  structure,  for x = 0.4,  the barrier height 
CP is approximately equal to the intervalley I?-L energy 
separation. The transferred L electrons  see virtually no 

barrier for real-space transfer and their collection effi- 
ciency is near unity (the situation with those electrons is 
quite analogous to that with minority carriers  in  a bipolar 
transistor). The energy carried away by an L electron is 
of the same  order as that  for I' electrons.  Therefore,  this 
process (transfer into a  satellite valley with subsequent 
diffusion across the barrier) is just another real-space 
transfer channel,  and  its contribution to the b; lance equa- 
tion is of the  same  form  as w2. Taking account of satellite 
valleys would, therefore, lead to a slight increase of the 
w2 rate compared to  that calculated above. 

C. Summary of the Model 

Within the assumed approximation of a uniform elec- 
tric-field F along the  channel,  the energy balance equation 
is of the form 

where Z = Z(x) is  the channel current per unit width of the 
channel 

I ( X )  = e m d .  (29) 

The drift velocity of electrons in  the channel is assumed 
in the form 

where p is the mobility and usat the saturation velocity of 
channel electrons. Inasmuch as  all terms in (28) depend 
only on the  local  concentration^ n(x) and the electron tem- 
perature Te(x), the  latter can be expressed as an implicit 
function of n. Therefore  the density of the collector cur- 
rent J also can be regarded as  a function of the concentra- 
tion. 

The current continuity equation is of the form 

Combined with (29), this gives a differential equation for 
the variation of the channel concentration 

dn J(n) 
dx eUd  
_ -  - -- 

Integration of (32) determines n(x) 

(33) 

For any value of the concentration near the source (x = 
0), given by (l), the channel concentration at the drain 
n(L) is determined by the equation 

(34) 
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Fig. 6 .  Variation of the channel  concentration n(x) for different drain (VSDl 
and collector (V,) voltages.  Note  that at a given heating voltage V,, tht: 
concentration decay along the channel is faster for higher V, .  

where L is the channel length.  Thus,  the drain current i;; 
given by 

ID = e%n(L) (35 1 

and the collector current by 

IC  = eud[n(O) - n(L)]. (36)  

The above procedure can, of course,  be implemented 
only numerically. To determine the dependence T,(n), w': 
solve (28) for T, at a fixed n. Thus determined e1ectro:i 
temperature is used to calculate J(n) and the  latter is sub- 
stituted in the integrand of (33). Integration is then peI- 
formed with ever decreasing lower limit-until the  inte- 
gral becomes equal to L/eud. At this point, (34) is 
satisfied, thus determining the concentration n(L). 

111. RESULTS 

Physical parameters assumed in  our calculation are prc .- 
sented in Table I. 

Fig. 6 shows the variation of electron concentration 
along the channel at two exemplary bias configuration,: . 
At high collector voltages (V, z 4 V) the concentration 
near drain becomes so low ( 5  10" ern-') that  one would 
have to consider diffusion processes in the channel alnd 
our uniform-field approximation would certainly break 
down.  Moreover, at low concentrations our basic as- 
sumption of an  electron temperature parameter T, describ- 
ing the entire hot-electron distribution function is que:;- 
tionable because  the electron-electron scattering becomes 

TABLE I 

T = 300K ~ lattice  temperature 

L = 2 -  lO-'cm - channel  length 
d = 2.10-5cm - barrier  thickness 

co = 12.85 - static  permittivity of GaAs 
W = 10-Zcm - channel  width 

tm = 10.9 ~ high-lrequency  permittivity 01 G& 
9 = 0.3eV- barrier  height 
frw, = 35.2meV - optical  phonon  energy 
rn = 0.067 mu - electron  effective mass 
usat = 2 .  107em!s - saturation velocity 
E, = 5.95 kV/em - optical-phonon  coupling constant 
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Fig. 7. Current-voltage characteristics of a model  CHINT/NERFET  de- 
vice with parameters assumed as in Table I, calculated (a) without and 
(b) with inclusion of the tunneling component of the injection current. 

weak. Accordingly, we have  left this range out of consid- 
eration. Also, in order not to run into  a channel pinchoff 
effect, which would ruin our uniform-field assumption, 
we have continued the calculations only until VsD 5 V,  
- 0.2 v. 

It is evident from Fig. 6 that higher V, brings about a 
more rapid decay of the concentration along the channel 
at a given heating voltage VsD. This effect is due to the 
enhancement of the charge-injection current J by the bar- 
rier lowering. It should be  noted,  however, that our the- 
ory does not describe  the effect evident in Fig. l(a)-the 
decrease of I ,  with higher V ,  at a sufficiently high fixed 
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Fig. 8. Calculated  transconductance  and  power  gain  in  a  model  CHINT 
structure  (parameters,  as in Table I) at  different  bias  configurations.  The 
dashed  line  indicates  the  onset of NDR in the  source-drain  circuit  (ap- 
proximately  taken  to  be  independent of Vc). 

VsD. In the plot of Fig. 6 this effect would manifest itself 
by an intersection of curves corresponding to  the  same 
VsD but different Vc. 

The calculated current-voltage  characteristics of a 
CHINT/NERFET  device with assumed parameters (Ta- 
ble I) are displayed in Fig. 7. Characteristics  calculated 
with and without the  inclusion of tunneling are shown in 
Fig.  7(b) and 7(a), respectiv'ely. It  is evident that tunnel- 
ing improves significantly the efficiency of CHINT oper- 
ation,  since  the output current (I,) becomes a steeper 
function of the input heating  voltage VsD. In  other  words, 
tunneling improves the transconductance of CHINT. 

Fig. 8 shows  the transconductance g, E (c3Zc/c3VsD)~vc 
and the power gain in  CHINT, calculated for different bias 
configurations. As expected, g, increases with the  collec- 
tor voltage V,. As a function of VsD, the transconductance 
peaks near the onset of the NDR in  the drain circuit. At 
higher  voltages g, decreases-due to  the  saturation of the 
collector  current.  Peak values of the transconductance and 
the  qualitative functional dependences gm(VsD, Vc) are in 
agreement with the experimental data [6]. We remark, 
however,  that  the  experimental  curves g,(VsD) exhibit a 
sharper rise than that seen  in  the calculated dependences. 
The calculated power  gain  in  our model CHINT structure 
is shown  in  the bottom of Fig. 8. Note  that  as a function 
of VsD the gain -+ 00 when the  device  is biased into  the 
NDR region. Physically,  in  this region the  system goes 
over  from the small-signal amplification regime  into  the 
regime of spontaneous oscillations.  The calculated behav- 

ior of the power gain in  the vicinity of the NDR threshold 
(the  latter  is shown in Fig. 8 by a dashed line) fits very 
well the experimental observation [6]. 

The calculated characteristics also describe a strong 
NDR in the drain circuit of the  device, i.e., the operation 
of a NERFET.  Our theory predicts a current drop by a 
factor 30 in  the  bias  range  considered, which compares 
well with the typical experimental data at room tempera- 
ture  (Fig. l(b)). Note  that  in  the NDR region of the 
NERFET  the  CHINT  collector current saturates, and 
therefore the operation range of CHINT occurs prior to 
the onset of the  NDR,  as discussed above.  Fig. 7(b) also 
shows that even near the  peak of ID the  collector current 
dominates (Ic >> ID)-which implies a high current  gain. 
These theoretical results are in good agreement with the 
experimental observations. Comparison of the curves in 
Figs. 7 and l(b) shows  that inclusion of the tunneling 
component of the injection current significantly improves 
the agreement between the theory and experiment. 

IV. CONCLUSIONS 

Comparing our results with the objectives set  out  in  the 
Introduction,  we can say that some of the  major features 
we sought to explain are adequately described by the the- 
ory. Our calculations correctly predict  the  existence of a 
strong NDR in  the  drain circuit accompanied by a rapid 
increase and subsequent saturation of the  collector cur- 
rent.  Moreover, the theory describes the experimental fact 
that at high enough heating voltages VsD the collector cur- 
rent substantially exceeds the drain current (inclusion of 
the tunneling component of the  injection current turned 
out to be crucial in establishing this fact, which is very 
important for obtaining a high current gain.in  the  opera- 
tion of CHINT). 

However two important experimental features were not 
captured by our model. Firstly,  the theory does not de- 
scribe  the observed saturation of the  drain current from 
below-after the NDR region. Secondly, although the 
theory correctly shows the  increase  in the peak drain cur- 
rent with higher  collector voltage Vc (which is simply a 
back-gate field effect), it does not  describe  the  salient (and 
quite puzzling) experimental feature of the negative trans- 
conductance effect in  the saturation region. This effect 
(drop in  the saturated ID with increasing V,) is clearly 
evident in  Fig. I@). We believe that  the  major deficiency 
of the present theory consists in  the assumption of a uni- 
form field in the channel and the neglect of the diffusion 
component of the channel current. 

The actual profile of the  electric field in  the channel is 
nonuniform and qualitatively this can be expected to af- 
fect  the picture as follows. At low heating voltages VsD, 
when IC 5 ID, the situation is close to that in an ordinary 
FET-the collector playing the  role of a gate.  In  this case 
the field is highest near  the drain and  is approximately 
proportional to  the gradient of the channel concentration 
dn/& (since,  in a long-channel approximation, en(x) = 
C[V, - &)I. However, as VsD rises accompanied by the 
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hot-electron emission,  the  electric field in the  chanrel 
must redistribute so as to support the  larger channel CUT- 
rent Z(0) near the source-since the  latter  is given exactly 
by the sum of the  drain and collector currents. (Ob- 
viously,  the channel current must vary from Z(0) = IC + 
ID to Z(L) = ZD.) The required redistribution of the field 
toward the source will lead to  a still sharper rise in Zc and 
a further drop of 1,. This  “run-away’’ process is stabi- 
lized when the concentration in the channel region ad. a- 
cent to the drain becomes so low that most of the  further 
increase in VsD will drop in that depleted region. At this 
point the field distribution will again resemble that  ir.  a 
field-effect transistor. 

Another process not included in the present theory is 
the dynamical screening effect, arising due  to  the accu- 
mulation of carriers  drifting downhill in the collector h r -  
rier [3]. This effect becomes important when the  collec :or 
current exceeds the  drain  current, i.e., when the  areal 
density of the injected mobile carriers becomes camp- 
rable to that of channel electrons. We believe that inc 111- 
sion of this effect may account  for  the experimentally ob- 
served negative transconductance. 

APPENDIX 

REAL SPACE TRANSFER 
’ ENERGY BALANCE EQUATION IN THE PRESENCE OIF 

Our derivation of the balance equation is based on .:he 
assumption that  the energy flux Qx along the chanlel 
equals the mean electron energy at  a given point x nnul- 
tiplied by the  electron particle flux Z(x)/e. This assump- 
tion is valid to within a constant factor of order unity, 
which depends on the form of the energy distributon 
function,  as well as on  the energy dependence of the  elzc- 
tron momentum relaxation time 7,. Indeed,  the  linear  cur- 
rent density Z in the channe1,is given by 

where in the two-dimensional case 

andfO(Ek) is the isotropic part of the distribution functim. 
Similarly, the energy flux along the channel can be writ- 
ten in the form 

I- 

Throughout this work,  the functionf, is taken in  the e..ec- 
tron-temperature approximation, f o  a exp (-Ek/kT,). As- 
suming that 7,(Ek) = rO(Ek/kTe)-”  and comparing (4~2) 
with (A3), we  find 

Q, = -kT, - e70 r ( 3  - U) F, 
m 

( E )  = kT‘. 044) 

Thus we  have 

On the  other  hand,  for  a  degenerate distribution ( E )  = 
EF/2, and from (A2) and (A3) one obtains 

In this work the difference between (A5) and (A6) was 
neglected by setting the numerical coefficient in (A5) 
equal to unity. 

The energy conservation law can be written in the form 

aQ aQx 

at ax 
- = -n(w2 .+ w3) - - + Z F = 0. (A71 

Substituting (A6) into  (A7), using (31), and neglecting 
the Thomson heat transport, i.e., taking 

a l n ( E )   a l n z  << - 
ax ax 

we obtain the  balance equation in the form (28) with wl 
given by (9). It should be mentioned that, as seen from 
Fig. 5 ,  the actual magnitude of the term w 1  is  small, w1 
<< w2 in the range of T, of interest, so that its introduc- 
tion is more important for  logical consistency than for  ac- 
curacy of the  calculations. 

REFERENCES 

[I] K. Hess, H. MorkoG, H.  Shichijo, and B. G. Streetman, “Negative 
differential resistance through real space electron  transfer,” Appl. 
Phys.  Lett., vol.  35,  pp. 469-471, 1979. 

[2] A. Kastalsky and S.  Luryi,  “Novel real-space hot-electron transfer 
devices,” IEEE Electron  Device  Lett., vol.  EDL-4,  pp. 334-336, 
1983. 

[3]  S. Luryi and A. Kastalsky, “Hot electron injection devices,” Super- 
latt. Microstructures, vol. 1, pp.  389-400,  1985. 

[4] -, “Hot-electron transport in heterostmcture  devices,” Physica, 

[SI A. Kastalsky, R. Bhat, W. K. Chan, and M. Koza, “Negative resis- 
tance field-effect transistor,” Solid-state  EZectron., to be published. 

[6] A. Kastalsky, J. H. Abeles, R. Bhat, W. K. Chan, and M.  Koza, 
“High-frequency amplification and generation in charge injection de- 
vices,” Appl. Phys.  Lett., vol.  48,  pp. 71-73, 1986. 

[7] T. Ando, A. B. Fowler, and F. Stern,  “Electronic properties of two- 
dimensional systems,’’ Rev.  Mod.  Phys., vol.  54, pp. 437-672, 1982. 

[8] F. Stern and S. Das Sarma,  “Electron energy levels in GaAs- 
A1,Gal -,As heterojunctions,” Phys. Rev. B ,  vol. 30,  pp. 840-848, 
1984. 

[9] A. A. Grinberg, “New variational solution for  the lowest level of the 
two-dimensional electron gas,” Phys. Rev. B ,  vol.  32, pp. 4028- 
4033, 1985. 

[lo] F. Stem and W. E.  Howard,  “Properties of semiconductor surface 

pp. 816-835,1967. 
inversion layers in the electric quantum limit,” Phys. Rev., vol. 163, 

VOI. 134B, pp.  453-465, 1985. 



GRINBERG et al.: HOT-ELECTRON INJECTION IN CHINTINERFET DEVICES 419 

[ I l l  A.  A.  Grinberg,  “Thermionic  emission  in  heterosystems  with  differ- 
ent  effective  electronic  masses,” Phys. Rev. 5,  1986, to be  published. 

[12] A.  A. Grinberg, M. S. Shur,  R. J. Fisher,  and  H.  Morkoq,  “An  in- 
vestigation of the  effect  of  graded  layers and tunneling  on  the  perfor- 
mance  of  AlGaAs/GaAs  heternjunction  bipolar  transistors,” IEEE 
Trans. Electron  Devices,  vol.  ED-31, pp. 1758-1765,  1984. 

[13] R.  Stratton,  “Theory  of  field  emission  from  semiconductors,” Phys. 
Rev.,  vol.  125,  pp,  67-82,  1961. 

[14]  F. F. Fang  and W. E. Howard,  “Negative field-effect mobility  on 
(100) Si  surfaces,” Phys. Rev. Lett.,  vol.  16,  p.  797,  1966. 

[15] K. Hess,  “Impurity  and  phonon  scattering in layered  structures,” 
Appl. Phys. Let?., vol.  35,  p.  484,  1979. 

[16] B. Vinter,  “Phonon-limited  mobility  in  GaAlAslGaAs  heterostruc- 
tures,” Appl. Phys. Lett.,  vol. 45, p.  581,  1984. 

[17] P. J. Price,  “Polar  optical-mode  scattering  for  an  ideal  quantum-well 
heterostructure,” Phys. Rev. 5, vol.  30, ,pp. 2234-2235,  1984. 

1181 -, “Two-dimensional  electron  transport in semiconductor layers- 
I. Phonon  scattering,” Ann.  Phys. (NY) vol.  133,  p.  217,  1981. 

* 

Anatoly A. Grinberg received  the Ph.D. degree 
in  1961  from  the  Lebedev  Institute of Physics, 
Moscow,  U.S.S.R.,  in  1961  and  the  Dr.Sci.  de- 
gree  in  1969  from  the A. F.  Ioffe  Institute of Phys- 
ics  and  Technology,  Leningrad,  U.S.S.R. 

From  1958 to 1980,  he  worked at  the Ioffe  In- 
stitute  as  a  Senior Staff Scientist. In 1980  he  came 
to the  United  States and joined  the  Department  of 
Physics  of New York  University.  Beginning in 
1982,  he  has  been associated  with  the  Department 
of Electrical  Engineering  of  the  University of 

Minnesota,  and  since  1985  also  with  Bell  Laboratories.  His  research  has 
included  transport  properties  as  well as linear  and  nonlinear  optics  of  semi- 
conductors,  properties  of  the  two-dimensional  electron  gas, and high-speed 
devices.  His  work  has  appeared  in over 80 publications  in  physics  and 
engineering  journals. 

Alexander Kastalsky received  an  undergraduate 
degree  from  the  Polytechnical  Institute,  Lenin- 
grad,  U.S.S.R.,  in  1962 and the  Ph.D.  degree 
from  the  Ioffe  Physics-Technical  Institute,  Len- 
ingrad,  in  1969. 

From  1963  until  1980,  he  worked  at the loffe 
Physics-Technical  Institute  where  his field of in- 
terest  covered  the  electrical and optical  properties 
of semiconductors.  Since  1981,  he  has  been  a 
member  of  the  technical staff at Bell Laboratories, 
and since  1985  at Bell Communications  Research, 

Inc.,  Murray  Hill, NJ. His work is devoted  to  the  electron  properties of 
two-dimensional  systems and the  physics  of  high-speed  semiconductor  de- 
vices. 

* 

Serge Luryi (M’Sl-SM’85)  received  an  under- 
graduate  degree  in  physics  in  1971  from  the  Len- 
ingrad  State  University,  U.S.S.R.  In  1973, he 
emigrated  to.Canada,  where  he  received the M.Sc. 
and  Ph.D.  degrees  in  theoretical  physics  from  the 
University of Toronto, in 1975  and  1978,  respec- 
tively.  His  graduate  and  postdoctoral  research was 
devoted to intermolecular  interactions and lattice 
vibrations  in  solid H,. 

Since  1980, he  has  been a member of the  tech- 
nical staff at  AT&T Bell Laboratories, Murray 

Hill, NJ, where he is currently  a  group  supervisor in the  Advanced  VLSI 
Development  Laboratory.  He  has  published  on  topics  ranging  from  prop- 
erties of polysilicon  gates to  the theory  of  the  quantized  Hall  effect,  alto- 
gether  over 50  papers. His  main  research  interests  are in the  physics of 
exploratory  semiconductor  devices. He has  filea  10  patents  on  novel  high- 
speed  and  optoelectronic  devices as well as new methods of epitaxial  crys- 
tal growth. 

Dr.  Luryi is a  member of the  American  Physical  Society. 


