Notes on coherent states of 2DEG -1 - S. Luryi, 1983

Introduction

We shall introduce a complete set of localized states for a 2D electron gas. These states would
be stationary in a normal magnetic field of appropriate intensity.

Electron’s dynamical variables are two components of the 2D coordinate r and two
components of the momentum p = —ih0:

X, Px ,where [Xx,pJ=ih (1.1)
y. Py, where [y,p,]=ih (1.2)

Form the canonical momentum operators, corresponding to a magnetic field B:
fi=p- 2 (L3)

where A = A(x, y) is a vector potential:

OxA =B , (vector B is along the z axis) (1.4)
Next, introduce the Larmor coordinates (center of the classical cyclotron orbit):
~ N |2 "
Ex =X + v (1.5)
~ " |2 n
Ey =y - Y T (1.6)
Definitions:
he h °
=~ = __, [1=8L13A 1.7
eB mw '’ 81.13 (€.7)
w= B = 2625x10% rad/sec .9 - 4178x102 Hz (1.8)
mc 21
hw = 2.768x10 ¥ erg = 17.28 meV (1.9)
1 _ eB B

=2418x10" cm™ =

_hc _ -7 2
57 " e rouk P, = b 4.136 %107 " Gauss.cm (1.10)

The above characteristic numbers assume B = 10T = 10° Gauss and m = 0.067m, (GaAs).

Commutation relations:

[, ] = ik?/1? = ihwm (1.12)
&, &1 =-il2 (1.12)
[, &=, &1 =[m . &l=[1,&] =0 (1.13)

Note:

We could obtain the same commutation relations defining

T[X=p>(+

‘<> >

(1.14)

~r

= b, - 2 A, (1.15)

o]l o|®

and choosing A as a longitudinal field 0-A =B, OxA =0. Expressions of & and &, in terms of ﬁ; and ﬁy are the
same as those above in terms of T, and Ty. Of course, (T, T,) is no longer a canonical momentum. It is not even a

vector [but neither is (gx &)1
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Creation and destruction operators.

Define:
~_ 1 m ,.: 0 = | O+t A0
a_WDEy-'-IEXD Ey_—ZDa +a[|
(2.1a)
4_ 1 s 0 il et
a _W DEy IEXD EX—W |:|a a|:|
~ | [ ~ ~ _ h Ot .00
S R TS R v s
2.1b)
ot I O ~ 0 - ih Ot -0
= -1 = b' —b
s 0% 'Tyo N1/ O O
Commutation relations:
G,a1=1=10b,bM] 2.2)
3,b]=[@,b7=@", b1=@" b =0
Number operators:
éTa:Z_}T B&i +£§B— % =m (eigenvalues 0, 1,2, ") (2.3a)
~ 2
T ZEIHT Eﬁi+ﬁ§g— % =n (eigenvalues 0, 1,2, ) (2.3b)

Because the a’s and the b’s commute, we can specify states by the eigenvalues of the hermitean
operators n and m. In this way, we find a complete orthonormal set of states Cnm>.
Degeneracy of each level n with respect to the quantum number m is 1/(2rd?). Conversely,
degeneracy of each level m with respect to the quantum number n is 12/(21h?).

~ . . . . ~2
The Landau level number operator n describes quantization of the Larmor radius py :
|4

b = (V2 + V)P = o =22 (4. 2.4)

~ . . . . ~2
On the other hand, m describes quantization of the Larmor orbit center pg :
A2 2 2 A~
Po =& +& =217 (M +%). (2.5)
The number operators n and m can be used to represent the angular momentum operator,

~ o e . A
L, =[rxpl, = [rxm, + —[rxAl (2.6)

In the symmetric gauge A = %B xr this reduces to the following explicit expression:

212
h

0 L, =h(h - n). (2.8)

~ A2 ~A2
L, =po — PL 2.7)
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Coherent states

Define normalized eigenstates of the destruction operators (arbitrary complex v and p):

0 m
anp>=pOnu> 0O Onp>=e %0 _ Onm> 3.1a
H>=pOnp H mz:oﬁ! (3.1a)

~ oY n
bOvm>=v Ovm> O vm>=e#¥Fs YV mims> (3.1b)

n=o0 Vn!

States [n u> are complete in the nth subspace (n-th Landau level) of the Hilbert space H that
we shall denote by M, OH. Similarly, states [vm > are complete in the mth subspace N ,, OH .
In fact, these sets of states are vastly overcomplete (see p. 11).

In a given M, states On u> (ditto states Ovm > in a given N ) are the usual coherent states
discussed by Glauber. All individual spaces M, and N, are isomorphic because of the
identical algebraic properties of a’s and b’s (this establishes the correspondence M — - N) and
because all subspaces M,, of different index n (ditto N ,, of different index m) are related:

~ nTyn
VA Onp>=b' On-Hp> O Onp>= (5’_)_' oop> (3.2a)
n!
_ -t @hr
vm Ovm>=a' lv(m-1)> [ Ovm> = __ [v0> (3.2b)
vm1

Thus, so long as we are staying within any of the isomorphic subspaces, we may not need to
specify the index that does not vary and use the same symbols to denote coherent states in
either M, or N ,. In other words, Ca > may stand for either Ona>or Oam >.

Scalar product:

10 2 20 10 20,
-= fUoF + OB A+ ap* -= SUa-BCF 5+ ilm(af*)

O O O m]
<pOa>=e ?2 =e ? (3.3)

10 2 2 2 2 O

-— vy 07 + Ovp O0F + Oy O0F + Oy, O 0 n]
Oo-vi 2 1 O +

Vol Ovypy>=e ? ghite 34)

The phase Im (ap*) of the scalar product has a simple geometric meaning: its magnitude equals
the area of the parallelogram spanned by vectors a and (3. The sign of the phase is that of the
sine of the angle between a and 3 counted from a in the clockwise direction. If the area of the
parallelogram is a multiple of 1t then the overlap < Ua > is real. Thus, all scalar products on a
Neumann lattice (see p. 5) are real.

Averages. The following relations hold in every subspace M, :
<PDE, Ou> = <p 0K Ou> = 1v2 Im (W) (3.5x)
<p0E, Ou> = <p 0§ Ou> = 1 V2 Re () (3.5y)

The fact that X and éx have the same expectation value follows from the fact that <Tt> =0
within the same M, . Moreover, <n; p; COftn,p, > =0 for n; and n, of the same parity (and
arbitrary p; and L, ).

Dispersions: Coherent states minimize the uncertainty product, A&, -a&, =7 12,
<POES DT> = 22[Im )P + %1% = <uE Ou>? + %12 (3.6x)
<pDE, Ou> = 212[Re ()2 + %12 = <pé, Ous>? + %12 (3.6y)

= = <& -<g>>" =, (3.6xy)

AEX = <(éx - <éx>)z>1/2 =
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Displacement:;
We shall distinguish the displacement operators acting in the subspaces M and N:
Dy () 00>= 00p> [ Dy () = ek w3 (41M)
Dy(v) 00>=0v0> [J Dy(v)=e’ ~v? (4.1N)
The "vacuum" ket 00> = 000> is uniquely defined by b 00>=0 and a 00>=0. Such a ket
exists; in the coordinate representation it is given by the wave function (7.6), see p. 7.
Since ISM commutes with b and [SN with éT, the form of these operators does not depend on
the index (n or m) of the particular subspace M, or N ,. Moreover, we have

m n

~ ~ 00
Dy(v) Dy (W) 00> = Ovp> = e #(mEFrovd) 5 H_ Y

2 VT R Onm > (4.2)

Operators D are unitary:
D ') =D"(@ = D(-a) (4.3)

A great convenience is provided by the Hausdorff identity which allows to bring I5 into a
normally ordered form:

6 (@) = paal—a*a — g-%0alF gaa' g-o*a (4.4)

The fact that D effects displacements in the complex plane follows from the commutation
relation [a,4'] =1 and the operator identity

exp(P) Q exp(-P)=Q + [P, Q1 + > [P, [P, QI+ - -~ , @5)

valid for any pair of operators. In our case the series terminates after the second term:
D '®aD(E) =a+p D '@a D@ =4 +pr (4.6)
0 A D@ Da>p= (a-p) D @) Da> @4.7)

Equation (4.7) impljes that D _1([3) Oa > can be interpreted as ket O(a —f)>. However, the use
of displacements D (0.1 —0j) to arrive at the same ket via different routes in the complex
plane, a; - a, - -+ - a, will produce, generally, a different phase of the wave function
representing ket Co>. The reason for this is that the D operators in general do not commute.
Their multiplication law is of the form:

D (a) D () = &™) D (a+p) 0 D(a) OB> = &™) g +p> (4.8)

The "standard" phase of the coherent states [Egs. (3.1)] is obtained by displacing the vacuum
ket, as in Egs. (4.1).

The unitary displacement operators D form a group, called the Weyl group. Note that these
operators commute if and only if the parallelogram spanned by vectors a and (3 is a multiple
of Tt Any Neumann lattice (p. 5) generates an Abelian subgroup of the Weyl group.

The following relationships are valid for either £ = &, or & = éy and either TT=Tt, or =Ty
Dy () &Dy(W) =&+<pOE0p>, Dy (V) ADy(v) =f+<vORV>  (410)
Also, since D,, commutes with 7, and T, , we have
D’ (W) F Dy (W) = F + <pOF Op> (4.11)
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Neumann lattice

The Neumann lattice (NL) is a periodic array of coherent states in the complex plane
(corresponding to any particular M,, or N ;) with the unit cell area equal = For the M, case,
in the coordinates X, y (where x=1v2 Ima and y = I1v2 Rea) the NL is a 2D crystal of arbitrary
symmetry with the unit cell area equal 2r?. This peculiar density corresponds to one state per
single flux quantum area. For the conventional coherent state, built out of x and p operators,
the density of states in the NL corresponds to 1 state per Planck cell, i.e. the unit cell area in
the phase space equals 2mth. The states of a Neumann lattice form a complete set (see p. 11), as
was first stated by von Neumann and proven by Perelomov [Theor. Math. Phys. 6, 156 (1971)].
Examples:

Square lattice

Opp =VIT(m+in), m,n=0,+1, 2, - (5.1)

Consider the scalar product <0y, ,; Ody,n, >. A little algebra first:
O0myng =Amyny, 02 = TI(M? + N?) (5.2)
G%nl Omyn, = T[(MiMy+n4Nny) +i(Mny; —myng)] (5.3)

where M=m;-m, and N=n;-n,. Whence we have

_ T Oy, 20
TI]M +N

<Gm1n1 de2n2> — (_)mmz—mzm e O (54)
Hexagonal lattice
dnp=ma +nw?, m,n=0,*1,+2, - (5.5)
where
0 Dl/Z O EP/Z _
W®=02"0  and o@ =020 eine (5.6)
Ov3 O Ov3 O

The unit cell area equals Cw®™ O Ow® O sin (1/3) = 1. Proceeding as above, we find:

O0myng =Aman, 02 = (21/V3) (M? + N2 + MN) (5.7)
|m(GH1n1Gm2n2) :T[(mlnz_mznl) (5-8)
- Bvzenz+mng
<Umyng OUpyn, > = (™2 MM e B0 : (5.9)
General lattice
dnp=ma® +nw?, m,n=0,=*1,+2, - (5.10)

where w® and w? are arbitrary complex numbers, satisfying Im[@®50®@ ] = S i cent = T
00y, s — O [ = M2 Ow® [ + N2 0@ [ + 2MN Re Efn“)%(z)m (5.11)
ming mony O '

|m(0%1n1 amgnz) = Sunitcell (m1n2_m2n1) (5-12)

_ m;n, —myn
<Omqng |]amzn2> =) o Damlnl_amznz U (5.13)
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Coordinate representation:

First let us establish a convenient one-one correspondence between the xy plane and the
complex plane z and put down an explicit expression for the operators of interest.

X +i
T =(X,y) 2= (6.1)
5 0 I (0x +10))
= —_— 2
0y, dy) 5 7 (6.2)
O, O | _i
o- _ @ o _ 1« —idy)
S7h o 2 ©3
o A +iA,
S alial s —vEE 64
~_B, iz
A—T(y,X) A= (6.5)
With these definitions we have
oA _ 1 [ % = w0
= = 35 O0A +iDxAg (6.6)
In the Coulombic gauge (CI-A = 0) we have dA/dz = i/2 whence
O A= ; + Ay (6.7)

where Af =[A,(z)]" is an arbitrary analytic function of z*. This function expresses the
remaining gauge freedom in the Coulombic gauge. The symmetric gauge, A =% [B xT]
corresponds to Ay =0.

2 9

p=-ih0 Px +ipy = T 3 (6.8)

o . 2 o
ﬁ _ﬁ px_lpy__Ta—Z (6-9)

" I(m +im) . 9
e

= -_A - T =—=j—-A A

Ti=p . 75 i 5 (6.10)
Gauge-independent expressions for the a and 6 operators are as follows:
a=zizc-b' b=-il —A (6.11)
0z*
at=-iz-b b =—id _ Al (6.12)

0z
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Coordinate representation, continued:

In the symmetric gauge, A =iz/2, we have

~ iz .0 ~ iz . 0
= + | — == = —
a 2 Iaz b 2 Iaz*
(7.1)
Atz Ia BT_IZ*_IG
2 0r* 2 0z
At~ Z2ZF 0 0 1 z¢ 0 z 0
= - - R + 7.2
a I e 2 2o T (7.23)
Ste_zz 0 0 _ 1 _z o0 _zv 0
B i R N 2 (7.20)
1 _ "T"_ATA — a " a
FLz—(aa bb)—zE z Y (7.3)

The vacuum state. Some Europeans might say that ket (000> represents the "loo state". Its
coordinate representation <r[J00> = ), (r) is found from the system of two equations:

0 5 O
<zDOa 000> = D_+ |_DL|J00(Z) =0 (7.4a)
o2 0z
. oo (2) =7 #2% [
<z0Ob 000> = o ;—' 0 Dq;oo(z) =0 (7.4b)
0

Normalizing Y, under the scalar product, defined by
<102> = [ Y2 W, (1) d?r = 212[ [ Y7 g, d(Rez) d(Im2z) (7.5)
and using [ exp (-x? +y2)dxdy =11, we obtain
U O 1 g X2+y2D

ex D— = — exp - 0 7.6
P 2 0 W2n pD TR (7:6)

Yoo = I\/__
Note the factor of 4 in the exponent (rather than 2 as it would be for the ground state of a 2D
harmonic oscillator). This means that the uncertainty in x and y is V2 times larger than the
cyclotron length I. States <x,y Ou> are the most localized states possible in the degenerate
ground Landau level in a magnetic field B. The extra factor of 2 in the exponent of (7.6) can
be interpreted as resulting from the zero-point motion in the Larmor radius (the b’s) added to
the zero-point motion of the Larmor orbit center (the a’s).

Acting on (7.6) with an appropriate combmatlon of displacement operators, we find

representations of such kets as Ovp>. Since al Wog = —1ZYge and b Yy = iz2* YPyq, We have
Wou (2) = D (W) Woo = 77017 ek gpg = (2m1?) 112 @7 IUIF g/l gmibz (7.7)
Wyo (2) = 6N (V) Woo = g~ IVIF gubT Woo = (2n|2)—1/2 e VI =% 02 [F give: (7.8)

LIJV},I(Z) - 6N (V)'SM (“) LIJOO - (2T[|2)—1/2 e—Vz(D\}D2+ Ou?) - pv e—VzDZDZeiVZ*—ipZ (79)
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Coordinate representation, continued:

Bargmann-like representation.

Operations such as those in Egs. (7.7-9) can be made somewhat easier by redefining the
operators so as to absorb into the definition the result of their action on exp (-% Oz [?):

Oe P § = g~% 2l 6f f 8.1)
In this way, we can represent an arbitrary operator 0 by the operator
6f — ol § g% O2lF (8.2)
0,0 * 0,50
For example: DiD -0 DLD 0 _z (8.3)
0oz 0 oz 2 9z* 0 oz* 2

Accordingly, an arbitrary ket [ > is represented by the function
fz) =v2ml e 2% <z 0> (8.4)

Thus, fgo =1. This is similar, but not equivalent, to the well-known Bargmann representation.
The latter is usually defined for the Hilbert space isomorphic to either M or N and the
function f is analytic in either z or z*. The present case is different because in general the
function f (z) representing a state in H =N xM is neither analytic nor can it be factored into
a product of analytic functions of z* and z, respectively.

Explicit expressions for selected operators in the Bargmann space are:

A~ .0 N
af = IE bf = IF (853)
At . .0 o .0
= - + | — = * .
as iz +i 5 by =iz* —i o (8.5b)
. R T (YO
DMf(H) - e—VszD -iHZ g 0z 0z (8.6 M)
~ 2 L. iv*_a_*—ivi
DNf(V) - e—VzDvD +ivz e 0z 0z (8.6 N)

Acting on any_function of z and z*, operator I5Mf(p) displaces z -~ z —ip* and z* - z* +ip.
Operation of Dy (v) displaces z - z —iv and z* - z* +iv*.

Let us illustrate the newly acquired ease of operation by deriving Eq. (7.9):
fou(2) = Dy (W) fog = e 1Kz (87M)
fuo(2) = Dy (V) fop = e7#VF v (87N)

fvu(z) - ISNf(V) fOp e—Vz(EIuDZ + v [P) g HV eivz* -ipz (88)

Of course, we could have used ISMf and 6Nf in any order. Next, using Eqg. (3.2), we find:

_ Gz -
n!

_ (iz-v)"

= fuo ©9)

fnu o fvm

Also, expanding the factor exp (ivz*—uv) in Eqg. (8.8) and using Eg. (3.1), we have

_ 2 V" - g pm
fou () = e #VH _ f,, = e /2tH0 _ (8.10)
Vi %Jﬁl nu Z = fum
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Coordinate representation, continued:

Connection with the scalar product.

Comparing Egs. (3.3) and (7.7), we see that the wave function g, (z) is proportional to the
scalar product of coherent states

V217 oy (2) = <(iz*) Op> = <(ip) Oz > (9.1)
Similarly, comparing (3.3) and (7.8), we find
V217 Py (z) = <zO(iv)> = <v(iz)>. 9.2)

Let us emphasize that the left-hand side of Eqgs. (9.1-2) represents the wave function not in the
"coherent-state representation”, which would obviously be roundabout, but in the coordinate
representation. This gives a new twist to the Dirac notation!

There seems to be no analogous connection between Egs. (3.4) and (7.9). Close but no cigar!

Close inspection. Let us examine Egq. (7.9), which gives ket [Ovu> in the coordinate
representation, more closely:

VERIT Py, (2) e+ (VD) = g rela (P givar - ipz
- - - - 2 - - 2 i - -
VIR Yy, gy (2) = @770 7 W medl gl m Gl gl i) vz b o vl (g 3)

. .
~ g B ) Y - GutYDIPE S XY — 0 Ya)X (Y Xy
€

vari? LI»'x\,y\,x“yLl xy) =e

X +iy

where ZEzl+i22:W x =1V2 Re(z) y=1v2 Im(2) ; (9.4)
and
) Yu Tixy,
M=+l = ——m— Xy =1V2 Im () Yu =1V2 Re(y), (9.51)
VEv +iv, :% X, =-1vZ Im(v)  y, =1v2 Re(v). (9.5v)

We see that the wave packet is centered at the point with coordinates
(X, ¥) = (XptXy, Yutyy) (9.6)
Of course, by letting in Eq. (9.3) either u=0 or v=0 we recover Egs. (7.7-8) and (9.1-2).
Equation (9.3) shows that the conjugate wavefunction wave function w@u corresponds to the
replacement
Xy, Xp == Xy, Xy . 9.7
Of course, this can be seen already from Eq. (7.9) or Eq. (8.8):
Woh = Wy - (9.8)

This is worthy of note, because the first index in y,,, has to do with the average electron
kinetic energy <n>= [Ov[?, whereas the second index does not affect <n> (since D),
commutes with n).
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Motion of the coherent-state wave packets:

Coherent wave packet in a magnetic field. In a constant magnetic field B the Hamiltonian of a free
electron is of the form

- 0 A [P aon
Ho=— 0p-2210 = hot'd +%). (10.0)
2m C O
Heisenberg’s equation of motion give
02 _ [4,Ho]
— =" =0, 10.2
at h (10.22)
b _ [b,Hol _ . =
—=_ " =~ . 10.2
r = iwb (10.2b)
Transforming to the Schrédinger representation, we have
K (t) = Yo = constant of the motion (10.3p)
v(t)=e "9y, , (10.3v)

which means that the packet moves without dispersion in a quantum analog of the Larmor
orbit: a circle of radius Ov O1v2 about the center with coordinates (x,,y,).

Motion of a coherent wave packet in crossed electric and magnetic fields. In an electric field F_parallel
to the plane of the 2DEG, the hamiltonian is H = Hy + V with the additional term V of the
form:

G o—erp o _1elF O~ A0 .
V=erF= v mt b ot herm. con;. (10.4)
where F =F, +iF,. The Heisenberg equations now become:
9 _ elFU db _ _elF . -
—=___ — - —iwb. 10.5
ot V2 h ot V2 h (105)
The solution corresponds to the center of the wave packet performing a cycloidal motion
el FU
t) = + t; 10.6
H () = Ko 7 (10.6u)
S IF(e ' -1)
v(t)=e oty + & : 10.6v
(t) 0 TR (10.6v)
In the coordinates (9.5) this is:
el?F, el?F,
Xy () =Xy, = t, yu@®) =y, + " t (10.7p)
_ . el? O _11 + Eosi 0.
Xy (t) = cos (wt) x,, + sin(wt)y,, + Fo O [cos (wt) ]+ ysm(cot)D,
(10.7v)
(t) = cos (wt) - sin(wt)x, + el’ D—F sin(wt) + F, [cos(wt) - l]D
Yv = Yv, Voo TRy O X y o

The motion of wavepacket centers is identical to that of a classical particle in the same fields.
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Completeness:

Coherent states [n pu> form a complete set in M, and, similarly, states [ovm > form a complete
set in N ,,. Even though the member states are not orthogonal, these overcomplete sets allow
resolutions of unity:

! [ d? Onp><pnd=P (M,) (11.1M)
n! [ d? Omv><vmO=P (N ) (1L.IN)

where the I3's are projection operators; within the subspace they project on they represent the
unit operator. The proof of Egs. (1) has been given by Glauber [Phys. Rev. 131, 2766 (1963)].

It is a trivial matter to generalize Glauber’s argument and construct an analogous closure
relation in H :

2 [ d’pd?y Dvp><pvO = J. (11.2H)

As seen from Egs. (8.9), in the Bargmann representation states [Onp> (for a fixed p) are
binomials O(z* +ip)" of power n [respectively, states Cvm > for a fixed v are O(z-iv)™].
These states are eigenstates of hermitean operators (n and m, respectively, cf. p. 2) and are
therefore complete in N ,, and M,,, respectively. This means that an arbitrary state from these
subspaces can be represented by an analytic function (respectively, of z* and z). But analytic
functions are determined by a set of their values on any convergent sequence of points
7, 25, -+ (respectively, z;, z,, -+ ). This proves that any subset of coherent states, that
corresponds to a sequence of complex numbers with a limit point in the complex plane, is
complete in its own subspace. It is, of course, overcomplete: removal of any finite humber of
elements does not affect the existence of a limit point.

Considering infinite sequences that do not have a limit point, Perelomov has shown
[Theor. Math. Phys. 6, 156 (1971)] that any regular lattice which is denser than the Neumann
lattice (i.e., has a unit cell area S<m, cf. p. 5) is overcomplete, while that which is sparser
(S>m) is incomplete. As to the Neumann Lattice itself, he proved a remarkable theorem:

Perelomov’s Theorem: Let ', = { Oa>} be a set of coherent states forming a Neumann lattice in a
subspace A. The set is complete in A and remains complete upon removal of any single state. It becomes
incomplete on removal of any two states.

In our case, a stands for either Onu> (for a fixed n) or Ovm> (for a fixed m) and,
respectively, A for M, or N .

It should be stressed that completeness does not entail the existence of a closure relation.
Naively, one could anticipate — in analogy to (11.1) — a relation of the kind
S Oo>ly<als= IS(A) 0 Wrong! (11.3)
alla
It can be shown that no such measure I, can be found that would validate Eq. (11.3). This

follows from the existence of a conjugate set ', = { Ja>}, bi-orthogonal to ', (see p. 12).
Indeed, assuming (11.3) we should be able to write

Oo>= % [Ou>Il, <pla> (11.4)
puOra

0 & =<Bla>= ¥ <BOu>l, <pla>=lg<Bla> # & [ (11.5)
puOra

Thus, assumption that (11.3) exists leads to a contradiction. The conjugate set exists only if '
is minimal complete set (so a similar argument would not be applicable to Egs. 11.1). The
proof (11.5) shows that the necessary condition for a minimal complete set to allow an
expansion of unity is that the set must consist of orthogonal states. Of course, this condition is
also sufficient.
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Bi-orthogonal bases

Definition: A set ', is complete in A if the projection on A of any state orthogonal to all
members of ', vanishes identically.

Definition: A complete set ', is "minimal” if it becomes incomplete upon the removal of any
member of the set. We shall refer to such sets as bases.

A Neumann lattice with one state removed is a basis.

Bari’s Theorem (quoted by Perelomov, | have not seen the proof):

For any basis 'y there exists another basis FA such that if Da>, OB>0T, and Oa>, Elf;> O FA then
<aOB>=<BOa>=§,p.

Given Bari’s theorem it is obvious that for any state [O@>0OA we can write
Op>=3% Oa> <a Oy>. It then follows that bi-orthogonal bases do allow expansions of the
unity:

S Oa><d0=Y 0d><al=1] . (12.1)
a a

Matrices <a B> and <o B> are inverse to one another:

S <aOp><pB> = §p . (12.2)
u

In order to do practical work in the coherent state basis, it is important to be able to construct
the inverse to the scalar product matrix defined on the Neumann lattice (p. 5).

The explicit form of the Neumann-lattice basis depends on which of the NL elements has been
thrown out. It seems that if we remove a state [og > far from the origin (Do, O > 1) then the
actual shape of states Oa > should not depend on o, — so long as Do 0 < Oa, 0. Does this
offer an opportunity to describe states in a finite 2D sample in a NL basis, corresponding to
removed state far outside the sample boundaries?

My tentative answer is yes, but with great caution.

There seems to exist a deep connection between the Perelomov theorem and the well-known
fact that it is impossible to construct a continuous set of atlases faithfully covering the surface
of a sphere. (An atlas is a patch with a local coordinate system. In a continuous set, the atlases overlap
and in the overlap region the coordinates correctly transform as a vector from one system to the other.
The impossibility of covering a sphere in this way is a topological fact. | have heard C. N. Yang
preaching on the profound importance of this circumstance in physics) The connection to
Perelomov’s theorem arises in virtue of the exact correspondence of the motion of 2D electrons
in a normal magnetic field B and the motion of 2D electrons confined to a sphere of radius R
containing at the center a monopole of charge g = BR2. The latter problem (Tamm) reduces
to the motion on a sphere without a monopole — except the allowed values of the angular
momentum start from L =Ly =eg/hc rather than L =0. It is well-known (Dirac) that the
magnetic charge, if exists, is quantized so that Ly is integer or half-integer. Each of the shells
L=Ly, Lg+1, --- isfinite (2L +1) dimensional but its degeneracy per unit area of the sphere
coincides with the Landau level degeneracy (2rd?)~!. It seems that if we could construct a
single coherent state lattice on a sphere (which would entail an atlas covering), we would then
be able to map it on the Neumann lattice. A sphere with one point punched out is coverable
and this seems to parallel the statement of Perelomov’s theorem.



